

Общероссийский математический портал

М. В. Горев, В. С. Бондарев, К. С. Александров, Исследование теплоемкости РМN вблизи индуцированного электрическим полем фазового перехода, *Письма в ЖЭТФ*, 2007, том 85, выпуск 6, 340–342

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 84.237.90.20 28 августа 2023 г., 09:41:55

Исследование теплоемкости PMN вблизи индуцированного электрическим полем фазового перехода

М. В. Горев¹⁾, В. С. Бондарев, К. С. Александров

Институт физики им. Л.В. Киренского Сибирского отд. РАН, 660036 Красноярск, Россия

Поступила в редакцию 13 января 2007 г.

После переработки 12 февраля 2007 г.

Методом адиабатической калориметрии в температурном интервале 170–250 К проведены измерения теплоемкости монокристалла Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN) в электрическом поле E = 3 кB/см вдоль направления [111]. Обнаружены аномалии C_p , соответствующие индуцированному полем фазовому переходу из релаксорного состояния в сегнетоэлектрическое при 225 К в режиме охлаждения в поле и при 235–240 К при последующем нагреве в поле. Сформированная полем сегнетоэлектрическая фаза сохраняется при низких температурах в метастабильном состоянии и разрушается при нагреве в нулевом поле при 210 К. Малая величина изменения энтропии $\Delta S \approx 0.028$ R при индуцированном полем фазовом переходе свидетельствует о незначительном изменении объемной доли уже существующих полярных нанообластей.

PACS: 64.70.-p, 65.40.-b, 77.84.-s

Сегнетоэлектрики-релаксоры привлекают интерес исследователей в течение длительного времени благодаря особым диэлектрическим и пьезоэлектрическим свойствам и возможности их использования в различных технологических устройствах.

В результате исследований диэлектрическими, структурными, спектроскопическими и другими методами установлено, что основные особенности релаксоров связаны с композиционной и структурной неоднородностью этих материалов и наличием взаимодействующих полярных нанодоменов в неполярной матрице. Возможные механизмы возникновения такой неоднородности и механизмы, вызывающие образование полярных нанодоменов, интенсивно обсуждаются в литературе и, по-видимому, различны в разных группах сегнетоэлектриков-релаксоров.

Исследования структуры и физических свойств релаксоров выявили три особые температурные точки: T_d , T_m и T_c . При охлаждении ниже температуры Бернса T_d возникают полярные нанодомены, взаимодействие которых может приводить к замедлению динамических флуктуаций, максимуму диэлектрической проницаемости при T_m и образованию изотропного релаксорного состояния со случайной ориентацией полярных нанодоменов. В некоторых релаксорах при дальнейшем понижении температуры образуется полярная фаза с макроскопической поляризацией ниже $T_c \leq T_m$.

 $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN) часто рассматривается как модельный сегнетоэлектрик-релаксор. При

высоких температурах он состоит из нанообластей, богатых Nb, и областей с соотношением Nb и Mg 1:1. При охлаждении ниже температуры Бернса $T_d \approx$ 650 K в областях, богатых Nb, происходят полярные искажения и параэлектрическая кубическая фаза PMN трансформируется в релаксорную, которая макроскопически остается кубической, но локально разупорядочена. Диффузный и частотно зависимый максимум диэлектрической проницаемости наблюдается в кристалле при $T_m \approx 260$ K и не связан с какими-либо структурными изменениями, а имеет релаксационную природу.

Дальний полярный порядок в РМN не возникает вплоть до 0 К. Однако при охлаждении в электрических полях с напряженностью, большей критической величины $E_C \approx 1.7$ кВ/см, в РМN формируется сегнетоэлектрическая фаза с симметрией R3m. Индуцированный полем фазовый переход наблюдался при рентгеновских исследованиях РМN [1]. Позднее были проведены исследования структуры, диэлектрических свойств, поляризации и пиротока в электрическом поле и предложены несколько вариантов фазовой E-T-диаграммы [2–6]. Положение фазовых границ и свойства РМN в различных областях диаграммы оказались существенно зависящими не только от напряженности поля, но и от способа его приложения [5].

Дальнейшее накопление информации о процессах, имеющих место в релаксорах при различных режимах изменения температуры и поля, способствовало бы более адекватному пониманию природы релаксационных явлений в сегнетоэлектриках. Цель настоящей работы – выяснение возможности наблюдения

¹⁾e-mail: gorev@iph.krasn.ru

аномального поведения теплоемкости и определение термодинамических параметров PMN при индуцированном полем фазовом переходе в сегнетоэлектрическое состояние.

Для исследований был приготовлен плоскопараллельный образец толщиной 1 мм, вырезанный из монокристалла PMN перпендикулярно направлению [111]. Поверхности площадью $\sim 1 \times 1 \,\mathrm{cm}^2$ были покрыты медными электродами, нанесенными при вакуумном напылении, к которым серебряной пастой приклеивались тонкие проводники и подводилось высокое напряжение от стабилизированного блока питания.

Измерения теплоемкости проводились на адиабатическом калориметре с использованием как традиционного метода дискретных нагревов с температурным шагом $\Delta T = 1.0-2.5 \,\mathrm{K}$, так и методом непрерывного нагрева со скоростями изменения температуры $dT/dt \approx (0.07-0.15) \,\mathrm{K}\cdot\mathrm{Muh}^{-1}$. Ошибка измерения зависела от используемого метода и варьировалась в пределах 0.1-0.3%.

Поскольку известно, что свойства релаксоров сильно зависят от термической предыстории, перед каждой серией измерений образец РМN отжигался при температуре 300 К. После отжига образец охлаждался до температуры 100–150 К или в нулевом электрическом поле (ZFC), или в поле E = 3.0 kB/cm (FC). Измерения теплоемкости в нагреве проводились и при выключенном поле (ZFHaFC), и при постоянном поле E = 2.5 - 3.0 kB/cm (FHaFC).

Исследования теплоемкости PMN в нулевом поле в широком интервале температур проводились в работах [7,8]. Поэтому в данной работе мы ограничились измерениями только в узком температурном диапазоне 170-250 К, где по данным [5,6] и происходит индуцируемый полем фазовый переход. Как и ожидалось, никаких аномалий теплоемкости при измерениях в нулевом поле в этом температурном интервале не обнаружено. Охлаждение в поле 2.5 кВ/см приводит к появлению аномалии C_p при $T_{FC}=223\,{
m K}.$ Этот результат согласуется с обнаружением резкого возрастания поляризации в этом же режиме в работе [5] и подтверждает образование новой сегнетоэлектрической фазы ниже T_{FC}. Аномальная составляющая теплоемкости, определенная как разность теплоемкостей, измеренных при E = 0 и $E \neq 0$, составляет 3Дж/моль·К (рис.1а).

Образовавшись ниже T_{FC} при охлаждении, индуцированная полем фаза существует до низких температур и сохраняется в замороженном метастабильном состоянии и при отключении поля. При нагреве в нулевом поле переход в стабильное неполярное со-

Рис.1. Температурная зависимость аномальной теплоемкости при охлаждении в поле (а), при нагреве без поля после охлаждения в поле (b) и при нагреве в поле после охлаждения в поле (c)

стояние и соответствующая ему аномалия теплоемкости наблюдаются при $T_{ZFHaFC} = 210 \,\mathrm{K}$ (рис.1b). Аномальная составляющая теплоемкости ΔC_p достигает в этом случае ~ 6 Дж/моль К или ~5% от решеточной составляющей теплоемкости. Резкое уменьшение поляризации [5] и достаточно узкий пик ΔC_p свидетельствуют о фазовом переходе I рода.

Полярное состояние, индуцированное при охлаждении, разрушается в режиме нагрева в поле $E = 3 \,\mathrm{\kappa B}/\mathrm{cm}$ при температуре $T_{FHaFC} \approx 230-240 \,\mathrm{K}$. Аномалия теплоемкости ΔC_p размыта в широком интервале температур и достигает величины $\sim 1 \,\mathrm{Дж}/\mathrm{моль}\cdot\mathrm{K}$ (рис.1с). Характер аномалии теплоемкости и поведения поляризации [5] позволяет сделать вывод, что переход в этом случае является переходом II рода.

Полученные значения температур фазовых переходов совместно с данными диэлектрических [5] и структурных [6] исследований представлены на рис.2.

Изменение энтропии, связанное с аномальным поведением теплоемкости, во всех режимах наложения и снятия поля мало и достигает только $\Delta S \approx 0.028 \, \mathrm{R.}$

Рис.2. Экспериментальная фазовая диаграмма PMN из диэлектрических [5], рентгеновских [6] (0) и калориметрических (•) данных

При измерении теплоемкости PMN [7] в широком температурном диапазоне 100-750К в нулевом поле было обнаружено аномальное поведение $C_p(T)$ при температуре Бернса $T_d \approx 650 \, \mathrm{K}$, где происходят полярные искажения в областях, богатых ниобием, и при температуре максимума диэлектрической проницаемости $T_m \approx 280-300\,{
m K}$. Достаточно большое изменение энтропии $\Delta S \approx 1 \, \mathrm{R}$, связанное с аномальным поведением ΔC_p при T_d и T_m , свидетельствует о том, что процессы типа порядок-беспорядок играют значительную роль при формировании полярных нанообластей. Принимая во внимание результаты структурных исследований и тот факт, что поляризация (и смещение ионов свинца в межоктаэдрических полостях решетки перовскита) может иметь восемь равновероятных направлений типа [111], следовало бы ожидать при полном упорядочении всего кристалла изменения энтропии $\Delta = R \ln 8$. Экспериментальная величина энтропии составляет лишь 35-40% этого значения и согласуется с объемной долей полярных нанообластей, определенной из анализа структурных данных [9].

Очень малая величина изменения энтропии при индуцированном полем фазовом переходе в сегнетоэлектрическую фазу свидетельствует о незначительном изменении объемной доли полярных нанообластей.

Мы сравнили температурную зависимость изменения энтропии ΔS , определенную в настоящей работе из аномальной составляющей теплоемкости, и

температурные зависимости поляризации P, вычисленные в [3,5] по измерениям пиротока в режиме ZFHaFC. Как видно из рис.3, где и энтропия и по-

Рис.3. Сравнение температурных зависимостей изменения энтропии (1) и поляризации (2 – данные работы [3], 3 – данные [5])

ляризация представлены в относительных единицах, $\Delta S \sim P^2.$

Авторы признательны В.П. Сахненко за предоставление кристалла PMN для исследований. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант #07-02-00069) и гранта Президента Российской Федерации # НШ-4137.2006.2.

- 1. H. Arndt, F. Sauerbier, G. Schmidt, and L. A. Shebanov, Ferroelectrics **79**, 145 (1988).
- R. Sommer, N.K. Yushin, and J.J. van der Klink, Ferroelectrics 127, 235 (1992).
- R. Sommer, N. K. Yushin, and J. J. van der Klink, Phys. Rev. B 48, 13230 (1993).
- E. V. Colla, E. Yu. Koroleva, A. A. Nabereznov, and N. M. Okuneva, Ferroelectrics 151, 337 (1994).
- 5. Z.G. Ye and H. Schmid, Ferroelectrics 145, 83 (1993).
- G. Calvarin, E. Husson, and Z. G. Ye, Ferroelectrics 165, 349 (1995).
- М.В. Горев, И.Н. Флеров, В.С. Бондарев, Ф. Сью, ЖЭТФ 123, 599 (2003).
- Y. Moriya, H. Kawaji, T. Tojo, and T. Atake, Phys. Rev. Lett. 90, 205901 (2003).
- I.-K. Jeong, T. W. Darling, J. K. Lee et al., Phys. Rev. Lett. 94, 147602 (2005).