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1. INTRODUCTION

Attracting interest in the field of wave chaos [1],
elastomechanical systems are being studied analyti-
cally, numerically, and experimentally. Weaver first
measured the few hundred lower eigenfrequencies of
an aluminum block and worked out the spectral statis-
tics [2]. Spectral statistics coinciding with random
matrix theory were observed in experiments for monoc-
rystalline quartz blocks shaped as three-dimensional
Sinai billiards [3], as well as in experimental and
numerical studies of flexural modes [4, 5] and in-plane
modes [6, 7] for stadium-shaped plates. The statistical
properties of the eigenfunctions describing standing
waves in elastic billiards were first reported by Schaadt
et al. [8]. The authors measured the displacement field
of several eigenmodes of a thin plate shaped as a Sinai
stadium. Due to the good preservation of the up–down
symmetry in the case of thin plates, they dealt with two
types of modes. The flexural modes with displacement
perpendicular to the plane of the plate are well
described by the scalar biharmonic Kirchoff–Love
equation [9, 10]. In this case, good agreement with the
theoretical prediction for both the intensity statistical
distribution and the intensity correlation function was
found. However, in the case of the in-plane displace-
ments described by the vector Navier–Cauchy equation
[9, 10], agreement between the intensity correlator
experimental data and the theory was not achieved [8].

The aim of present Letter is to present an analogue
of the Berry conjecture for elastic vibrating solids and
derive the amplitude and intensity correlation functions
with corresponding comparison to numerics. Quite
recently, Acolzin and Weaver suggested a method to
calculate the intensity correlator of vibrating elastic
solids [11]. Based on the Green’s function averaging
technique, they succeeded in deriving the intensity cor-
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relator of flexural modes generalized due to the finite
thickness of a plate. Although the method might be
used for the in-plane modes in elastic chaotic billiards,
we propose here a simpler and physically transparent
approach based on the random superposition of travel-
ing plane waves (Gaussian random wave (GRW) or the
Berry function [12]). We show that the approach allows
us to derive all kinds of correlation functions of RGW,
not only in infinite elastic media, but also to take into
account the double-ray splitting at the boundary of a
plate that plays a significant role in the elastomechani-
cal chaotic motion [13, 14]. We restrict ourselves to the
two-dimensional case, because of the current experi-
ments available. Note, however, that the method can be
easily generalized for the three-dimensional case.

2. ANALOGUE OF THE BERRY CONJECTURE
IN ELASTIC MEDIA

Shapiro and Goelman [15] first presented the statis-
tics of the eigenfunctions in a chaotic quantum billiard
although their numerical histogram was not compared
with the Gaussian distribution. This was done by
McDonnell and Kaufmann [16], who concluded that
the majority (

 

≈

 

90%) of the eigenfunctions of the Buni-
movich billiard are a Gaussian random field. Later, this
was confirmed by numerous numerical and experimen-
tal studies. The simple way to construct RGF is random
superposition of particular solutions of Eq. (4) [12, 17,
18] with a sufficient number 

 

N

 

. Thus, we come to the
Berry conjecture in the form [19, 1]

(1)

where the phases 

 

θ

 

n

 

 are randomly distributed uniformly
in the range [0, 2

 

π

 

) and all of the amplitudes are taken
to be equal (one could assume random independent
amplitudes without any change in the results). The
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wave vectors 

 

k

 

n

 

 are uniformly distributed on a

 

d

 

-dimensional sphere of radius 

 

k

 

. It follows now from
the central limit theorem that both Re

 

ψ

 

B

 

 and Im

 

ψ

 

B

 

 are
independent Gaussian variables. In a closed billiard, the
Berry function is viewed as a sum of many standing
waves, which is simply the real or imaginary part of
function (1).

In our case, one has to construct a RGW function
describing the acoustic in-plane modes. These modes
are described by a two-dimensional Navier–Cauchy
equation [10, 20]

(2)

where 

 

u

 

(

 

x

 

, 

 

y

 

) is the displacement field in the plate, 

 

λ

 

, 

 

µ

 

are the material dependent Lamé coefficients, and 

 

ρ

 

 is
the density. Introducing elastic potentials 

 

ψ

 

 and 

 

A

 

 with
the help of the Helmholtz decomposition [20], the dis-
placement field 

 

u

 

 can be written as

(3)

Equation (2) reduces to two Helmholtz equations for
the elastic potentials

(4)

Here, 

 

k

 

l

 

 = 

 

ω

 

/

 

c

 

l

 

, 

 

k

 

t

 

 = 

 

ω

 

/

 

c

 

t

 

 are the wavenumbers for the
longitudinal and transverse waves, respectively, and

 

ω

 

2

 

 = 

 

ρΩ

 

2

 

/

 

E

 

, where 

 

E

 

 is Young’s modulus. In the two-
dimensional case, potential 

 

A

 

 has only one none-zero
component 

 

A

 

z

 

 and the dimensionless longitudinal and
transverse sound velocities 

 

c

 

l

 

, 

 

t

 

 are given by

(5)

where 

 

σ

 

 is Poisson’s ratio [10, 20]. 

 

E

 

 and 

 

σ

 

 are func-
tions of the Lamé coefficients [10, 20]. Our conjecture
is that both elastic potentials be statically independent
Berry-like functions (1). We write the potentials in the
following form:

(6)

where 

 

θ

 

ln

 

, 

 

θ

 

tn

 

 are statistically independent random
phases. The wave vectors 

 

k

 

ln

 

 and 

 

k

 

tn

 

 are uniformly dis-
tributed on circles of radii 

 

k

 

l

 

 and 

 

k

 

t

 

, respectively.
According to (3), the components 

 

u

 

, 

 

v

 

 of the vector dis-
placement field 

 

u

 

 can now be written as
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(7)

where φln and φtn are the angles between kln and ktn and

the x axis, respectively. The prefactors al =  and at =

 are chosen from the normalization condition
〈u†u〉 = 1, and 〈…〉 mean average over the random-
phase ensembles. Parameter γ ranges from 0 (pure
transverse waves) to 1 (pure longitudinal waves). Sim-
ilarly, one can construct the elastomechanical GRW for
a closed system. One can see that the Berry analogue of
chaotic displacements (7) is not a sum of two indepen-
dent GRWs (or two independent Berry functions)
alψl + atψt, as was argued by Schaadt et al. [8], with the
arbitrary coefficients al and at. In fact, each component
u and v in Eq. (7) is related to Berry functions (6) via
space derivatives in accordance with relations (3).

3. CORRELATION FUNCTIONS

First, we calculate the amplitude correlation func-
tions in a chaotic elastic plate for in-plane GRW (7).
For quantum mechanical GRW (1), the two-dimen-
sional correlation function

was found firstly by Berry [12]. A straightforward pro-
cedure of averaging over the ensembles of random
phases θln and θtn and, then, over the angles of the k vec-
tors gives

(8)

where

(9)

+ γ
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It is important to note that correlation functions (8)
were obtained for a given direction of the vector s,
where α is the angle included between vector s and the
x axis. However, averaged over all directions of s, the
first two correlation functions simplify to

(10)

while the third vanishes  = 0. One can
see that, in the averaged case, the amplitude correlation
function is defined by two scales because of two differ-
ent sound velocities cl and ct; this is obvious. The cor-
relation function C(s) is shown in Fig. 1.

Next, we calculate the intensity correlation func-
tions P(s) = 〈I(x + s)I(x)〉, where the intensity I = |u|2 is
proportional to the elastic energy of the in-plane oscil-
lations. In quantum mechanics, this value is analogous
to the probability density, the correlation function of
which was calculated by Prigodin et al. [21]. For the in-

C s( ) u x s+( )u x( )〈 〉 v x s+( )v x( )〈 〉= =

=  
1 γ–

2
-----------J0 kls( ) γ

2
---J0 kts( ),+

u x s+( )v x( )〈 〉

plane chaotic GRW of the form alψl + atψt, Schaadt
et al. [8] derived the intensity correlation function as

(11)

Our calculations similar to those for amplitude cor-
relation functions (8) give a different result:

(12)

where η = 1 for a real GRW and η = 2 for a complex
one. Although the first term in (12) corresponds to (11),
there is a different term consisting of the Bessel func-
tions J2. The mathematical origin of the deviation is that
formula (7) contains the contributions of the compo-
nents of the wave vectors kl and kt via space derivatives.

4. WAVE CONVERSION AT THE BOUNDARY

Waves propagate freely inside the billiard, that is,
the longitudinal and transverse components are decou-
pled. Wave conversion occurs at the boundary accord-
ing to Snell’s law

(13)

The reflection amplitudes for each event of the reflec-
tion can be easily found following the procedure
described in [10]. At first, we consider the simpler case
of the Dirichlet boundary condition (where the bound-
ary is fixed). Approximating the boundary as the
straight lines for the wavelengths that are much less
than the radius of the curvature, we have for the reflec-
tion amplitudes

(14)

Next, we assume that all wave directions are statisti-
cally equivalent. Then, we have for the energy density
of reflected wave

(15)

where
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Fig. 1. Correlation function (10) for γ = (solid line) 0,
(dashed line) 0.5, and (dash–dotted line) 1 at σ = 0.345 (alu-
minum).

Fig. 2. Intensity I = |u |2 of the eigenstate at frequency ω =
28.4 in a quarter of the Bunimovich billiard with a fixed
boundary at σ = 0.345.
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Substituting into here (14), one can obtain, after ele-
mentary calculations,

(16)

We do not present here integrals I1 and I2, since, after
the substitution of (16) into (15), they cancel each other.
The equality ρin = 1 = ρout gives a very simple evalua-
tion:

(17)

The next remarkable result is that, although the reflec-
tion amplitudes for the free boundary condition [10]
have a form different from (14) (see, for example, the
formulas in [10]), the evaluation of γ using the same
procedure gives the same form as for the fixed bound-
ary condition. Therefore, we can conclude that the
result does not depend on whether the free boundary
condition or the fixed boundary condition is applied.
Using (5), formula (17) could be written in a simpler
form:

(18)

Tll 1
ct

cl

--- I1, Tlt– I2,= =

Ttt 1
2
π
---

ct
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---arcsin–
ct
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I1,+=

Ttl
2
π
---

ct
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---arcsin
ct

cl

---⎝ ⎠
⎛ ⎞

2

I2.–=

γ
ct

2

ct
2 cl

2+
---------------.=

γ 1 σ–
3 σ–
------------.=

5. NUMERICAL RESULTS AND CONCLUSIONS

For numerical tests, we took a quarter of the Buni-
movich billiard and calculated the eigenstates of
Navier–Cauchy equation (2) with a fixed boundary
condition: u = 0 and v = 0 at the boundary of the billiard
using the finite-difference method. An example of the
eigenstate in the form of intensity I = |u |2 is presented
in Fig. 2. First of all, we verified formula (18). For each
value of Poisson’s ratio σ in the range [0, 0.5] with the
step 0.05, 200 eigenfunctions of the billiard were found
to calculate an averaged γ. The resulting dependence of
γ on σ is shown in Fig. 3, which demonstrates a good
agreement with formula (5). Therefore, we can evaluate
γ for specific σ = 0.345, which corresponds to the alu-
minum plate, and plot the correlation functions. Inten-
sity correlation function (12) is shown in Fig. 4 com-
pared to the numerics calculated for the eigenfunction
presented in Fig. 2. One can see a good coincidence
between the theory and the numerical results, which
demonstrates the correctness of GRW approach (7) to
chaos in elastic billiards.
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