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EFFECTIVE INTERACTIONS IN THE PERIODIC ANDERSON

MODEL IN THE REGIME OF MIXED VALENCY WITH STRONG

CORRELATIONS

V. V. Val’kov∗ and D. M. Dzebisashvili∗

For the periodic Anderson model in the strong correlation regime, we construct the effective Hamiltonian

Heff up to terms of the fourth order in the parameter V/U , where V is the hybridization interaction

intensity and U is the intra-atom Coulomb repulsion strength. This Hamiltonian contains interactions

inducing both magnetic ordering and Cooper instability under conditions of a mixed valency of rare-earth

ions. Based on numerical calculations, we obtain information about the dependences of the effective inter-

action parameters on the distance between crystal lattice sites. We demonstrate that realizing exchange

interactions corresponds to a strongly frustrated system of localized spin moments and facilitates the sup-

pression of the antiferromagnetic order parameter with a possible transition to the state of a quantum

spin liquid. It is essential that among the terms in Heff inducing the transition to the superconductivity

phase, there are terms resulting in the d-type symmetry of the superconductivity order parameter; such a

symmetry is realized in many heavy-fermion compounds.

Keywords: periodic Anderson model, mixed valency, heavy fermion, effective Hamiltonian, superconduc-
tivity

1. Introduction

The periodic Anderson model (PAM) has been actively used for several decades in theoretical studies of
unusual properties of intermetallides containing ions of rare-earth and actinide elements (see, e.g., [1]). De-
pending on relations between the model parameters (the position of the localized level Ef , the collectivized
electron band width W , the hybridization interaction intensity V , and the intra-atom Coulomb repulsion
strength U), qualitatively different types of the system ground state are realized [2]. If we introduce the
dimensionless coupling constant of the exchange between spin moments of localized and collectivized elec-
trons g = 2V 2ρc(µ)|Ef − µ|−1 (where µ is the chemical potential and ρc(µ) is the density of conductivity
electrons in the Fermi level) [3], then the state of intermediate valency is realized for g > 1, while the sys-
tem for g < 1 is either in the Kondo heavy-fermion regime, where the electronic specific heat and magnetic
susceptibility are anomalously high in the low-temperature domain, or in the magnetic phase, where the
RKKI interaction suppresses the Kondo fluctuations.

Passing to the effective Hamiltonian Heff is customary when studying the low-energy part of the
spectrum of the PAM elementary excitations [4]–[6]. The purpose of such a passage is to obtain effective
interactions responsible for creating a ground state of a particular type and for forming the spectrum
of elementary excitations. For example, the exchange and s–f -exchange interactions are relevant when
studying conditions for the appearance of the long-range magnetic order and magnon branches of the
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spectrum. As is known, these interactions can be obtained in the PAM effective Hamiltonian in terms of
the second and fourth orders in the small parameter V/U [7], [8]. The procedure for constructing Heff is
based either on using the unitary transformation method [7]–[12] (unitary transformations do not change
the energy spectrum of a Hamiltonian) or on using the operator form of the perturbation theory [13], [14].
The structure of the effective Hamiltonian we obtain also depends on the operator representation, i.e., on
whether we use the Fermi operators of the second quantization or the Hubbard operators satisfying more
involved commutation (or anticommutation) relations.

The relation W � V � U between the model parameters was used to derive the PAM low-energy
effective Hamiltonian in [10]. The authors obtained Heff by, first, using a unitary transformation to diag-
onalize the one-ion part of the PAM written in the Hubbard operators representation, second, projecting
the transformation result on the low-energy subspace of states separated from excited states by a value
of the order U and, third, applying the inverse unitary transformation. The effective Hamiltonian thus
obtained allowed studying the problem of the existence of pairwise bound states in the PAM. The effective
Hamiltonian up to the fourth order in V/U was constructed in [9] by consecutively applying two unitary
transformations excluding hybridization transitions in the first and third orders. The main feature of the
approach there was that the PAM Hamiltonian was first projected on the lower Hubbard subband (i.e., on
the Hilbert subspace of localized states that do not contain two electrons) and only then were hybridization
processes occurring in the lower Hubbard subband excluded by unitary transformations.

The unitary transformations H −→ H̃ = eSHe−S in most cases are performed under the condition
that the anti-Hermitian operator S is written in terms of a combination of Fermi operators. In the Kondo
regime, this allows eliminating hybridization processes between two subgroups of electrons in the first order
and obtaining the effective Hamiltonian that, in particular, describes the exchange coupling between spin
moments of the indicated groups of electrons. But it is known that this approach fails when the localized
level is situated inside the continuum of collectivized states and close to the Fermi level. As shown in [12],
values of exchange integrals then diverge. Nevertheless, this regime is especially interesting both from the
standpoint of explaining the magnetic properties of some rare-earth and actinide intermetals and from the
standpoint of finding explicit forms of effective interactions responsible for forming the Cooper instability
in a system of heavy fermions. Moreover, it seems relevant to construct an effective Hamiltonian in the
intermediate valency regime, which describes antiferromagnetic interactions that essentially influence the
formation of the superconductivity phase with the order parameter having the d-type symmetry. This paper
is devoted to considering these problems.

The key ingredient of our method is to split the hybridization interaction operator into two terms in
the atomic representation. The first term reflects processes resulting in mixing collectivized and localized
electrons without changing the number of states called the pairs in the localized subsystem (the low-energy
sector of the Hilbert space). The second term is responsible for hybridization processes with simultaneous
pair creation or annihilation; it explicitly takes processes inducing transitions to the high-energy sector
of the Hilbert space into account. Because the energy parameter U is large, we can take these processes
into account perturbatively, thus obtaining an analytic expansion in powers of the small parameter (see the
actual applicability conditions for the expansion below). As a result, we obtain an effective Hamiltonian de-
scribing not only exchange interactions but also interactions explicitly indicating a possibility of the Cooper
instability and the creation of a superconductivity phase with developed antiferromagnetic fluctuations.

2. Unitary transformations of the Hamiltonian

Using the atomic representation and splitting the hybridization interaction operator into two terms,
we write the PAM Hamiltonian in the form

H = H0 + V01 + V12, (1)
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Fig. 1. The bare energetic structure of the periodic Anderson model.

where

H0 =
∑

kσ

(εk − µ)c+
kσckσ +

∑

fσ

(E0 − µ)Xσσ
f +

∑

f

(2E0 − 2µ + U)X22
f ,

V01 =
1√
N

∑

kfσ

(Vke−ikfc+
kσX0σ

f + V ∗
k eikfXσ0

f ckσ), (2)

V12 =
1√
N

∑

kfσ

2σ(Vke−ikf c+
kσX σ̄2

f + V ∗
k eikfX2σ̄

f ckσ).

Here, c+
kσ and ckσ are the creation and annihilation operators of the collectivized electron with the mo-

mentum k, spin moment projection σ = ±1/2, and energy εk. The Hubbard operators act in a subspace
of localized states and are standardly defined as Xn,m

f = |f, n〉〈m, f |. Each of the indices of the one-site
localized state can take one of four values: m, n ∈ {0, ↑, ↓, 2}. The zero index indicates the one-site state
without electrons. The vectors |f, ↑〉 and |f, ↓〉 correspond to the states with one electron that is localized
at the site f and has the spin moment projection directed respectively along and against the quantization
axis. These states have the bare energy E0. The vector |f, 2〉 describes states with two electrons localized at
the site f (the so-called pairs). With the Coulomb interaction U taken into account, the bare energy of such
a state is 2E0 + U . The diagonal Hubbard operator Xnn

f is a projection operator, while the nondiagonal
operator Xnm

f with n 	= m describes the transition from the one-site state |f, m〉 to the one-site state |f, n〉.
We let Vk denote the Fourier transform of the hybridization interaction. It is important in what follows
that the operator V̂12, in contrast to the operator V̂01, describes hybridization mixing processes with the
simultaneous creation or annihilation of pair states from the Hilbert space high-energy sector.

For model parameters as in Fig. 1 with |Vk| � E0 + U − εmax (εmax is the maximum energy of the
conductivity electron), we can take contributions of the operator V̂12 into account perturbatively. For
this, we use the above inequality to construct the effective Hamiltonian, applying the sequence of unitary
transformations.
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At the first stage, we perform the unitary transformation H −→ H̃ = eSHe−S, choosing S to eliminate
the operator V12 from the first-order term in the expansion of H̃. This requires that the operator equality

[S, H0] = −V12 (3)

determining S be satisfied. Simple calculations yield

S = − 1√
N

∑

kfσ

2σ
(
ηke−ikf c+

kσX σ̄2
f − η∗

keikfX2σ̄
f ckσ

)
, (4)

where the dimensionless parameter is

ηk =
Vk

U + E0 − εk
� 1. (5)

Expanding H̃ = eSHe−S in a series in ηk and restricting our consideration to terms up to and including
the fourth order of smallness, we find that H̃ is given by

H̃ = H0 + V01 +
[

S,

(

V01 +
V12

2

)]

+
[

S,

[

S,

(
V01

2
+

V12

3

)]]

+
[

S,

[

S,

[

S,
V01

6
+

V12

8

]]]

. (6)

We note that the obtained expression for H̃ , starting with terms of the second order in ηk, again contains
operators pertaining to the hybridization processes involving the high-energy sector of the Hilbert space.
This means that such operators result in additional fourth-order contributions to the effective Hamiltonian.
To calculate the corresponding operator expressions, we must use a multistage procedure for performing
unitary transformations (see below).

Calculating the first commutators, we obtain the second-order contribution to H̃

H̃(2) =
∑

fmσ

2σ(tfmXσ0
f X σ̄2

m + H.c.) +
1
N

∑

kpf

[
∆f (k, p)(c+

k↑c
+
p↓ − c+

k↓c
+
p↑)X

02
f + H.c.

]
+

+
∑

fmσ

tfmX2σ
f Xσ2

m +
1
N

∑

qpfσ

Af (q, p)
(
X σ̄σ

f c+
qσcpσ̄ − (X σ̄σ̄

f + X22
f )c+

qσcpσ

)
. (7)

The operator terms in this expression describe four types of interactions. The first interaction type in the
atomic representation is the set of quantum transitions between the lower and upper Hubbard subbands.
The intensity of these transitions is determined by the matrix element

tfm =
1
N

∑

q

ηqV
∗
q eiq(f−m). (8)

The second interaction type pertains to processes of creation or annihilation of pairs in the localized sub-
system with the simultaneous annihilation or creation of a singlet pair of collectivized electrons with a not
necessarily zero center-of-mass momentum. The intensity of such processes is described by the quantity

∆f (k, p) = ηkVpe
−if(k+p). (9)

The third interaction type is due to jumps of f electrons in the upper Hubbard subband with the matrix
element tfm. Finally, the last interaction type describes the exchange coupling and the Coulomb correlations
between two electron subsystems. The intensity of these processes is proportional to

Af (q, p) =
1
2
e−if(q−p)[ηqV

∗
p + η∗

pVq]. (10)
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When writing contributions from higher-order commutators, we take into account that the final goal
of our calculations is to construct the effective Hamiltonian Heff up to and including terms of the fourth
order of smallness. It is then important that the sector of the Hilbert space without pairs must be invariant
under the action of Heff . Introducing the operator of projection on this sector,

P =
∏

f

(X00
f + X↑↑

f + X↓↓
f ), (11)

we express this condition mathematically as

PHeffP = PHeff = HeffP = Heff . (12)

Hence, the final contribution from the commutators of the third and fourth orders is determined only
by terms projected to the sector without pairs. It is easy to see that because P

[
S, [S, V12]

]
P = 0 and

P
[
S,

[
S, [S, V01]

]]
P = 0, the expressions for H̃(3) and H̃(4) determined by contributions from the remaining

commutators are

H̃(3) =
1
2
P

[
S, [S, V01]

]
P =

= P
1

2
√

N

∑

fmkσ

[ηktfme−ikf (c+
kσ̄Xσσ̄

f − c+
kσX σ̄σ̄

f )X0σ
m + H.c.] +

+ P
1

2N3/2

∑

kqpfσ

2σ[ηqe
−iqf∆∗

f (k, p)X σ̄0
f c+

qσ(ck↓cp↑ − ck↑cp↓) + H.c.], (13)

H̃(4) =
1
8
P

[
S,

[
S, [S, V12]

]]
P =

= P
1

8N

∑

kqfmσ

[ηqB
∗
k(f, m)e−iqm(c+

qσX σ̄σ̄
m − c+

qσ̄Xσσ̄
m )(ckσX σ̄σ̄

f − ckσ̄X σ̄σ
f ) + H.c.] +

+ P
1

4N2

∑

pkqk1fσ

[ηk1C
∗
f (k, q, p)e−ik1fc+

pσ̄(c+
k1σX σ̄σ̄

f − c+
k1σ̄Xσσ̄

f )ckσ̄cqσ + H.c.]. (14)

We define the functions in these relations as

Bk(f, m) = 2ηktfme−ikf +
2
N

∑

p

ηpAf (k, p)e−ipm,

Cf (k, q, p) = ηkAf (q, p)e−ikf + ηqAf (k, p)e−iqf .

(15)

Collecting the obtained relations together, we obtain

H̃ = H0 + V01 + H̃(2) + H̃(3) + H̃(4). (16)

It follows from expression (7) that the first two sums in the right-hand side of this equality describe
processes resulting in changing the number of pairs in the system. Because these operators are of the second
order of smallness, the processes of pair creation with their subsequent annihilation result in an additional
interaction of the fourth order. To find the contributions of these processes, we perform the second unitary
transformation, which does not change the operators H̃(3) and H̃(4) within the required accuracy. The
desired effective Hamiltonian Heff is then

Heff = PeS1H̃eS1P. (17)
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We choose the operator S1 determining the unitary transformation to exclude the second-order processes
generating pairs from the expression eS1H̃eS1 . We achieve this by choosing S1 in the form

S1 =
{

1
N

∑

kpf

[
∆f (k, p)

εk + εp − U − 2E0

]

(c+
k↑c

+
p↓ − c+

k↓c
+
p↑)X

02
f −

−
∑

gmσ

2σ

(
tgm

U

)

Xσ0
g X σ̄2

m

}

− {H.c.}. (18)

After calculating the commutators and projecting to the Hilbert space sector without pairs, we obtain the
effective Hamiltonian in its final form:

Heff =
∑

kσ

(εk − µ)c+
kσckσ +

∑

fσ

(E0 − µ)Xσσ
f +

1√
N

∑

kfσ

[Vke−ikf c+
kσX0σ

f + H.c.] +

+
1
N

∑

qpfσ

Af (q, p)[c+
qσ̄Xσσ̄

f − c+
qσX σ̄σ̄

f ]cpσ +

+
1

2
√

N

∑

fmkσ

[ηktfme−ikf (c+
kσ̄Xσσ̄

f − c+
kσX σ̄σ̄

f )X0σ
m + H.c.] +

+
1

2N3/2

∑

kqpf

[ηq∆∗
f (k, p)e−iqf (X↓0

f c+
q↑ − X↑0

f c+
q↓)(ck↓cp↑ − ck↑cp↓) + H.c.

]
+

+
1
N

∑

kqfmσ

[
1
8
ηqBk

∗(f, m)e−iqm(c+
qσ̄Xσσ̄

m − c+
qσX σ̄σ̄

m )(ckσ̄X σ̄σ
f − ckσX σ̄σ̄

f ) + H.c.
]

−

− 1
N2

∑

pkqk1fσ

[
1
4
ηk1Cf

∗(k, q, p)e−ik1fc+
pσ̄(c+

k1σ̄Xσσ̄
f − c+

k1σX σ̄σ̄
f )ckσ̄cqσ + H.c.

]

+

+
1
N

∑

kpfm

{[
∆f (k, p)

εk + εp − U − 2E0

]

tfm(c+
k↑c

+
p↓ − c+

k↓c
+
p↑)(X

0↓
f X0↑

m − X0↑
f X0↓

m ) + H.c.
}

+

+
1

N2

∑

kpfk1p1

[∆f (k, p)∆∗
f (k1, p1)

εk + εp − U − 2E0

]

X00
f (c+

k↑c
+
p↓ − c+

k↓c
+
p↑)(cp1↓ck1↑ − cp1↑ck1↓) +

+
∑

fm

Jfm

(

�Sf
�Sm − 1

4
N̂f N̂m

)

+
∑

fmgσ
(f �=g)

(
tfmtmg

U

)

(Xσ0
f X σ̄σ

m X0σ̄
g − Xσ0

f X σ̄σ̄
m X0σ

g ), (19)

where �Sf is the quasispin vector operator with the components

Sx
f =

S+
f + S−

f

2
, Sy

f =
S+

f − S−
f

2i
, Sz

f =
X↑↑

f − X↓↓
f

2
,

S+
f = X↑↓

f , S−
f = X↓↑

f .

The operators Sx
f , Sy

f , and Sz
f are quasispinorial because states without electrons are admissible at the

site f . The operators Sx
f , Sy

f , and Sz
f therefore cannot be identified with spin operators although they

rigorously satisfy the commutation relations specific for spin operators. This, for instance, follows from
(�Sf )2 = (3/4)N̂f , and only in the limiting case where exactly one electron is situated at each site f do the
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quasispin operators become genuine spin operators. The operator N̂f =
∑

σ Xσσ
f is the number operator

of localized electrons at the site f . The exchange interaction integral Jfm = 2(tfmtmf )/U has an origin
analogous to that of the exchange coupling in the t–J model [15]. The projection operator is absent in
the final expression for the effective Hamiltonian because the low-energy sector of the Hilbert space under
investigation is invariant under the action of Heff .

3. The hierarchy of effective interactions

We now describe the physical content of terms in PAM effective Hamiltonian (19). The first two
terms of the Hamiltonian describe noninteracting subsystems of collectivized and localized electrons. For
the localized electrons, we use the atomic representation with the Hilbert space not containing pairs, and
we therefore call these electrons the Hubbard fermions in what follows. The third term describes the
hybridization between two collectivized electrons and the Hubbard fermions.

In the second order in Vk, we have one term whose intensity is determined by the matrix element
Af (q, p). It describes the scattering of conductivity electrons on localized f states. Some of these inter-
actions reduce to the exchange s–f interaction, which, as is known, can induce singlet states of f and c

electrons and can screen localized magnetic processes (the Kondo effect).
Interaction processes of the third order in Vk are described by two terms. The first is proportional

to ηktfm and describes hybridization processes between two groups of fermions correlated with the local-
ized states. The second term describes the processes of annihilation or creation of a singlet pair in the
collectivized electron subsystem with the simultaneous creation or annihilation of a combined singlet pair
comprising the Hubbard fermion and the collectivized fermion. This interaction is obviously important for
describing the superconductivity phase of rare earth intermetallides.

Effective Hamiltonian (19) contains six fourth-order terms. The term proportional to the matrix el-
ement ηqB

∗
k(f, m) describes the indirect exchange interaction of localized electrons via the collectivized

states. The next term, which is proportional to ηk1C
∗
f (k, q, p), describes a nonlocal pair interaction in the

collectivized electrons subsystem with the bare scattering amplitude depending on the state of the Hubbard
fermions. The last four terms in (19) arise as the result of the second unitary transformation. The first of
them, which is proportional to ∆f (k, p)tfm, describes processes of annihilation or creation of singlet pairs in
the localized subsystem and the creation or annihilation of singlet pairs in the collectivized subsystem. This
dynamical mixing of singlet pairs is also essential when describing the superconductivity phase. The next
term, proportional to ∆f (k, p)∆∗

f (k1, p1), describes the correlated dynamics of singlet pairs of the collec-
tivized subsystem. The correlation means that the amplitude of the corresponding transitions decreases as
the localized states are filled by Hubbard fermions. In particular, when the localized states are completely
filled, such processes are totally damped. Finally, the last two terms describe the exchange interaction
in the localized subsystem and also the three-center interactions (or the correlated jumps). As already
mentioned, the origin of these terms is analogous to their origin in the derivation of the t–J model from the
Hubbard model. The exchange interaction proportional to Jfm is important for describing the concurrence
between the magnetic and superconductivity phases, as in the high-temperature superconductivity theory.
It was recently shown that the three-center interactions essentially influence the domain of realization of
the superconductivity phase with the dx2−y2 -type symmetry of the order parameter. We should emphasize
that while the last term is essential at a high level of filling the localized states, the preceding term is
essential at a low level of filling the localized subsystem. This means that we must take both terms into
account together when constructing the phase diagram expressing the concentration dependence of the
critical temperature of the transition to the superconductivity phase, in particular.

We note that the dynamics of singlet pairs (becoming Cooper pairs at concrete momentum values)
is governed by parameters of high orders in Vk in both the localized and collectivized subsystems in the
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Fig. 2. The dependence of the effective jump integral on the coordinate sphere number at different

values of the hybridization constant V2 (see the PAM parameters in the text).

constructed effective Hamiltonian. This means that the simplest mean-field approximation already provides
good accuracy when investigating the superconductivity phase and the concurrence between magnetic and
superconductivity phases. But this set of questions goes beyond the scope of this paper, and the corre-
sponding investigation results will be described in another paper. We confine ourself here to addressing the
important question about the magnitudes of exchange interactions in the framework of the obtained repre-
sentations. The magnitudes of exchange parameters and their dependences on the distance are necessary
for understanding the nature of the magnetically ordered phase.

The magnetic interaction in the localized subsystem is determined by two parameters. In addition to
the next-to-last term with the parameter Jfm, the exchange interaction is formed by another term of the
fourth order. Its intensity depends on B∗

k. After averaging over the states of the collectivized subsystem
(as is customary in the RKKI theory), we obtain the expression describing the second indirect exchange
interaction in the localized subsystem, which depends on the state of collectivized electrons:

H
(2)
exch =

∑

fm

Ifm

(

�Sf
�Sm +

1
4
N̂f N̂m

)

, (20)

where the exchange integral is

Ifm =
1

4N

∑

k

ηkBk
∗(f, m)e−ikmnk (21)

and nk is the distribution function of collectivized electrons. Adding the two contributions, we find that
the exchange interaction in the localized subsystem of spin moments is described by the Hamiltonian

Hexch =
∑

fm

{

Ifm

(

�Sf
�Sm +

1
4
N̂f N̂m

)

+ Jfm

(

�Sf
�Sm − 1

4
N̂f N̂m

)}

. (22)
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Fig. 3. The dependence of the super-exchange integral on the coordinate sphere number (se the

PAM parameters in the text).

The quantities Ifm and Jfm are not independent and are expressed in terms of the parameters of the
initial Anderson model; a comparative analysis of them therefore seems interesting for practical applications.
For this, we use the results of numerical calculations of exchange integrals, paying special attention to the
dependence of the exchange integrals on the distance between the lattice sites f and m. For convenience,
we parameterize this distance by the coordinate sphere number Ncs. For definiteness, we assume that the
ions of rare earth metals are placed at sites of the cubic lattice and the ions of the s and/or p elements
forming the conductivity zone are placed at the centers of elementary cells. As follows from the expressions
for Ifm and Jfm, the form of the c-electron dispersion εk affects the exchange integral values only slightly.
We can therefore restrict ourself to the strong-coupling limit when choosing εk:

εk = 2tc1(cos kx + cos ky + cos kz), (23)

where tc1 is the integral of the c-electron jump between the nearest ions of the s and p elements. At the
same time, the dependence of Vk on the quasimomentum can be essential when calculating the values of the
exchange integrals Ifm and Jfm. Taking this into account, we introduce two parameters V1 and V2 that we
can use to express the intermixing of the orbitals of f and s or p ions. For Vk, we then have the expression

Vk = 8V1 cos
kx

2
cos

ky

2
cos

kz

2
+

+ 8V2

(

cos
3kx

2
cos

ky

2
cos

kz

2
+ cos

kx

2
cos

3ky

2
cos

kz

2
+ cos

kx

2
cos

ky

2
cos

3kz

2

)

. (24)

In Figs. 2 and 3, we present the results of numerical calculations expressing the dependences of the effective
f -electron jump integral tfm and the super-exchange interaction parameter Jfm on the coordinate sphere
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Fig. 4. The dependence of the integral of the indirect exchange interaction on the coordinate sphere

number.

number Ncs at various values of the hybridization constant V2. The energy parameters are measured in units
of |tc1|. The calculations were done with the PAM parameters V1 = 0.4|tc1|, E0 = −2|tc1|, and U = 10|tc1|.
It follows from these figures that both tfm and Jfm decrease monotonically for positive values of V2. The
absolute value of the super-exchange interaction for nearest neighbors agrees well with the experimentally
observed value of the Neel temperature in heavy-fermion systems: TN ∼ 10K. An important property
following from our calculations is that values of Jfm for the nearest and next-to-nearest neighbors differ by
an inessential value on the order of 30%. Because both values are positive and the frustrated interaction
effects are therefore essential, we can expect that the tendency to the magnetically ordered phase is damped
and that a localized spin-moment system ground state of the spin-liquid type therefore forms. An interesting
dependence occurs at V2 = −0.3|tc1|, when the hybridization constant V2 is close to V1 (= 0.4|tc1|) in absolute
value but has the opposite sign. As shown in Fig. 3, the super-exchange interaction integral for the fourth
coordinate sphere then substantially exceeds all other values of Jfm. This means that a subsystem of
rare earth ions can then be split into eight cubic sublattices that do not interact with each other via the
super-exchange mechanism. The sublattice parameter is then twice the parameter of the initial lattice.
Inside each sublattice, the bonds are not frustrated, and Jfm > 0. This facilitates forming a long-range
antiferromagnetic order. But the final spin configuration of the whole system then depends on other
interaction types.

In Fig. 4, we present the results of calculating values of the indirect interaction exchange integral
Ifm given by (21) at various distances between rare earth ions. For simplicity, the collectivized-electron
distribution function nk was approximated by the Fermi function with the bare energy spectrum for the
collectivized electrons. The calculations were performed at the chemical potential µ = −2|tc1|. The other
PAM parameters were the same as in calculating Ifm. It can be seen from Fig. 4 that the indirect exchange
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Fig. 5. The dependence of the integral of the indirect exchange interaction between nearest neighbors

on the chemical potential at different values of the hybridization constant V2.

integral Ifm decreases as the coordinate sphere number increases. The absolute value of Ifm is then
almost one order less than that for Jfm. Because the intensity of the indirect exchange interaction under
consideration depends on the c-electron concentration, the value of Ifm can increase if the chemical potential
increases. This can be seen in Fig. 5: the values of Ifm increase by almost an order as the conductivity
zone fills. As a result, the coupling constants of the super-exchange and indirect exchange interactions can
be comparable in order of magnitude for large concentrations of band electrons.

It follows from the above numerical analysis of two mechanisms of the exchange interaction (the in-
direct exchange and super-exchange) performed based on the obtained PAM effective Hamiltonian that
concurrence between these two mechanisms of exchange interactions is absent in the whole range of the
model parameters. The relative contribution of these two mechanisms in forming the system ground state
depends both on the occupancy of localized orbitals and on the degree of filling of the conductivity zone.

In conclusion, we again mention that the key feature of our method for constructing the Heff uses
the smallness parameter determined by only those hybridization processes that involve high-energy states
of the localized subsystem. Correspondingly, only these processes are excluded in the first and second
order by using the unitary transformations. Hybridization processes then remain in the lower Hubbard
subband. The common feature of the methods for obtaining the PAM Heff mentioned in the introduction
is the tendency to eliminate all the hybridization processes (both high-energy and low-energy ones). The
reason that such a method is inapplicable to the mixed valency regime, as already mentioned, is that matrix
elements of effective interactions obtained by integrating low-energy hybridization processes diverge.
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