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Magnetic with anisotropic antiferromagnetic exchange interactions and special topology of coupling in
the square lattice with spins pairs ordering is studied by quantum Monte Carlo method. The antiferro-
magnetic order is found to be more stable as compared to spin liquid state. Exchange interactions and
wave vector of structure modulation for Cu3B2O6 is estimated. Neel temperature versus strength of ex-
change in spin pair is calculated. Plateau and modulation of magnetic structure in field magnetization
dependence is revealed.
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1. Introduction

In recent years, much attention has been devoted to investiga-
tion into the properties of low-dimensional quantum spin system.
These are given by the close proximity of competing phases with
long range order and short range correlated states, for example
Neel order and a spin liquid. The dynamic of such system is gov-
erned even at finite but low temperatures by quantum fluctuations
instead of thermal fluctuations. Excitation spectrum of spin liq-
uid may be gapless or contains gap in the triplet spin excitation
spectrum. Existence of gap is determined by a 2D exchange topol-
ogy [1,2], additional frustrating exchange terms or geometry of
lattice [3,4]. The ladder system SrCu2O3 formed by two coupled
chains has a large singlet–triplet gap � ∼ 0.5 J [5]. The plaquette
system CaV4O9 [6] consists of two-dimensional layers of VO5 pyra-
mids with Ca ions embedded between them. The ground state of
the system is singlet with an energy of gap of 107 K. The sim-
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plest realization of a spin gap is a spin dimer. The dimers in the
system SrCu2B2O6 [7] arises from strong frustration between the
diagonal coupling and square plane exchange. This compound has
a spin gap of δ = 34 K and very localized triplet excitations. The
magnetic susceptibility of gapped spin liquid vanishes as T → 0.
The temperature dependance of the heat capacity is described by
the exponential function.

Similar properties reveal the Cu3B2O6 [8] crystal. The temper-
ature dependence of the magnetic susceptibility passes through a
broad maximum near 40 K, followed by a sharp decrease at tem-
peratures below 10 K and a arise at 5 K. Incidently, the magnetiza-
tion is only ∼ 0.05μB/Cu in a magnetic field of 30 T at 1.5 K [8].
Heat capacity has an anomaly at Tc = 9.8 K, that depends on
magnetic field approximately as H2 [9]. The analyze of the exper-
imental data suggest that spin subsystem consists of single spins,
clusters of pairs and fours of spins interacting with one another. In
authors [9] opinion a antiferromagnetic order with the spin direc-
tion parallel to the bc plane appears at temperatures below 10 K.
The spin entropy is much smaller than the value of the free-spin
entropy at T > 10 K. Another point of view [8] that is the possi-
bility of the existence of the spin-singlet ground state in Cu3B2O6.
NMR measurements suggest [10] that part of the magnetic system
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Fig. 1. Exchange bonds topology in lattice. J (1+ δ) is denoted by wavy line, J (1− δ)

is thin line.

forms a modulated spin density wave and μS R spectroscopic data
supports coexistence of antiferromagnetically ordered pairs with
singlet spins. Relation T N/Θ � 0.02 is fairly small for large ex-
change anisotropy Θ(‖bc)/Θ(⊥bc) ∼ J xx/ J zz = 0.8 [9], where Θ

is paramagnetic Curie temperature.
In this Letter, we consider the influence of the exchange inter-

actions topology in the unit cell consisted single and pairs of spins
relative to the stability of antiferromagnetic order or the formation
of spin liquid state in two-dimensional lattice into account strong
quantum fluctuation.

2. Model and discussion

We study the Heisenberg model with alternating exchange and
spin S = 1/2. Hamiltonian is given by

H = −
∑

i, j,α

(
(1 − δ) Jαα Sα

i, j Sα
i+1, j + (1 + δ) Jαα Sα

i+1, j Sα
i+2, j

+ (1 − δ) Jαα Sα
i+2, j Sα

i+3, j + (1 − δ) Jαα Sα
i, j Sα

i, j+1

+ (1 + δ) Jαα Sα
i, j+1 Sα

i, j+2 + (1 − δ) Jαα Sα
i, j+2 Sα

i, j+3

)

−
∑

i

Hi Sz
i , (1)

where J (1 + δ), J (1 − δ), J < 0 are the exchange interactions be-
tween the nearest neighbors, H is the external magnetic field,
η = ( J zz − J xx(yy))/ J zz is the exchange anisotropy. As a calcu-
lation method, we take the quantum Monte Carlo method uni-
fying two algorithms, world-lines and continuous time for the
spin S = 1/2. The continuous time world-line Monte Carlo ap-
proach [11] based on the expansion of the statistical evolution
operator e−H/T in powers of J is applied. The world-line config-
uration of spins are updated through the space–time motions of
the creation and annihilation operators [12]. The periodic boundary
conditions are applied on L = 48,60 square lattices. From 40 000
to 60 000 Monte Carlo steps (MCS) per site are spent to reach
equilibrium and another 80 000–100 000 MCS are used for the av-
eraging. The root mean square errors of the computed quantities
lie in the range 0.1–2%.

We consider specific topology of exchange bonds plotted in
Fig. 1. There are two local exchange field E1 = 4(1−δ) J S and E2 =
2 J S . In limit case δ → 1 magnetic structure consists from part of
spins located in small exchange field and the pairs of spins in the
singlet state. Energy related to one bond is E/ J = 0.44 for chain
and E/ J = 0.75 for dimer and E/ J = 0.34 for square lattice. The
effective antiferromagnetic interaction derived from integrating out
the singlets created by pair of spins is Jeff = 0.5 J (1 − δ)2/(1 + δ)

and energy of antiferromagnetic with long range magnetic order
(LRMO) is equal to E/ J = 0.68 Jeff, that is closely to energy of
Fig. 2. Spin–spin correlation function 〈Sz(0)Sz(r)〉 of magnets calculated by MC at
η = 0.75, δ = 0.3, T /T N = 0.4 (1), 0.7 (2), 1.1 (3) along [10] versus distance (a).
Magnetic structure factor Sz(q) along [10] at η = 0.75, δ = 0.3 (b) and Sz(Q ) at
Q = (π,π), η = 0.75, δ = 0 (1), 0.2 (2), 0.4 (3) versus temperature (c).

disordered ground state described by a resonating valence bond
function. The exchange anisotropy contributes to rise of the stabil-
ity of antiferromagnetic order.

More exact results may be obtained by Monte Carlo simulation.
Correlation radius depends on temperature as a ξ ∼ exp(− J/T )

in two-dimensional isotropic quantum AFM. To eliminate the in-
fluence of finite lattice size ξ 
 L using by MC simulation we
restrict to investigation of AFM with exchange anisotropy, that is
very strong in the single crystals of Cu3B2O6. Magnetic structure in
the ground state and magnetic properties are analyzed on the basis
of spin–spin correlation function 〈Sz(0)Sz(r)〉, sublattice magne-
tization ms , energy, susceptibility and magnetic structure factor
Sz(q) = 1/N

∑
r〈Sz(0)Sz(r)〉exp(−iqr).

The exchange alternating enhances the quantum fluctuations
on the spin pairs denoted by the wavy line (Fig. 1) that causes a
decreasing spin–spin correlation at the distance r/a = 1,2 as com-
pared to r/a = 3 as shown in Fig. 2(a). The distance between spins
located in the square corner is r/a = 3 and strong spin–spin corre-
lation between them indicates to existing of antiferromagnetic or-
der between them. As a result of calculation of magnetic structure
factor the additional satellites in the Sz(q) at q = π/3 are discov-
ered, the magnitude of which is Sz(q = π/3)/Sz(q = π) = 0.1–0.2
(Fig. 2(b)). Neel temperature is determined from the magnetic
structure factor of Sz(Q ) at Q = (π,π) (Fig. 2(c)) calculated at the
various parameters of exchange alternating. The tails in the Sz(Q )

dependence are due to the finite lattice size using in the MC simu-
lation. Normalized Neel temperature is plotted in Fig. 3 at various
values of the exchange anisotropy. Dependence of T N versus al-
ternation is well fitted by T N (δ)/T N (0) = 1,7(1 − δ)2/(1 + δ) �
zS(S + 1) Jeff at δ � δc = 0.3.

Susceptibility of anisotropic antiferromagnetic sharp increases
with temperature rise and maximum is observed in vicinity of Neel
temperature (see Fig. 4). Such behavior is similar to anisotropic
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Fig. 3. Normalized Neel temperature at exchange anisotropy η = 0.25 (1),
0.75 (2), 0.95 (3) versus exchange alternation. Fitting function
T N (δ)/T N (0) = 1.7(1 − δ)2/(1 + δ) is plotted by dot line and fit polynomial
T N (δ)/T N (0) = 1 − 0.5δ − 2.3δ2 is solid line. Paramagnetic Curie temperature at
η = 0.25 versus exchange alternation are given in the insert.

Fig. 4. Susceptibility of antiferromagnetic at η = 0.75, δ = 0 (1), 0.4 (2), 0.8 (3)
versus temperature.

quasi-one-dimensional antiferromagnet. Sharp and broad maxi-
mum are associated with disappearing LRMO and short range mag-
netic order at Tχm . Quantum fluctuation suppress the antiferro-
magnetic order and lead to rise of the relation of Tχm /T N = (2–5)

at variation of exchange alternation from δ = 0 to δ = 0.5. The
susceptibility is follow the Curie–Weiss law at high temperatures
and expressed as χ = C/(T − Θ), where Θ is paramagnetic Curie
temperature, that monotonely decreasing at increasing exchange
alternating as shown in Fig. 3.

Exchange anisotropy for Cu3B2O6 may be estimated from the
μeff = gμB

√
(S(1 + S)) effective Bohr magneton, where g-factor is

anisotropic value. From the data fitting in the temperature range
between 150 and 300 K, the μeff(‖ bc) = 1.91μB and μeff(⊥ bc) =
2.36μB [9]. Exchanges in plane bc and perpendicular to bc dif-
fer in value J (⊥ bc)/ J (‖ bc) = (2.36/1.91)2 = 1.53. On the basis
of comparison calculated data with experimental results T N/Θ =
0.02, Tχm /T N = 4 the alternating exchange is determined as δ �
0.55. Exchange in pairs exceed exchange in vertex of square ap-
proximately in three time for Cu3B2O6. Estimated modulation of
antiferromagnetic order is agreement with the interpretation of
NMR measurements [10] for Cu3B2O6 suggesting existence of the
modulated spin density wave. The exchange interaction found from
the fitting analysis using the function of C = γ T + βT 3 for quasi-
one-dimensional system above T N is J = 277 K and for quasi-
two-dimensional system is J = 24 K [9]. Exchange J = 136 K is
Fig. 5. Magnetization (m) (a) and magnetic structure factor (b) versus magnetic field
at various parameters of exchange alternating η = 0.75; δ = 0 (1), 0.4 (2), 0.8 (3).
Spin-spin correlation function at η = 0.75; δ = 0, H/ J = 0.1 (1), 1 (2) versus dis-
tance.

estimated from the temperature dependence of the susceptibil-
ity that obtained on basis of clustering [8]. Our computing gives
J MC = 190 K.

The m(H) dependence reveals plateau, plotted in Fig. 5, that
arises from two local anisotropic exchange fields E1, E2 in the unit
cell. In this case the two spin-flop field H1 = J

√
(1 − (1 − η)2),

H2 = 2 J (1 − δ)
√

(1 − (1 − η)2) exist if interaction between spins
S1, S2 located in these fields is ignore. Interaction between S1, S2
spins induces the noncollinear spin configuration in the field re-
gion of H1 < H < H2. Wave vector of structure determined from
spin–spin correlation function (see Fig. 5(b)) is changed from q =
(π,π) to q = (π/3,π/3) in the vicinity H1 field. Maximum of
magnetic structure factor S(q) attains at q = (0,0) above H2 field.
Small magnetization value for Cu3B2O6 is associated with a little
magnetic field of 30 T as compared to spin-flop field Hsf ∼ 110 T
found in our computation. The spins located in small exchange
fields are full polarized by external magnetic field in limit case
δ → 1. Saturation magnetization is equal to weight of the spins
m = W1 = 0.2μB , that agree with MC result given in Fig. 5.



S.S. Aplesnin et al. / Physics Letters A 372 (2008) 4722–4725 4725
3. Conclusion

In summary, we analyzed Heisenberg model with anisotropic
antiferromagnetic exchange and specifical topology of the coupling
constant in order to investigate the type of magnetic structure.
As a result of calculations of magnetic structure factor we proved
stability of the long range antiferromagnetic order as compared
to spin liquid state. Dependence of Neel temperature and param-
agnetic Curie temperature versus alternating exchange have been
found. For Cu3B2O6 the value of exchange in pair of spins exceeds
exchange interaction in the vertex square in three time. Antiferro-
magnetic with cluster ordering reveals plateau in field dependence
of magnetization that attributes to formation of modulated struc-
ture.
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