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Solid solutions of  oxides with per-
ovskite structure have been attracting the attention
of researchers for many decades. These materials
are of interest for both applications and fundamental
study due to their unusual electromechanical prop-
erties [1]. Among numerous  solid solu-
tions, heterovalent alloys (i.e., solutions with ele-
ments 

 

B

 

'

 

 and 

 

B

 

''

 

 belonging to different columns of
the periodic table) form an important class. The
observed physical properties of  solid
solutions (in particular, the ferroelectric phase tran-
sition and related anomalies in electromechanical
properties) depend strongly on the degree of 

 

B

 

-cat-
ion ordering [1, 2].

In this study, we investigated the ferroelectric phase
transitions in completely disordered 

 

PbSc

 

1/2

 

Ta

 

1/2

 

O

 

3

 

 and

 

PbSc

 

1/2

 

Nb

 

1/2

 

O

 

3

 

 solid solutions. These compounds have
perovskite and rhombohedral structures at high and low
temperatures, respectively [3]. Previously, we investi-
gated their lattice dynamics in the cubic phase [4]. The
calculated lattice parameters, permittivities, and effec-
tive Born charges of these compounds are listed in
Table 1.

To determine the ferroelectric-phase-transition tem-
peratures and describe the thermodynamic properties of
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disordered 

 

PbSc

 

1/2

 

Ta

 

1/2

 

O

 

3

 

 and 
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 solid
solutions near phase transitions, we used the effective
Hamiltonian proposed in [5, 6]. Ferroelectric displacive
phase transitions are related to the motion of ions along
the eigenvector of the soft ferroelectric mode of lattice
vibrations; therefore, to satisfactorily describe the
phase transition, it is sufficient to use one local mode,
determined by these displacements:
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 is the local mode amplitude; and

 

ξ

 

i

 

α

 

 is the eigenvector of the lattice vibration mode
(Table 2).

To study the ferroelectric phase transition, a three-
component local mode (1) is placed at each site of a
simple cubic cell. In this case, the effective Hamilto-
nian is written as [5]
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 solid solutions have been investigated by the Monte Carlo method. The parameters of the effec-
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Table 1.

 

  Lattice parameters (au), permittivities, and ef-
fective Born charges of the PbSc

 

1/2

 

Nb

 

1/2

 

O

 

3

 

 (PSN) and
PbSc

 

1/2

 

Ta

 

1/2

 

O

 

3

 

 (PST) crystals

Com-
pound

 

A

 

0

 

ε

 

∞

 

Z

 

eff, Pb

 

Z

 

eff, 

 

〈

 

B

 

〉

 

Z

 

eff, O1

 

Z

 

eff, O3

 

PSN

 

7.45 3.49 2.72 5.15 –4.10 –1.89

 

PST

 

7.62 3.31 2.65 3.94 –2.31 –2.14

 

Table 2.

 

  Eigenvectors of the ferroelectric vibration mode
and its effective charge (au)

Com-
pound

 

ξ

 

Pb

 

ξ

 

〈

 

B

 

〉

 

ξ

 

O1

 

ξ

 

O3

 

Z

 

*

 

PSN

 

0.77 0.21 –0.15 –0.41 5.35

 

PST

 

0.79 0.07 0.01 –0.44 4.20
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The first term in the effective Hamiltonian (2) is the
energy of isolated local modes:

 

(3)

 

A

 

, 

 

B

 

, and 

 

C

 

 are the single-site interaction constants.
The second term is the interaction energy between

local modes:
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J

 

ij

 

, 

 

αβ

 

 are the intersite interaction constants. Since the
crystal symmetry is cubic in this case and interactions
with the first, second, and third neighbors are taken into
account, there are only seven independent constants
[5, 6]: 

 

j

 

1

 

 and 

 

j

 

2

 

, 

 

j

 

3

 

–

 

j

 

5

 

, and 

 

j

 

6

 

 and 

 

j7 describe interactions
with the first, second, and third neighbors, respectively.

The last term in the effective Hamiltonian (2) repre-
sents the long-range dipole–dipole interaction between
local modes:

(5)

where Z* =  is the mode charge (Table 2);

 is the tensor of the effective Born charge of the kth

ion; ε∞ is the permittivity (Table 1); and  are the
structure constants, which depend on the lattice geom-
etry and are calculated by the Ewald method. Note that
we apply an expression for the long-range dipole–
dipole interaction energy different from that used in
[5, 6]. As was shown in [7], the expression for the
dipole energy used in [5, 6] leads to a significant under-
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estimation (by a factor of (ε∞ + 2)/3ε∞) of the dipole–
dipole contribution.

Parameters of the effective Hamiltonian are deter-
mined by calculating the energies of different distorted
structures within the generalized Gordon–Kim model
for an ionic crystal taking into account the deformabil-
ity and dipole and quadrupole distortions of the ion
electron density [8]. The energies were calculated
within the virtual-crystal approximation [4] using the
experimental lattice parameter approximately the same
for both solid solutions and equal to 7.70 au [3]. The
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Fig. 1. Dependences of the energies (au) on the local mode
amplitude in different directions; E0 is the cubic structure
energy.

Table 3.  Energies expressed in terms of the interaction constants {J} and the calculated energies (au) of the dipole–dipole
and short-range interactions

No. Interaction constants
PbSc1/2Nb1/2O3 PbSc1/2Ta1/2O3

Eshort Edip Eshort Edip

1 2j1 + j2 + 4j3 + 2j4 + 4j6 –0.0031406 –0.027210 –0.000303 –0.004195

2 2j1 – j2 – 4j3 + 2j4 – 4j6 0.0188037 0.062928 0.003996 0.009702

3 j2 – 2j4 – 4j6 0.0001699 –0.031464 0.000713 –0.004851

4 –j2 – 2j4 + 4j6 0.0095878 0.017388 0.002930 0.002680

5 –2j1 + j2 – 4j3 + 2j4 + 4j6 0.0003145 –0.034776 0.000465 –0.005361

6 –2j1 – j2 + 4j3 + 2j4 – 4j6 0.0074552 0.0 0.002248 0.0

7 j1 – 2j5 – 4j7 0.0075199 0.019047 0.001654 0.000380

8 –j1 – 2j5 + 4j7 0.0009676 –0.003021 0.000614 –0.000465
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single-site constants A, B, and C were calculated by the
least-squares method from the dependences of the total
crystal energy on the amplitude u of the three-compo-
nent vector S (Fig. 1).

In both solid solutions, the most favorable structure
is that with ions displaced in the [111] direction. Such

displacements lead to a rhombohedral lattice distortion,
which is in agreement with the experimental data [3].

To determine the intersite interaction constants {Ji},
we used the energies of seven different ordered struc-
tures reported in [5]. To separate the constants j5 and j7,
we added another structure, which was obtained by
doubling the unit cell of structure 7 in [5]. Table 3 con-
tains the expressions for the short-range part of the
energy of ordered structures (column 2) and their
numerical values, as well as the dipole energies.

To determine the effect of long-range dipole–dipole
interactions on the ferroelectric-phase-transition tem-
peratures, we calculated two sets of interaction con-
stants: without and with explicit selection of long-range
dipole–dipole interactions. Both sets of constants are
listed in Table 4.

The temperature behavior of the system and the fer-
roelectric-phase-transition temperatures were deter-
mined by the Monte Carlo method. We used the stan-
dard Metropolis algorithm [9] for a simple 10 × 10 × 10
cubic lattice with periodic boundary conditions.

The first 80000 steps for each temperature were
rejected and not involved in averaging. The average val-
ues of the energy, order parameters, and specific heat
were calculated in two stages. After each 50 steps,
group means were calculated, and then averaging over
200 groups was performed. The phase transition tem-
perature was determined from the temperature depen-
dences of the energy and order parameter. High (1000 K)
and low (50 K) temperatures were taken as initial. With
a decrease in temperature, all three local mode compo-
nents become disordered. Figure 2 shows the tempera-
ture dependences of the order parameter. The calcu-
lated ferroelectric-phase-transition temperatures for
disordered PbSc1/2Ta1/2O3 and PbSc1/2Nb1/2O3 solid

Table 4.  Parameters of the effective Hamiltonian for the PbSc1/2Ta1/2O3 and PbSc1/2Nb1/2O3 solid solution

PbSc1/2Nb1/2O3 PbSc1/2Ta1/2O3

without selection of
DD interactions

with selection of
DD interactions

without selection of
DD interactions

with selection of
DD interactions

Single-site interaction constants (au)

A = 0.01491 A = 0.02436 A = 0.01902 A = 0.02484

B = 0.01376 B = 0.01376 B = 0.01811 B = 0.01811

C = 0.01819 C = 0.01819 C = 0.01210 C = 0.01210

Intersite interaction constants (au)

J1 = 0.00274 J1 = –0.02171 J1 = 0.00136 J1 = –0.01373

J2 = –0.01664 J2 = 0.06069 J2 = –0.01460 J2 = 0.03306

J3 = –0.00257 J3 = 0.00704 J3 = –0.00175 J3 = 0.00418

J4 = 0.00068 J4 = –0.00437 J4 = –0.00061 J4 = –0.00373

J5 = –0.00217 J5 = 0.00976 J5 = –0.00154 J5 = 0.00677

J6 = –0.00089 J6 = 0.00147 J6 = –0.00057 J6 = 0.00088

J7 = –0.00159 J7 = 0.00073 J7 = –0.00110 J7 = –0.00001
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Fig. 2. Temperature dependences of the order parameter for
the PbSc1/2Nb1/2O3 (white symbols) and PbSc1/2Ta1/2O3
(black symbols) solid solutions calculated (a) without and
(b) with selection of dipole–dipole interactions. Different
symbols correspond to the three components of the local
mode vector S.
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solutions are listed in Table 5. It can be seen in Table 5
and Fig. 2 that the ferroelectric-phase-transition tem-
peratures calculated with and without selection of long-
range dipole–dipole interactions almost coincide with
each other and are in qualitative agreement with the
experimental data [3].
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Table 5.  Ferroelectric-phase-transition temperatures of the PbSc1/2Ta1/2O3 and PbSc1/2Nb1/2O3 solid solutions

Phase transition temperature, K Spontaneous polarization, K m–2

Crystal
with selection of

dipole–dipole
interactions

without selection
of dipole–dipole

interactions
experiment calculation experiment

PbSc1/2Nb1/2O3 670 620 350–370 [3] 0.27 0.25 [10]

PbSc1/2Ta1/2O3 250 220 250–280 [3] 0.13


