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Abstract – The phase correlation function 〈exp[iθ(x+ s)− iθ(x)]〉 for the complex random
Gaussian field ψ(x) = |ψ(x)|exp[iθ(x)] is derived. It is compared to the numerical scattering wave
function in the open Sinai billiard.
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Introduction. – Understanding of the statistical
properties of the eigenfunctions of a quantum system
whose classical counterpart is chaotic and their relation
to the underlying classical dynamics is one of the key
problems studied in the field of quantum chaos. Among
various applications, wave function correlations are
important for the statistics of electron transport through
quantum chaotic billiards, see ref. [1] and references
therein, and for the statistics of nodal points [2,3].
Almost thirty years ago, Berry [4] conjectured that an
eigenfunction of a classically chaotic system (quantum
billiard) can be represented as a random superposition of
plane waves with fixed absolute value k of the wave vector
(determined by the energy E = �2k2/2m). This implies
Gaussian statistics of the eigenfunction amplitude ψ(r).
Berry [4] derived the space-averaged spatial correlation
function (in what follows correlator) of the wave function:

C(r) = 〈ψ(x+ r)ψ∗(x)〉=Γ
(
d

2

)
J d
2−1(kr)

(kr)
d
2−1

, (1)

where d is dimension of the space, Γ is the Gamma-
function, Jn(x) is the Bessel function of the n-th order.
Later, similar correlations were rigorously derived for
quantum dots in ref. [5]. Moreover Prigodin [6] derived
the correlator of the square of the wave function
〈|ψ(x+ s)ψ(x)|2〉 and of the higher degrees of the wave
functions 〈|ψ(x+ s)|2m|ψ(x)|2n〉 where m, n are integers.
The underlying random phase fields, however, have

received much less attention, and many important prop-
erties of these fields are still unknown from either theory
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or experiment. The concept of phase is usually introduced
as a property of coherent wave fields. Such wave fields are
described by a complex function ψ(r) = |ψ(r)|exp[iθ(r)].
The surfaces of constant θ(r) can be identified with the
wavefronts. In free space, v= 1

m
∇θ(r) describes the local

velocity [7]. The phase of an optical wave field can be
determined from correlation measurements [8,9]. Also it
can be determined indirectly by independent measuring
of the real and imaginary parts of the complex wave field
as it was done in microwave experiments [10]. The statis-
tical properties of the correlator (1) are defined by fluc-
tuations of the wave field modulus |ψ| as well as by the
phase fluctuations θ. If the random field ψ(r) had constant
absolute value |ψ(r)|= const, the correlator (1) would be
given purely by the phase correlator

Z(s) = 〈exp[iθ(x+ s)− iθ(x)]〉. (2)

In the present letter we find analytically the phase corre-
lation function (2) and compare it to the wave function
one (1) for the case of the random Gaussian field. Surpris-
ingly, the space behavior of the wave function correlator
(1) is mainly given by the phase one (2) as it will be shown
below.
The correlator (2) is free of 2π phase disconti-

nuities contrary to the spatial phase correlator
Ξ(s) = 〈θ(x+ s)θ(x)〉. Such a kind of the phase correlator
was firstly calculated by Middleton [11]. However, as it
was shown by Freund and Kessler [12] (see also [13]) the
result by Middleton disagrees with numerics because it
apparently fails to correctly handle the complex topology
of two-dimensional random phase fields. This complex
topology arises from the presence of vortices (phase
singularities) (see, for example patterns of the phase fields
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Z(s) =
1−C(s)2
2π

∫ π
0

dϕdϕ′
C(s) cos (ϕ−ϕ′)(sinϕ sinϕ′+ ε2 cosϕ cosϕ′)√

1+ (ε2− 1) cosϕ2
√
1+ (ε2− 1) cosϕ′2

(
1−C(s)2cos (ϕ−ϕ′)2

) 3
2

. (8)

in [13–15]). The ways to cope with this problem were
considered in [12,16].

Phase correlator. – Representing the complex
Gaussian random field (RGF) ψ as sum of two indepen-
dent RGFs ψ= u+ iv, one can rewrite (2) as

Z(s) =

〈
uvs+usu+ i(uvs− vus)√

u2s + v
2
s

√
u2+ v2

〉
. (3)

For brevity the dependence on s is shown by the index.
We consider u and v as two independent RGFs
〈uv〉= 0. If 〈uv〉 �= 0, the phase transformation given
in [17] could make u and v statistically independent.
Open chaotic billiards are characterized by the phase
rigidity of the scattering wave function ψS inside the
billiard ρ= 〈ψ2S〉/〈|ψS |2〉 [18] which is related to the ratio
ε2 = 〈v2〉/〈u2〉 by the equation ρ= (1− ε2)/(1+ ε2). The
factor ε was introduced by Pnini and Shapiro [19] to
present the scattering wave function in the Berry-like form

ψ=
∑
j

cos(kjr+ θj)+ iε
∑
j

sin(kjr+φj). (4)

In order to calculate the phase correlator (3), we need a
couple of the joint distributions, respectively [2],

w(u, us) =
1+ ε2

2π
√
1−C(s)2

× exp
{
− (u

2+u2s − 2C(s)uus)(1+ ε2)
2(1−C(s)2)

}
,

w(v, vs) =
1+ ε2

2πε2
√
1−C(s)2

× exp
{
− (v

2+ v2s − 2C(s)vvs)(1+ ε2)
2ε2(1−C(s)2)

}
,

(5)

which are written under condition that 〈|ψ|2〉= 1. Then
the phase correlator (3) can be calculated by integration:

Z(s) =

∫ +∞
−∞

dudusdvdvs
uus+ vvs√

u2+ v2
√
u2s + v

2
s

×w(u, us)w(v, vs). (6)

Because of the symmetry of the joint distributions (5), the
imaginary part in (3) does not contribute to the phase
correlator, i.e.

Z(s) = 〈cos[θ(x+ s)− θ(x)]〉. (7)

Substituting u= rsinϕ, v= rε2cosϕ, us = r
′sinϕ′,

vs = r
′ε2cosϕ′ into (6), one can obtain

see eq. (8) above

Analytical expressions for the phase correlators can be
obtained for the cases ε= 0, 1. For ε= 1 the expression
(8) reduces to the following form:

Z1(s) =
1

C(s)
[E(C2(s))− (1−C(s)2)K(C2(s))], (9)

where K(x), E(x) are the elliptic integrals of the first and
the second order, respectively. The second case ε= 0 gives

Z0(s) =
2

π
arctan


 C(s)√
1−C(s)2


= 2

π
arcsinC(s), (10)

where the amplitude correlator C(s) is given by (1).
As seen from (4) RGF ψ(x) is real for the case ε= 0.
Then the phase of RGF takes only values 0 or π, and
correspondingly the value exp[iθ(x)] is a random binary
process. Therefore for ε= 0 the correlation function (2) is
that for clipped noise which was calculated by Van Hove
and Middleton [20] just in the form of (10). Measurements
of such correlations called the one-bit correlations are
reported, for example, in [21].
Plots of the phase correlators (9) and (10) for the

two-dimensional case are presented in fig. 1. The figure
shows that the case ε= 0 is close to the case ε= 1. The
numerical computations of (8) for arbitrary ε shows that
the phase correlator varies between (9) and (10), being
extremely insensitive to ε. Moreover, the phase correla-
tion functions are compared to the amplitude one (1) in
fig. 1. The comparison shows that the phase correlator
〈exp[iθ(x+ s)− iθ(x)]〉 mainly contributes to the ampli-
tude one 〈ψ(x+ r)ψ∗(x)〉. Especially, for ε= 1 we can
write the approximate equality

〈ψ(x+ r)ψ∗(x)〉 ≈ 〈exp[iθ(x+ s)− iθ(x)]〉, (11)

to stress that for the closed chaotic billiards fluctuations
of the absolute value of the RGF |ψ| give a negligible
contribution into the wave field correlator.
In fig. 2 we compare the phase correlators (9) and (10)

with the numerically computed function obtained for the
Sinai billiard opened by attachment of two leads. For each
energy of the incident quantum particle we computed the
scattering wave function inside the billiard ψS and conse-
quently the phase rigidity ρ= 〈ψ2S〉/〈|ψS |2〉 and para-
meter ε2 = 1−ρ1+ρ . Here 〈. . .〉 means integration over the
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Fig. 1: (Color online) Plots of the phase correlators given by
(9) for ε= 1 (dashed red line) and by (10) for ε= 0 (green
solid line). They are compared to the amplitude correlator
C(s) = J0(s) shown by the blue dash-dotted line.
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Fig. 2: (Color online) The numerically computed phase correla-
tion function for the open Sinai billiard with length 16, width 8
and radius 4 in terms of the unit width of the leads. Inset shows
fluctuations of the parameter ε in the energy window which
corresponds to the first channel transmission with 〈ε〉= 0.35
complemented by the energy dependence of the conductance T .
The numerical histogram is compared to the analytical phase
correlators (9) (red dashed line) and (10) (green solid line).

area of the billiard [18]. As the inset in fig. 2 shows, the
parameter ε strongly fluctuates with the energy with mean
value 〈ε〉= 0.35. Hence we averaged the phase correlator

over the energy window shown in the inset of fig. 2. As a
result the numerically computed phase correlator ranges
between the analytical results (9) and (10). The next
interesting result is that the phase correlator Z is much
less sensitive to the fluctuations of the phase rigidity
compared to the intensity correlator [22].
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