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DETERMINING THE REFRACTIVE INDEX OF THE BACKGROUND MEDIUM
IN SUBSURFACE TOMOGRAPHY

D.Ya. Sukhanov ∗ and V. P.Yakubov UDC 621.396.96’06

We propose a noncontact method for determining the mean refractive index of the medium in
problems of subsurface tomography using ultra-wideband multi-position radio sounding in the case
of a plane air–ground interface. The method is based on the computer oblique focusing of the
radioimage of the sounded half-space containing buried objects. The proposed method does not
require any a priori information on the position of the scattering objects in the medium. The
feasibility of the proposed approach is verified experimentally.

1. INTRODUCTION

In problems of detection and characterization of land-buried objects, one of promising approaches
is based on the use of ultra-wideband radiation along with the application of the synthetic-aperture radar
(SAR) technique for data processing. In certain cases, the possibility of noncontact sounding of the ground is
of crucial importance. In particular, this is necessary in the problem of detection of land-buried antipersonnel
plastic mines [1–3].

The literature describes numerous methods for solving the inverse problem of subsurface tomography
(i.e., reconstruction of the distribution of inhomogeneities buried under the ground surface) based on the
synthetic-aperture radar technique [1–7]. The most common sounding scheme assumes the translational
displacement of the transmitter–receiver system with a fixed step in the horizontal direction parallel to
the medium interface. Papers [5–7] describe a fast algorithm whose main idea consists in focusing the
scattered ultra-wideband radiation to a near-surface point of the medium, which ensures high resolution
in the horizontal plane. Moreover, high resolution in the vertical direction is ensured due to use of the
ultra-wideband radiation. In this case, the distance along the vertical direction corresponds to the time
delay multiplied by the wave velocity in the medium. However, this velocity is a priori unknown since the
refractive index of the medium is unknown. Therefore, in order to determine the absolute depth of the
object location, one needs to know the mean value of the refractive index. In view of this, along with the
spatial reconstruction of inhomogeneities, an important problem is to determine the mean refractive index
of the medium using noncontact methods.

The most widespread method for determining the refractive index is the method of diffraction hy-
perbolas [1–4]. The diffraction hyperbola is the response of a pulse ground-penetrating radar to a point
scatterer in the medium. The hyperbola is plotted in the coordinate plane in which the horizontal coordi-
nate corresponds to the antenna displacement and the vertical coordinate is the time delay of the received
scattered pulse. The shape of the diffraction hyperbola depends on the refractive index of the medium.
Therefore, the hyperbola shape allows one to determine the refractive index, since the pulse propagation
time increases with increasing refractive index and the diffraction hyperbolae becomes “stretched” in the
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vertical direction. To realize this method, the presence of a point scatterer in the medium is necessary,
although exact information on its position is not required. An important point is that the transmitter–
receiver system should be located either directly on the interface or sufficiently close to it, when the wave
refraction at the air–ground interface can be neglected. If the antenna is lifted above the ground surface,
then the refraction at the interface makes the shapes of the diffraction hyperbolas weakly dependent on the
refractive index, which impedes its evaluation.

In the present work, we propose a new method of evaluating the refractive index of the medium in
the case of highly lifted antennas using super-wideband radio sounding. The proposed method is workable
for almost an arbitrary distribution of scattering inhomogeneities in the medium.

2. THE OBLIQUE FOCUSING

Consider the following measurement scheme. An omnidirectional transceiver antenna is moved with
a fixed step in the horizontal plane at a certain height above the studied ground surface. At each point of
the antenna location, the ground is sounded by ultra-wideband radiation and the amplitude and phase of
the scattered field E are measured at all operating frequencies. The measurement result can be represented
in the form of a scalar function E(x, y, f) of three variables, where x and y are the Cartesian coordinates of
the antenna in the horizontal plane and f is the sounding-signal frequency.

Using the data on the scattered field E(x, y, f), it is possible to determine the three-dimensional
distribution of the scattering inhomogeneities under the ground surface. The algorithm proposed in works [5,
6] ensures the sounding of the medium by a narrow vertical collimated wave beam, which is possible due to
the radiation focusing to the near-surface point of the medium. When passing to the time domain by using
the inverse Fourier transform with respect to the frequency, the medium is scanned along the beam axis,
which is equivalent to the medium sounding by a short pulse propagating along the beam. Therefore, the
distance along the vertical axis of the reconstructed three-dimensional image should correspond to one half
of the time delay of the pulse in the medium, multiplied by the phase velocity. Since the refractive index of
the medium is unknown, we assume it equals unity for definiteness.

To determine the refractive index, we use the

Fig. 1. The sounding scheme with synthesizing the
oblique focusing.

oblique-focusing method proposed in [7], which allows one
to sound the medium not only in the vertical direction (as
in [6]), but also along an oblique path. Using the oblique
sounding [7], one obtains a three-dimensional image which
is linearly distorted compared with the image obtained by
the vertical sounding [6]. Due to the wave refraction at
the medium interface, this linear distortion depends on
the refractive index.

The main idea of the oblique-focusing method con-
sists in the focusing of the SAR to the near-surface point
displaced from the center of the synthetic aperture. The
geometry of the oblique-focusing method is shown in
Fig. 1, where xS is the displacement of the focus point
with coordinates (xF, yF) from the aperture center.

Mathematically, the oblique-focusing algorithm can be represented in the form of a convolution
integral:

F (xF, yF, f) =
∫∫

S

E(x0, y0, f)MS(xF − x0, yF − y0, f) dx0 dy0, (1)

where MS(x, y, f) = exp(−i 2k
√

(x − xS)2 + y2 + h2 is the weight function of the focusing, k = 2πf/c is
the wave number in free space, h is the height of the transceiver antenna above the medium interface, f is
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Fig. 2. Instrument function in the case of oblique focusing (α = 30◦) at an operating frequency of 10 GHz for
free space (a), the medium with refractive index n = 3 (b), and the medium with n = 3 if the approximate
instrument function is used (c).

the radiation frequency, c is the speed of light in free space, F (x, y, f) is the scattered field focused to the
near-surface point of the medium, and S is the surface over which the transceiver antenna is moved within
the base size B.

Using the solution of the direct problem [6], Eq. (1) can be rewritten in the single-scattering approx-
imation in the form:

F (xF, yF, f) =
∫∫∫

V

∆ε(x, y, z)Q (xF − x, yF − y, z, f) dxdy dz, (2)

where

Q (xF − x, yF − y, z, f) = k2
1

∫∫

S

G2(x − x0, y − y0, z, f)MS(xF − x0, yF − y0, f) dx0 dy0

is the instrument function of the system in the case of oblique focusing, G(x, y, z, f) is the Green’s function
taken from [6], and ∆ε(x, y, z) is the distribution of the scattering inhomogeneities in the medium.

Using Eq. (1), one obtains that the elongated region of maximum values of the instrument function
is oblique with respect to the vertical. Figure 2a shows the numerically calculated instrument function
Q(x, y, z, f = 10) GHz of the system for free space. Figure 2b shows the instrument function of the system
for the medium with the refractive index n=3. It is seen in Fig. 2b that for a large refractive index, there
occurs the vertical “stretching” of the region in which the instrument function is maximum. This effect is
related to an increase in the electrical length of the wave path and to the wave refraction at the interface
of the media. At the same time, the angle between this elongated region and the vertical axis decreases,
but still remains nonzero, which can be used for determining the refractive index. Note that the instrument
function Q(x, y, z, f) shown in Fig. 2b enters Eq. (2), which describes the operation of convolution and can
therefore be applied to all inhomogeneities of the sounded medium by varying the values of xF and yF. This
means that for different coordinates xF and yF, the inhomogeneities of the lower half-space are scanned at
the same angle.

Let us use the above-mentioned feature of the instrument function and approximate it by the following
expression:

Q(x, y, z, f) ≈ Q(x − z tan β, y, 0, f) exp[2ik1 (x sin β + z cos β)],

where k1 = kn is the wave number in the medium, β is the angle between the vertical and the axis of the
localization region of the instrument function in the medium. Figure 2c shows the form of the approximated
instrument function Q(x, y, z, f = 10 GHz). It is seen that up to depths of 10–15 cm, the used approximation
yields a small error. Using this simplification, we perform the inverse Fourier transform over the frequency
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in Eq. (2):

F̃ (xF, yF, t) ≡
∫

∆f

F (xF, yF, f) exp(−2πift) df

=
∫∫∫

V

∆ε(x, y, z)Q̃(xF − x − z tan β, yF − y, ct cos[β/(2n)] − z) dxdy dz, (3)

where

Q̃(xF − x − z tan β, yF − y, ct cos[β/(2n)] − z)

≡
∫

∆f

Q(xF − x − z tan β, yF − y, 0, f) exp(2ik1 [(xF − x) sin β + z cos β] − 2πift) df

is the instrument function of the system in the time do-

Fig. 3. Localization of the instrument function of
the system in the time domain.

main. This function can be highly localized if a suffi-
ciently wide frequency range is used. As an example,
Fig. 3 shows the numerically calculated instrument func-
tion Q̃ for the frequency band ∆f = 20 GHz. Using the
high localization of the instrument function Q̃ and Eq. (3),
one can approximately write

F̃ (xF, yF, t)
∝ ∆ε(xF − ct sin[β/(2n)], yF, ct cos[β/(2n)]) . (4)

Note that the above consideration does not take
into account polarization of the radiation. However, this
is not really necessary since the transmission coefficient at
the medium interface for the oblique focus has the same
value for the entire reconstructed image and plays the role
of a constant factor which can be eliminated using the
normalization procedure. Moreover, we do not discuss
the influence of absorption in the medium.

3. USING THE LEAST-SQUARE METHOD FOR DETERMINING THE REFRACTIVE INDEX

The angle β of the oblique scanning of the medium can be related to the incidence angle α which
does not depend on the refractive index of the medium and is determined only by the aperture position and
the displacement of the focusing point with respect to the aperture center (see Fig. 1). It is reasonable to
assume that this angle is determined by the bisectrix of the focal cone whose base is the synthetic aperture
and the vertex coincides with the focal point. In what follows, the incidence angle α will be called the
oblique-focusing angle.

Let us introduce the variable z = ct/2. Then, taking into account the refraction law at the medium
interface (sin α = sinβ) and approximation (4), one can write

F̃ (x, y, 2z/c, α) ∝ ∆ε(x′, y′, z′),
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where

x′ = x − z sin(α)/n2, y′ = y,

z′ = z

√
n2 − sin2(α)/n2 (5)

are the actual coordinates of the inhomogeneities in the sounded medium. The oblique-focusing angle α is
specified in the data-processing procedure and can be chosen arbitrarily. The coordinate transformation

xα = x′ + z′ sin α/
√

n2 − sin2 α, yα = y′,

zα = z′n2/
√

n2 − sin2 α, (6)

which is inverse of transformation (5), allows one to compare the data-processing results (4) with the actual
distribution ∆ε(x′, y′, z′) of the inhomogeneities. The latter should not depend on α and therefore coincides
with the result for the vertical focusing

∆ε(x′, y′, z′) ∝ F̃ (xα, yα, 2zα/c, α) = F̃ (x′, y′, 2z′n/c, α = 0). (7)

Equation (7) becomes identity if the parameter n in this equation coincides with the refractive index
of the sounded medium. Therefore, Eq. (7) can be considered an implicit equation for finding n and which
should be satisfied for all points (x′, y′, z′) of the lower half-space. Since experimental data always contain
measurement noise, estimation of the parameter n by the least-square method reduces to minimization of
the functional

Φ[n] =
∑

(x′,y′,z′)∈V

∣∣∣F̃ (xα, yα, 2zα/c, α) − F̃ (x′, y′, 2z′n/c, α = 0)
∣∣∣2 . (8)

In this case, errors of the approximations adopted in the model will also be compensated to some extent.

In order to estimate the potential accuracy of the proposed method, we note that it is determined
by the difference between the inhomogeneity distributions reconstructed for α = 0 and α �= 0. For fairly
small angles α, this difference manifests itself mainly in the horizontal displacement ∆x of the images, which
depends of the depth z′ of the inhomogeneities. The first relation in Eq. (6) indicates that the error ∆n
of determination of the refractive index leads to the displacement of the reconstructed distributions of the
inhomogeneities by the quantity

∆x ≈ z′ n ∆n sin(α)
/

(n2 − sin2 α)3/2 ≈ z′ ∆n/n2 sinα.

Such a displacement will be physically indistinguishable if its value does not exceed the horizontal size of
the focal region, which is determined by the expression

R = λh/B,

where B is the synthetic aperture base, h is the antenna height above the medium interface, and λ is the
wavelength. From this, we write the following approximate estimate for the accuracy of the proposed method
of determining the refractive index:

∆n ≈ n2

sin α

∆x

z′
=

n2

sin α

λh

z′B
. (9)

It is clear that for improvement of the accuracy, one should avoid using small angles α of oblique
focusing. Moreover, the oblique focusing is not efficient for media with large refractive indices n. As an
example, we give an estimate of the accuracy of determining the refractive index for dry sand with n = 1.5
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Fig. 4. Comparison between the reconstructed images for (a) vertical and (b) oblique focusing.

in the case of the angle α = 30◦ and the sounding depth z′ = 16 cm. According to Eq. (9), we obtain the
estimate ∆n ≈ 0.23 for a 56-cm base synthesized at a height of 30 cm above the sand for the radiation
frequency f = 20 GHz.

On the whole, the accuracy of the method increases with increasing depth of the scattering objects
and decreasing refractive index of the medium. Using the averaging in the least-square method, the actual
accuracy of the method can be increased compared with the approximate estimate given by Eq. (9).

4. EXPERIMENTAL VERIFICATION OF THE METHOD

To test the proposed method, we performed an experiment on determining the mean refractive index
of dry sand. In the experiment, two corner reflectors with a side of 5 cm in length were used as scatterers. The
corner reflectors were buried in sand one above another at 6 and 16 cm depths. Further, the measurements
were made in a frequency range of 500 MHz to 20 GHz. The transceiver antenna system was moved with
1-cm steps within a 56-cm region, and the antenna height above the sand was equal to 35 cm.

The sounding data were processed using the oblique-
TABLE 1.

The oblique- Determined
focusing angle, deg refractive

index
5 1.28

10 1.56
15 1.56
20 1.71
25 1.38
30 1.61

focusing algorithm. Figure 4 shows examples of the images
obtained for the cases of (a) vertical and (b) oblique focus-
ing (the inclination angle α = 30◦). The image processing
yielded the refractive index n = 1.6. Table 1 shows the re-
sults of determining the refractive index from experimental
data for various focusing angles up to 30◦. The mean re-
fractive index turned out to be equal to 1.5.

The obtained result agrees with direct determina-
tion of the refractive index using the vertical focusing,
which gives n = 15/10 = 1.5 for the apparent distance
15 cm between the scatterers and the distance 10 cm di-
rectly measured by a probe. On the whole, the error of

determination of n by the oblique focusing method amounts to 0.2, which is close to the estimate obtained
above. The achieved accuracy is not very high. However, it is important to emphasize that the proposed
method is noncontact and does not require any a priori information on the location of the sounded objects.
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5. CONCLUSIONS

A new method was proposed for noncontact determination of the refractive index of the medium using
the synthetic-aperture radar technique. The noncontact method of determination of the mean refractive
index does not require any a priori information on the position of scattering objects in the medium. The
performed experiments corroborated the workability of the method.

The experimental studies were carried out in the laboratory of the Department of Microwave and
Communication Engineering in the Institute of Electronics, Signal Processing, and Communications at
the Faculty of Electrical Engineering and Information Technology of the Otto-von-Guericke University of
Magdeburg .
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Russian Federal Agency for Science and Innovations (project No. 2005-RI-16.0/013).
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