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Magnetic materials with double orbital quasi-
degeneration are characterized not only by spin-depen-
dent interactions but also by the dependence of the
exchange integral on the mutual position of the orbitals.
This property changes not only the magnetic properties
but also the transport characteristics, for example, gives
rise to giant magnetoresistance in manganites. The
orbital ordering forms a quasi-low-dimensional struc-
ture in KCuF

 

3

 

 [1] and likely results in the formation of
quantum states without the long-range magnetic order
in KCuCl

 

3

 

 [2] and NH

 

3

 

CuCl

 

3

 

 [3]. When investigating
the ground state and low-temperature effects in low-
dimensional systems, quantum fluctuations in the spin
system are of significant importance and, in the case of
the strong interaction of spins with orbitals through the
exchange interaction, it is necessary to take into
account that the hopping integrals between the neigh-
boring 3

 

d 

 

ions depend both on the orbital type and on
the mutual position of the sites, because the electron-
density distribution is not spherically symmetric.

The relation of the spin order to the orbital ordering
is illustrated in the Kugel’–Khomski

 

œ

 

 model [1] for the
Hamiltonian of perovskites (

 

e

 

g

 

 ions at the sites of the
simple cubic lattice), which is obtained from the multi-
electron Hamiltonian with the same exchange parame-
ters 

 

J

 

 = 4

 

t

 

2

 

/

 

U

 

, where 

 

t

 

 is the hopping integral and 

 

U

 

 is
the Coulomb-repulsion parameter at the site between
the –  and –  orbitals. More accurate

calculation of the hopping integrals of electrons
between neighboring cations along the 

 

x

 

 axis through
an anion (oxygen, fluorine, chlorine, etc.) yields the

expression  = 
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the level energies for the 

 

p

 

 and 

 

d

 

 orbitals, respectively;

 

E

 

x

 

, 

 

α

 

 is the overlap integral between the  and 

 

p

 

x

 

orbitals; and 

 

E

 

x

 

, 

 

β

 

 is the overlap integral between the
 and 

 

p

 

x

 

 orbitals calculated in [4]. When the

ratio of the hopping integrals is written in the form

 

t

 

αα

 

/

 

t

 

ββ

 

 = 3/4 and 

 

t

 

αβ

 

/

 

t

 

ββ

 

 =  and the exchange inter-
actions between electrons on the  and  orbitals

differ by a factor of almost 2, 

 

J

 

αα

 

/

 

J

 

ββ

 

 = 0.56, whereas

 

J

 

αβ

 

/

 

J

 

ββ

 

 = 0.75. The Coulomb interaction between elec-
trons both at a site and between different orbitals should
also be taken into account when calculating exchanges,
and the inclusion of this interaction modifies the rela-
tion between the exchanges. Below, we consider a
model with one electron (hole) on the 

 

e

 

g

 

 orbital with the
inclusion of only the electron exchange mechanism.
This model is applicable to perovskites containing the
Mn

 

3+

 

, Ni

 

3+

 

, Cu

 

2+

 

, and Fe

 

2+

 

 ions in the octahedral envi-
ronment.

It is known that low-dimensional systems with alter-
nating exchange imitating the spin Peierls transition are
in a more stable state and have an energy gain of 

 

E

 

/

 

J

 

 ~

 

δ

 

, where 

 

δ

 

 = 

 

J

 

i

 

, 

 

i

 

 + 1

 

 – 

 

J

 

i

 

 + 1, 

 

i

 

 + 1

 

. The interaction of the
electrons on the 

 

e

 

g

 

 orbitals with various octahedron
oscillation modes forms orbital ordering. The most
widespread type of the orbital ordering is associated
with the alternating of the  and  orbitals,

whose schematic arrangement has the form 

 

⇔ ⇔

 

.
For oxides and ions located in a distorted octahedron,
this corresponds to the distortion axis rotation in the 

 

xy

 

plane by an angle of 

 

π

 

/2. The effective interaction
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The exchange mechanism of the ordering of electrons on 

 

e

 

g

 

 orbitals has been estimated by the quantum Monte
Carlo method with the inclusion of the hopping integrals through an anion in a one-dimensional system. A mag-
netic state in the form of a gapless quantum spin liquid has been found. The plateau existence region in the field-
dependence of the magnetization, as well as the wave vector of the modulation of the magnetic structure with

 

Q

 

 = 

 

π

 

/2 in the (magnetic field–exchange alternating) plane, is determined.
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between the orbitals is ~  (

 

g

 

 is the electron–
phonon coupling constant and 

 

ω

 

 is the octahedron
oscillation frequency) and reaches a maximum at the
edge of the Brillouin zone for perovskite-like crystals
[5]. Another case is associated with the removal of the
degeneration of the 

 

e

 

g

 

 orbitals and with the doubling of
the unit cell along the 

 

c

 

 axis. For example, the alternat-
ing of prolonged and flattened octahedra along the tet-
ragonal axis gives rise to the redistribution of the elec-
tron density on the  and  orbitals. The

exchange energy between spins on the neighboring
orbitals can decrease when pairs of orbitals are ordered
as 

 

⇔⇔

 

 and – – –  for the first and

second cases, respectively. Exchange alternating
reduces the system energy due to quantum spin fluctu-
ations in low-dimensional systems. Competition
between the exchange energy and effective interaction
between orbitals can change the orbital and spin order-
ings at low temperatures or can soften the optical oscil-
lation mode in the middle of the Brillouin zone.

Let us consider the model with the symmetric alter-
nating exchange described by the Hamiltonian

(1)

where 

 

J

 

 ~  is the exchange interaction determined
by the hopping of electrons between the different orbit-
als at the neighboring sites and 

 

H

 

 is the external mag-
netic field. The unit cell contains four spins coupling by
the exchanges 

 

J

 

, 

 

J

 

(1 

 

± δ

 

).
As a calculation method, we take the quantum

Monte Carlo method unifying two algorithms, world-
lines and continuous time [6], for the spins 

 

S = 1/2
located at the sites of the chain L = 400 with the non-
uniform exchange distribution and periodic boundary
conditions. The calculation method was described in
detail in [7]. The following quantities are calculated in
the framework of this method: the magnetization m =
2〈Sz〉, the spin–spin correlation function, the correlation
radius, the static susceptibility χ = m/H in the external
magnetic field directed along the quantization axis, the

energy, and the entropy S(Ti) = .

Figure 1 shows the correlation radius determined by
fitting the function 〈Sz(0)Sz(r)〉 = A/rηexp(–r/ξ) to the
calculated distance dependence of the spin–spin corre-
lation function. As the alternating magnitude increases,
the correlation radius decreases sharply (the power
exponent remains almost unchanged, η = 1 ± 0.08). The
derivative dξ/dT has a maximum at a certain tempera-
ture T* (see the inset in Fig. 1). The interpolation of
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ξ(T) by a third-order polynomial for low temperatures
T < T* provides the asymptotic value of the correlation
radius. The approximation of the calculated results for
ξ(δ) by the function

(2)

with the parameters α = 3, B = 60(2), and A = 11(1) pro-
vides the minimum dispersion as compared to the
power function. In a limiting case of δ  1, the cor-
relation radius is on the order of the lattice constant. In
a limiting case of δ  0, the spin–spin correlation
function of the Heisenberg chain with the antiferromag-
netic exchange is a power function.

The exchange alternating in the spin Peierls chain
induces a gap in the spectrum of the triplet excitations
and gives rise to a finite correlation radius in the ground
state. Using the calculated dependences of the magne-
tization and spin correlation functions on the external
magnetic field, we determine the critical fields Hc cor-
responding to the formation of the long-range magnetic
order and the gap in the triplet-excitation spectrum. The
calculations provide a linear dependence, ∆ ≅ 2δ, of the
gap on the exchange alternating and are in good agree-
ment with the limiting case for one dimer, Hc =
gSzJ(1 + δ) = 2J. The thermodynamic characteristics—
the specific heat and susceptibility capacity—decrease
according to the exponential law below this tempera-
ture.

The ordered arrangement of the orbital pairs
described by Hamiltonian (1) gives rise to the appear-
ance of the plateau on the magnetization curve m(H)
shown in Fig. 2 at a critical external field Hc1. The cor-
responding magnetization is equal to m = 0.5µB. The

ξ A

1 δ+( )α------------------- 1
Bδ
-------⎝ ⎠

⎛ ⎞exp=

Fig. 1. Correlation radius of the magnet normalized to the
lattice constant a with the ordering of orbital pairs and the
approximation dependence ξ(δ) given by Eq. (2) vs. the
exchange alternating magnitude. The inset shows the tem-
perature dependence of the correlation radius for δ = (1) 0,
(2) 0.4, and (3) 0.8 and ξ = (solid line) A/T and (dotted line)
A – BT3.
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magnetic structure factor determined from the spin–
spin correlation function

has a main maximum and a number of satellites (see
Fig. 3). The magnetic field aligns the spins of the kinks
along the field and stabilizes the long-range ferromag-
netic order, which does not coincide with the short-
range order calculated by chain-averaging of the spin–
spin correlation function in the first coordination
sphere. As the magnetic field increases, the modulation
of the magnetic structure with the wave vector q = π/2
is observed near the magnetic field H ~ Hc1. The linear
dependence m(H) for low external fields indicates the
absence of a gap in the spectrum of triplet spin excita-
tions and the magnetic state is a quantum spin liquid
with a finite correlation radius.

The data can be treated assuming that the spin of the
unit cell in the ground state is equal to zero, whereas the
excited state corresponds to a triplet with Sz = 1. In the
presence of the magnetic field, these states are split and
the multiplet energies with Sz = 1 and Sz = 0 intersect at
Hc1. The arrangement of the spins in the chain in the

S q( ) 1
N
---- iqr j–( )S

z
0( )S

z
r j( )exp

r j

∑=

plateau region Hc1 < H < Hc2, which is determined from
the analysis of the spin–spin correlation functions (see
Fig. 2b), can be represented as ↑↑↑↓↑↑↑↓. The mod-
ulation of the magnetic structure is well described by
the wave vector Q = π/2.

The multiplets with Sz = 1 and 2 intersect in the field
Hc2, the short-range order coincides in sign with the
long-range ferromagnetic order, and the ferromagnetic
modulation disappears. This interpretation is confirmed
by the critical fields Hc1 and Hc2 determined by means
of the exact diagonalization of a four-spin cluster at
δ  1; these data are shown in Fig. 4. The ordering of
the orbital pairs in the magnetic field provides three
types of the magnetic order: short-range antiferromag-
netic order; ferromagnetic order; and modulated ferro-
magnetic order with Q = π/2, depending on the relation
of the magnetic field and exchange alternating. Figure
4 shows the regions of these phases in the (magnetic
field, exchange alternating) plane.

The plateau on the magnetization curve m(H) = 1/2
is also observed for other models, e.g., in an antiferro-
magnetic chain with easy-plane anisotropy and with a
spin of S = 3/2 at the site [8] and in a zigzag chain with
alternating exchange and exchange interaction between
the spins S = 1/2 of the second neighbors [9]. This effect
is explained by the formation of the dimers and spinons
in the former model and the induced XY anisotropy in
the latter model. Anisotropy induced by the internal
parameters of the Hamiltonian gives rise to the forma-
tion of the gap in the triplet-excitation spectrum. To
reveal the activation character of the excitation spec-
trum in the phase with the modulated ferromagnetic
order in the field range Hc1 < H < Hc2, we calculate the
temperature dependences of the magnetic state and the
magnetic structure factor in the field range where the
plateau m = 1/2 is observed. The gap ∆E in the spin
excitation spectrum is responsible for the exponential
behavior of the susceptibility χ ~ exp(∆E/kBT).

Fig. 2. Field dependences of the (a) magnetization m and
(b) spin–spin correlation functions 〈Sz(0)Sz(r)〉 at the dis-
tance r = (1, 3, 5) 1 and (2, 4, 6) 31 for δ = (1) 0.2, (2) 0.4,
and (3) 0.6. The symbol sizes correspond to the errors.

Fig. 3. Magnetic structure factor S(q) of a magnet with the
orbital ordering of pairs for δ = 0.6 in the external magnetic
field H/J = (1) 0.1, (2) 0.3, (3) 0.5, (4) 0.7, and (5) 1.1.
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Figure 5 shows the temperature dependences of the
susceptibility at a given exchange alternating as calcu-
lated for various fields. The behavior of the susceptibil-
ity χ(T) is smooth and approximated by a power law.
Here, the temperature behaviors of the spin correlation
functions are different in two magnetic field regions
H < H* and H > H*, where H* ≅ (Hc1 + Hc2)/0.5. In par-
ticular, the short-range antiferromagnetic order in the
fields H < H* is recovered with increasing temperature
(see Fig. 5b) and the temperature dependence of the
magnetic structure factor is similar to the behavior of an
antiferromagnet in the spin-flop phase. The wave vector
of the superstructure reflection (see Fig. 5c) disappears
at a certain temperature T* increasing monotonically
with the exchange alternating magnitude. The disap-
pearance of the modulation of the structure correlates
with the increase in the entropy growth at T* ~ 0.45 (δ =
0.6). The increase in the magnetization (see Fig. 5a)
and the appearance of the short-range ferromagnetic
order (see Fig. 5b) with increasing the temperature in
high fields H > H* indicate the suppression of quantum
fluctuations of the magnetic field. The temperature at
which the magnetization is maximal and the wave vec-
tor of the superstructure disappears (see Fig. 5c) corre-
sponds to the crossover region of the transition from the
regime of quantum fluctuations to the regime of classi-
cal fluctuations. This effect is likely manifested also
when the short-range antiferromagnetic order is
induced in the field H < H*. In particular, an inflection
point is observed on the entropy curve S(T) in the tem-
perature interval T = 0.25–0.3 (δ = 0.6).

The magnetic state (see Fig. 6) of the magnets with
the orbital ordering is maximal at the temperature Tmax.
The temperature dependence of the susceptibility in
this region is similar to the dependence of the suscepti-

bility of the two-level singlet–triplet system. The exci-
tation spectrum of uncoupled four-spin clusters at δ = 1
is significantly different from the spectrum of the clus-
ters interacting with each other (δ  1). In the former
case, the energy of the triplet state is Et = –J. For the
continuous chain, δ  1, the excited states corre-
spond to the spinons with an energy of Es = –1.5J; i.e.,
the energy gap between the ground state and excited
states of the spinons is half the value for the magnon
excitations.

The decrease in the energy of the antiferromagnetic
chain with the nonuniform periodic distribution of
exchange is caused by the decrease in the effective

Fig. 4. Phase diagram of the magnet with the orbital order-
ing of pairs containing the regions with the short-range anti-
ferromagnetic order (AF), ferromagnetic order (FM), and
modulated ferromagnetic order with the plateau m(H) =
1/2µB in the field interval Hc1(1) – Hc2(2) in the (magnetic
field, exchange alternating) plane. The critical fields Hc1(3)
correspond to the singlet–triplet transition in a four-spin
cluster.

Fig. 5. Temperature dependences of the (a) susceptibility
χ = M/H, (b) spin correlation functions 〈Sz(0)Sz(r = 1)〉 (the
symbol sizes correspond to the errors), and (c) superstruc-
ture reflection intensity Ssat(Q) of the alternating chain with
δ = 0.6 in the field H/J = (1) 1, (2) 1.3, and (3) 1.6. The tem-
perature corresponding to the disappearance of the modu-
lated ferromagnetic structure with Q = π/2 is marked by the
arrows.
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chain length owing to a change in the correlation radius.
In particular, in the limiting cases, the energies per spin
in the infinite antiferromagnetic chain and dimer are
Echain = –2ln2 + 0.5 � –0.4433J and Ed = –0.75J, respec-
tively. As a result, the energy of the alternating chain
depends on the wave vector of the exchange modula-
tion; i.e., the larger the number of the spins coupled by
the strong exchange, the lower the change in the energy
of the chain after the exchange alternating. The unit cell
contains two and four spins in a spin Peierls magnet and
in a magnet with orbital ordering, respectively. Figure 6b
shows the Monte Carlo calculations of the relative
energy change as a function of the exchange-alternating
magnitude. These data are well approximated by the
power function ∆E/E = Aδα with the parameters A =
0.67(2) and α = 1.50(4) (spin Peierls model) and A =
0.15(1) and α = 1 (orbital ordering). The results for
δ  1 almost coincide with the energy change calcu-
lated for the four-spin cluster for the spin Peierls model
∆E/E = (exact) 0.69 and (Monte Carlo) 0.67 and for the

orbital ordering ∆E/E = (exact) 0.14 and (Monte Carlo)
0.15(1).

Using the typical parameters of the hopping inte-
grals from the cation to anion  = 2 eV,  =

0.5 eV, and  = 1.5 eV; the charge gap �p – �d =

3 eV; and U = 6 eV, we estimate the gain in the exchange
energy as ∆Eex ~ 0.05 and 0.017 eV for the ⇔⇔
ordering of pairs of  orbitals and for the – –

–  ordering, respectively. Owing to the

competition between the Coulomb and exchange inter-
actions between the electrons on the neighboring orbit-
als, a certain orbital order with the structure wave vec-
tor Q = π/2 can be induced. In magnets with narrow
optical bands and weak dispersion of the optical oscil-
lation mode and the electron–phonon coupling constant

~  near the band edge, the exchange mechanism
possibly gives rise to a change in the magnetic and
orbital orders with decreasing the temperature.

Thus, in a quasi-low-dimensional magnet with one
electron (hole) on the eg orbital and competing Cou-
lomb and exchange interactions, the appearance of the
orbital order with the structure wave vector Q = π/2 or
the softening of the elastic oscillation mode near this
vector is possible. The magnetic state after the ordering
of orbital pairs is a gapless quantum spin liquid with a
finite correlation radius. The phase diagram of the mod-
ulated ferromagnet is determined. This diagram has a
plateau m(H) = 1/2 on the magnetization curve in the
(magnetic field, exchange alternating) plane.

This work was supported by the Federal Targeted
Program, project no. 2007-3-1.3-24-01-286.

REFERENCES
1. K. I. Kugel’ and D. I. Khomskiœ, Usp. Fiz. Nauk 136, 621

(1982) [Sov. Phys. Usp. 25, 231 (1982)].
2. H. Tanaka, K. Takatsu, W. Shiramura, and T. Ono, J.

Phys. Soc. Jpn. 65, 1945 (1996).
3. W. Shiramura, K. Takatsu, and B. Kurniawan, J. Phys.

Soc. Jpn. 67, 1548 (1998).
4. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
5. D. Reznik and W. Reichardt, Phys. Rev. B 71, 092301

(2005).
6. N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81,

2514 (1998); N. V. Prokof’ev, B. V. Svistunov, and
I. S. Tupitsyn, Zh. Éksp. Teor. Fiz. 114, 570 (1998)
[JETP 87, 310 (1998)].

7. S. S. Aplesnin, Zh. Éksp. Teor. Fiz. 124, 1080 (2003)
[JETP 97, 969 (2003)].

8. M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev.
Lett. 78, 1984 (1997).

9. K. Totsuka, Phys. Rev. B 57, 3454 (1998).

Translated by R. Tyapaev

td
z
2 p– td

x
2 p–

td
x
2

y
2

–
p–

⇔ ⇔

d
z

2 d
z

2 d
z

2

d
x

2
y

2
–

d
x

2
y

2
–

gk
2ωk

1–

Fig. 6. (a) Temperature dependence of the susceptibility of
the magnet with the orbital ordering for δ = (1) 0.2, (2) 0.4,
and (3) 0.6 calculated by the Monte Carlo method in the
field H/J = 0.1. (b) Exchange-alternating dependence of the
relative energy change ∆E = (E(δ) – E(δ = 0)) for (1) the
spin Peierls model, (2) ordering of the orbitals, and power-
law approximation functions ∆E/E(δ = 0) = Aδα with the
parameters (1) A = 0.67(2) and α = 1.50(4) and (2) A =
0.15(1) and α = 1 (orbital ordering). The errors correspond
to the symbol sizes.
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