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We systematically analyze the influence of the superconducting gap symmetry and the electronic structure
on the dynamical spin susceptibility in superconducting NaxCoO2·yH2O within three different models: The
single a1g-band model with nearest-neighbor hoppings, the realistic three-band t2g model with, and without eg�
pockets present at the Fermi surface. We show that the magnetic response in the normal state is dominated by
the incommensurate antiferromagnetic spin density wave fluctuations at large momenta in agreement with
experimental temperature dependence of the spin-lattice relaxation rate. Also, we demonstrate that the presence
or the absence of the eg� pockets at the Fermi surface does not significantly affect this conclusion. In the
superconducting state our results for dx2−y2- or dxy-wave symmetries of the superconducting order parameter
are consistent with experimental data and exclude nodeless dx2−y2 + idxy-wave symmetry. We further point out
that the spin-resonance peak proposed earlier is improbable for the realistic band structure of NaxCoO2·yH2O.
Moreover, even if present the resonance peak is confined to the antiferromagnetic wave vector and disappears
away from it.
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I. INTRODUCTION

The spin dynamics in unconventional non- s-wave super-
conductors is of fundamental interest due to its interesting
and peculiar properties. This includes a nontrivial behavior
of the magnetic part of the Knight shift in the spin-triplet
superconductors,1 as well as an emergence of the so-called
resonance peak observed in superconducting layered
cuprates2 which possesses spin-singlet dx2−y2-wave order pa-
rameter symmetry. Furthermore, magnetic excitations are
also often considered as a possible glue for the Cooper-
pairing in a number of heavy-fermion and transition metal
oxides compounds.

An analysis of the feedback effect of superconductivity on
the magnetic spin susceptibility can be used to determine the
symmetry of the superconducting order parameter. This is of
particular significance for recently discovered water interca-
lated sodium cobaltate superconductor,3 NaxCoO2·yH2O,
where the origin of superconductivity as well as an underly-
ing symmetry of the superconducting order parameter is cur-
rently under debate. The studies of the specific heat4–7 and
the �SR measurements of a magnetic penetration depth8

have revealed a line of nodes in the superconducting gap
function �k. Similar conclusion has been made based on the
measurements of the spin-lattice relaxation rate 1 /T1T by
means of nuclear quadrupole resonance �NQR�, where ab-
sence of the characteristic Hebel-Slichter peak and power-
law decrease upon decreasing temperature has been
observed.9–13 Simultaneously, the developing of the strong
antiferromagnetic �AFM� fluctuations above superconduct-
ing transition temperature, Tc, have been found. At the same
time, early reports on the Knight shift’s temperature depen-
dence, K�T�, have suggested a spin-triplet symmetry of the
superconducting gap.14,15 In these nuclear magnetic reso-
nance �NMR� experiments, K�T� was shown to be aniso-
tropic for external magnetic field applied parallel or perpen-

dicular to the ab plane. In particular, Kc�T� component has
not shown a substantial decrease below Tc. This behavior has
been interpreted in favor of the odd-parity Cooper-pairing in
sodium cobaltates.16–21 However, the most recent NMR ex-
periments with higher precision have found a reduction of
both Knight shift components as a function of temperature
for T�Tc.

22,23 These experiments points towards spin-singlet
Cooper-pairing.

From the group-theoretical analysis the even-parity sym-
metries of the lowest harmonics for the triangular lattice are
classified according to s-wave ��k=�0�, extended-s-wave
(�k=2 /3�0�cos ky +2 cos�kx

�3 /2�cos�ky /2��), dx2−y2-wave
(�k=�0�cos ky −cos�kx

�3 /2�cos�ky /2��), dxy-wave (�k

=�0��3sin�kx
�3 /2�sin�ky /2��), and dx2−y2 + idxy-wave repre-

sentations.24 For both dx2−y2-wave and dxy-wave symme-
tries �k has a line of nodes at the Fermi surface.
Moreover, the time-reversal symmetry is broken for dx2−y2

+ idxy-wave state.
For the pure trigonal symmetry of the CoO2 plane, all

three d-wave states are degenerate. However, due to the ab-
sence of nodes dx2−y2 + idxy-wave seems to be most energeti-
cally favorable. Until now, a breaking of time-reversal sym-
metry has not been observed in experiment.25,26 Generally,
the combined influence of the impurities and some compet-
ing instabilities, such as Cooper pairing in a secondary chan-
nel as well as the lattice symmetry breaking, can lift the
degeneracy between these three d-wave competing ground
states.27 This may indeed be the case for sodium cobaltates
where Na arrangement introduces disorder at x=0.33
concentration.28 More sophisticated theories, involving mul-
tiorbital model for sodium cobaltates, suggest two different
gap symmetries �one of which is dx2−y2 + idxy� for two differ-
ent Fermi surface topologies.29

Obviously, there is still a controversy on the symmetry of
the superconducting order parameter in sodium cobaltates. In
present study we systematically analyze the influence of the
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superconducting �SC� gap symmetry and the electronic struc-
ture on the dynamical spin susceptibility in NaxCoO2·yH2O.
In particular, assuming spin singlet s-wave and d-wave sym-
metries of the superconducting order parameter we have cal-
culated the real and the imaginary part of the magnetic re-
sponse as a function of the momentum, temperature and
frequency. We deduce the characteristic temperature depen-
dencies of the Knight shift and spin-lattice relaxation rate.
Furthermore, we have studied the feedback of the supercon-
ducting order parameter on the frequency dependence of the
imaginary part of the spin susceptibility. We investigate the
role played by the details of the electronic structure of
NaxCoO2·yH2O and, in particular, the changes of the Fermi
surface �FS� topology induced by the multiorbital effects.

Structurally, a parent compound, NaxCoO2, has a quasi-
two-dimensional structure with Co ions in the CoO2 layers
forming a triangular lattice. Na ions reside between these
layers and donate x electrons to the partially filled Co-d�t2g�
orbital. Apart from doping, Na ions also induce structural
ordering at higher doping concentrations �x�0.5� where su-
perconductivity does not occur. Due to the presence of a
trigonal crystalline electric field �CEF�, the t2g level splits
into the higher lying a1g singlet and the two lower lying eg�
states. The ab initio band structure calculations within a local
density approximation �LDA� predict NaxCoO2 to have a
large Fermi surface with mainly a1g character and six hole
pockets of mostly eg� character.30 At the same time, surface
sensitive angle-resolved photoemission spectroscopy
�ARPES�31–33 reveals a doping dependent evolution of the
Fermi surface, which shows no sign of the eg� hole pockets
for 0.3�x�0.8. Instead, the observed Fermi surface is cen-
tered around the � point and has mostly a1g character. It has
been argued that such an effect may arise due to strong elec-
tronic correlations,34–36 however, no consensus in the litera-
ture has been reached yet �see, e.g., Refs. 37–39�.

In NaxCoO2·yH2O due to the water intercalation the in-
terlayer CoO2 distance becomes larger and thus the material
becomes more two-dimensional leading to a substantial de-
crease of the bilayer splitting. However, little is known about
the particular changes in the electronic structure and the en-
ergy splitting between a1g and eg� levels.

In order to take into account the multiorbital effects we
analyze the effect of superconductivity for the three different
cases: The single-band �a1g� model with nearest-neighbor
hoppings, the realistic three-band �t2g� model with, and with-
out six eg� pockets at the FS.

II. a1g-BAND MODEL

We first consider the simple a1g-band model, represented
by a two-dimensional Hubbard Hamiltonian on the triangular
lattice:

H = − �
k,�

	kak�
† ak� + �

i

Uni↑ni↓, �1�

where ni�=ai�
† ai�, ai� �ai�

† � is the annihilation �creation� op-
erator for the a1g hole at the Co site i with spin �. Here,
�k=2t�cos ky +2 cos�kx

�3 /2�cos�ky /2��−�, t=0.123 eV is

the nearest-neighbor hopping integral, and � is the chemical
potential which has been calculated self-consistently for x
=0.33. The energy dispersion, 	k, along the principal direc-
tions of the hexagonal Brillouin zone �BZ� and the corre-
sponding Fermi surface are shown in Fig. 1�b� and Fig. 2,
respectively. Here, �= �0,0�, K= �0,2 /3�, and M
= �1 /2�3,1 /2� �in units of 2
 /a� denote the symmetry
points of the first BZ. Later, coordinates of the wave vectors
will be given in units of 2
 /a with a being the in-plane
lattice constant.

To calculate the dynamical spin susceptibility, we employ
the random phase approximation �RPA� which gives

�RPA�q,i�m� =
�0�q,i�m�

1 − U�0�q,i�m�
, �2�

where �0�q , i�m� is the BCS Lindhard susceptibility

�0�q,i�m� =
1

2N
�
k
� f�Ek+q� − f�Ek�

i�m − Ek+q + Ek
Ck,q

+

+
1 − f�Ek+q� − f�Ek�

2
Ck,q

−

� 1

i�m + Ek+q + Ek
−

1

i�m − Ek+q − Ek
	
 ,

�3�

with Ck,q
� =1�

�	k	k+q+Re��k�k+q
* ��

EkEk+q
being the BCS coherence fac-

tors. Here, �m are the Matsubara frequencies, f�E� is the
Fermi function, and Ek=�	k

2+ ��k�2.
In Fig. 1�a� we show both the bare and the RPA magnetic

susceptibility in the normal state at �=5 meV and U
=0.25 eV. One immediately notices that the magnetic re-
sponse is dominated by the scattering at the incommensurate
wave vector, QSDW= �0,0.598���0,3 /5�. The value of
Im���q ,��� at the commensurate wave vector, QAFM

= �0,2 /3� , �1 /�3,1 /3��, appears to be much smaller. There
is also another incommensurate wave vector present, QSDW� .
The presence of a set of incommensurate wave vectors with
substantial magnitude of magnetic scattering shows a ten-
dency of the itinerant electrons on the triangular lattice to-
wards spin density wave �SDW� instability.

In Figs. 1�c� and 1�d� we present the imaginary and the
real parts of �0�QAFM,�� as a function of frequency � at T
=1 K. In the non-SC state, the imaginary part is linear in �
at low frequencies which is a typical Landau damping within
the Fermi-liquid picture. In the SC phase, the imaginary part
of the magnetic susceptibility becomes gapped. The magni-
tude of the gap, �g, is equal to 2�0 in the s-wave case. At
larger frequencies Im �0 increases slowly from zero. In com-
parison, for the d-wave symmetries the lowest value of �g
= ��k�+ ��k+Q� at the Fermi surface. Obviously for the non-
s-wave symmetry it is smaller than 2�0. From Figs. 2�a� and
2�b� one can notice that the QAFM wave vector connects parts
of the FS where �k=−�k+QAFM

but also some parts where
�k= +�k+QAFM

. For dx2−y2-wave superconducting gap, there
are four pairs of points of the first type and two pairs of
points of the second type. Due to the smaller ��k�
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+ ��k+QAFM
� for the first process, as it is seen from Fig. 2�a�,

the Im �0 shows a discontinuous jump at �g. This is due to
the change of sign in the anomalous coherence factor, Ck,q

− .
The second process will give contribution at energies larger
than �g due to larger value of ��k�+ ��k+QAFM

� there. There-
fore, the net effect will result in a discontinuous jump of
Im �0 at �g. Correspondingly, the real part will possess a
logarithmic singularity as it is also seen in Fig. 1�d�. Within
the RPA the formation of the pole �spin resonance� in the
total magnetic susceptibility below �g is possible if
Im��0�q ,���=0 and simultaneously 1 /U=Re��0�q ,���. Due
to the logarithmic character of the singularity this condition

will be generally fulfilled for any small value of U which
would give a position of the resonance exactly at or very
close to �g. However, a small amount of impurities or dis-
order will smear the singularity out and suppress the reso-
nance peak. In NaxCoO2·yH2O the value of U should be
relatively large to shift the position of the spin resonance
towards energies smaller than �g and make it robust against
impurity scattering. The calculated susceptibility is shown in
Fig. 1�e� where we use Ures=0.579 eV. It is interesting to
note that the resonance occurs for both dx2−y2- and dx2−y2

+ idxy-wave symmetries, however, the value of �g slightly
differs. Note, for dxy-wave superconducting gap the situation

FIG. 1. �Color online� Calculated results for the a1g-band model. �a� q dependence of Im��0�q ,��� and Im��RPA�q ,��� at �=5 meV in
the normal �non-SC� phase. The scattering wave vectors QAFM, QSDW, and QSDW� are denoted by the arrows. �b� Calculated a1g-band
dispersion, where the horizontal line stands for the chemical potential. Panels �c�–�e� show imaginary and real parts of �0, and imaginary part
of �RPA at q=QAFM in non-SC phase and in SC phase with various superconducting order parameter symmetries. The same quantities are
plotted in panels �f�–�h� at the wave vector q=QSDW. Here we choose the amplitude of the superconducting order parameter �0=2 meV. For
numerical purposes we also employ the broadening of the Green’s function, �=0.2 meV.
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is opposite. From Fig. 2�b� one sees that in contrast to
dx2−y2-wave case there are two pairs of points at the
FS where �k=−�k+QAFM

and four pairs of points where �k

= +�k+QAFM
. Here, the �g is determined by the second pro-

cess, thus there will be no logarithmic jump in Re�0 at �g.
Of course it will occur at larger frequencies due to the first
type of process but the resonance conditions will not be ful-
filled. Therefore, we do not expect the spin resonance for the
dxy-wave symmetry.

The present value of Ures is of course too small to be the
on-site Coulomb repulsion which is of the order of several
electron volts. Therefore, the effective interaction U entering
our model �1� originates mainly from the Hund’s exchange,
JH. In the lamellar sodium cobaltate, the value of JH is pres-
ently disputed and the lowest estimated value is of the order
of 1 eV.36 It has been shown recently that even this value
significantly affects the population of the a1g and eg�
orbitals.37–39 Taking this value into account, we assume U
=�JH, where JH is the mean-field value of the Hund’s ex-
change and � is the coefficient that describes corrections
beyond mean-field theory. One has to note that the larger
value of U will lead to the SDW instability in our calcula-
tions.

The situation changes for the wave vector QSDW �Figs.
1�f�–1�h��. There is one striking difference in the low-energy
behavior of Im��0�QSDW,���. Namely, already in the normal
state the scattering rate is nonlinear for small �. It is obvi-
ously a consequence of the 2kF instability and a resulting
non-Landau damping at this wave vector. Furthermore, in the
SC state the situation differs drastically with respect to
QAFM. As one could see from Figs. 2�c� and 2�d� there is an
equal number of contributions for which �k=−�k+QSDW

and
�k= +�k+QSDW

. As a result the discontinuity does not occur
and the real part of �0 is smaller in the superconducting state
than in the normal state. Therefore, for reasonable values of
U, there is no resonance condition for �RPA �see Fig. 1�h��.

Generally, a formation of the resonance peak below Tc in
the unconventional superconductors is a well-known conse-
quence of the sign change of the superconducting order pa-
rameter. It has been originally discussed in relation to the
layered high-Tc cuprates40 and also recently has been used to
explain the inelastic neutron scattering results in heavy-
fermion compound UPd2Al3.41 In layered superconducting
cobaltates the emergence of the resonance peak for several
symmetries of the superconducting order parameter has been
analyzed within simple single-band model.42 In contrast to
Ref. 42, we have found that the resonance peak �even within
simple a1g-band model� is very sensitive to the small varia-
tion of U values and to disorder. As a result the resonance
is confined to the wave vector QAFM and disappears for
�Q�� �QAFM�.

The temperature dependence of the Knight shift, K�T�,
and the spin-lattice relaxation rate, 1 /T1T, is calculated ac-
cording to the expressions:

K�T� � lim
q→0

Re ��q,� = 0� , �4�

1/T1T � lim
�→0

1



�
q

Im ��q,��
�

. �5�

In Fig. 3 we show both quantities as a function of tempera-
ture. In the normal state 1 /T1T increases with decreasing
temperature that reflects the presence of the incommensurate
antiferromagnetic fluctuations in this system. At the same
time, the Knight shift is a constant which stresses that there
are no small-q fluctuations. Below Tc both physical observ-
ables drop rapidly due to opening of the superconducting gap
in the energy spectrum. As expected, the decrease is expo-
nential for dx2−y2 + idxy-wave symmetry due to its nodeless
character in Ek. For dx2−y2-wave symmetry the behavior of
1 /T1T and K�T� follows standard power-law temperature de-
pendence due to the presence of the line nodes in the energy
spectrum. In the next section we will compare our results to
the experimental data where we describe a more realistic
model in application to the superconducting cobaltate.

III. t2g BAND MODEL

The a1g-band model is, of course, oversimplified for de-
scribing the physics of NaxCoO2·yH2O since a1g−eg� level

FIG. 2. �Color online� Calculated Fermi surface of the a1g-band
model. The position of the nodes of the ��a�, �c�� dx2−y2-wave and
��b�, �d�� dxy-wave superconducting gaps is denoted by the solid
curves. The plus and the minus signs refer to the corresponding
phases of the superconducting order parameter. The states at the FS
connected by the wave vectors QAFM or QSDW are shown by the
circles.

FIG. 3. �Color online� Calculated temperature dependence of �a�
the Knight shift K�T� and �b� the spin-lattice relaxation rate 1 /T1T
for the a1g-band model. Note the logarithmic temperature scale in
�b�. Here we assume the conventional BCS temperature dependence
of superconducting gap, �0�T�=�0

�1−T /Tc.
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splitting, ��, is only 53 meV. As a result there is a substantial
hybridization of the a1g and the eg� bands, completely ne-
glected in the simple a1g-band model. In particular, the eg�
bands may form hole pockets at the FS in addition to a large
a1g pocket.30 To take into account these details, we further
analyze the magnetic response in the full t2g-band model
including both a1g and eg� cobalt states.

The free electron Hamiltonian of the t2g-band model in a
hole representation is given by

H0 = − �
k,�,�

��� − ��nk�� − �
k,�

�
�,�

tk
��dk��

† dk��, �6�

where nk��=dk��
† dk��, dk�� �dk��

† � is the annihilation �cre-
ation� operator for the t2g-hole with spin �, orbital index �,
and momentum k, tk

�� is the hopping matrix element, �� is
the single-electron energy, and � is the chemical potential.
All of the in-plane hoppings and the single-electron energies
were derived previously by us from the ab initio LDA cal-
culations using projection procedure and we use here the
parameters for x=0.33 from Ref. 35. To obtain the dispersion
we diagonalize the Hamiltonian �6� calculating the chemical
potential � self-consistently. The resulting FS topology and
energy dispersion are shown in Figs. 4�b� and 4�c�, respec-
tively. The resulting dispersion and the FS replicate the cor-
responding LDA ones.35

Due to the nonzero interorbital hopping matrix elements,
a1g and eg� bands are hybridized. However, only one of the
hybridized bands crosses the Fermi level thus making the
largest contribution to the low-energy properties of the sys-
tem. We refer to this band as 	k. Note it is substantially
different from the simple a1g band. Later, this effective band
	k will be used to calculate the dynamical magnetic suscep-
tibility with some effective on-site Coulomb interaction U.

Present FS has more complicated structure in comparison
to the a1g-band model. First, eg� states are present at the
Fermi surface and strongly hybridize with a1g states. At the
same time, the “rounded hexagon” shape of the central part
of the FS arises from the hoppings beyond nearest-neighbors
included in the t2g-band model and neglected in a1g-band
model considered above. This results in a number of addi-
tional scattering wave vectors as calculated from �0; see Fig.
4�a�. In particular, there are four scattering wave vectors con-
necting the eg�-eg� FS pockets �Qe�, Qe�, Qe�, and QSDW2
= �0,0.495��, and also two scattering wave vectors connecting
the a1g-eg� FS pockets �Qae� and QSDW� �. At the same time,
these wave vectors also connect parts of the central a1g FS
pocket and the total magnetic susceptibility includes contri-
bution from this scattering too. In addition, there are two
wave vectors, �QAFM and QSDW1= �0,0.649�� which arise due
to the curved form of the central a1g FS pocket. The pro-
nounced peaks at all these wave vectors are present in both
the bare and the RPA magnetic susceptibility �U=0.15 eV�.
Again, similar to the a1g-band model, the magnetic response
is not dominated by the scattering at the commensurate wave
vector QAFM. The overall picture of the magnetic response is
consistent with the one presented in Ref. 19.

In the non-SC phase and the SC phase with s-wave order

parameter the behavior of ��q ,�� at q=QAFM �see Figs.
4�d�–4�f�� is similar to the one in the a1g-band model. How-
ever, for the d-wave symmetry of the order parameter, one
finds that for ���g the states with equal signs of the super-
conducting order parameter �second type of the process� con-

FIG. 4. �Color online� Calculated results for the t2g-band model.
�a� q dependence of Im��0�q ,��� and Im��RPA�q ,��� at �
=5 meV in the normal �non-SC� phase. The scattering wave vectors
QAFM, QSDW1, QSDW2, QSDW� , Qae�, Qe�, Qe�, and Qe� are denoted
by the arrows. �b� The calculated Fermi surface with the corre-
sponding scattering wave vectors. In �c� the band dispersion is
shown where the bold curve denotes the topmost band used for the
susceptibility calculations. A horizontal line stands for the chemical
potential. Panels �d�–�f� show imaginary and real parts of �0, and
imaginary part of �RPA at q=QAFM in the normal state and in SC
state with various superconducting order parameter symmetries.
The imaginary parts of the bare and the total susceptibilities are
plotted in panels �g�–�h� and �i�–�j� at the wave vectors q=QSDW1

and q=QSDW2, respectively. Here we choose the amplitude of the
superconducting order parameter �0=2 meV. For numerical pur-
poses we also employ the broadening of the Green’s function, �
=0.2 meV.
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tributes first, and the discontinuous jump in Im��0�QAFM,���
occurs at higher energies. The particular form of the FS in
the realistic t2g-band model and more complicated band
structure produce this effect. Therefore, the resonance peak
in Im��RPA�QAFM,��� may in principle still exist, however, it
occurs in a very narrow interval of the U values. This inter-
val is determined by the resonance condition in the supercon-
ducting state and by the stability of a paramagnetic state
above Tc. Here, we use Ures=0.26 eV, which is more than
twice smaller than in the a1g-band model.

Although the formation of the spin resonance is unrealis-
tic for the antiferromagnetic wave vector QAFM it may now
occur at other wave vectors. In Figs. 4�g�–4�j� we present the
imaginary parts of �0�q ,�� and �RPA�q ,�� at QSDW1 and at
QSDW2. Here, one notices the pronounced effects of the com-
plicated t2g-band structure at high energies for the scattering
at both wave vectors. Deviations from the linear-� damping
start already at low energies, smaller than �g. For U=Ures
the spin-resonance is present at QSDW1 for both d-wave sym-
metries. However, at QSDW2 the resonance peak is present for
dx2−y2 + idxy-wave symmetry only. Similar to the situation
with QAFM, this is due to smallness of the allowed U values.

In Fig. 5 we show the corresponding results for the 1 /T1T
and K�T�. Below superconducting transition temperature the
behavior is very similar to the results obtained for the simple
a1g-band model. This is because below Tc the symmetry of
the superconducting gap and its nodal structure determines
the temperature dependencies of the 1 /T1T and the K�T� val-
ues. At the same time, notice the stronger AFM fluctuations
in the normal state. For almost the same value of U as in Fig.
3 this is due to the larger density of states at the Fermi level
�and the change of the Fermi velocity� than in the simple
a1g-band model. Such a behavior is observed in the experi-
mental NQR data.9,11,43 It is interesting to note that without
water the parent nonsuperconducting compound Na0.33CoO2
shows much weaker AFM fluctuations.11 In our theory the
fluctuations occur for the parent compound too. It probably
demonstrates a possible significance of the third dimension
and, in particular, the bilayer splitting which may reduce the
two-dimensional AFM fluctuations in Na0.33CoO2.

Note, the presence of the eg� pockets on the FS can also lift
the degeneracy between the three d-wave states. Since in the
dx2−y2-wave SC state the eg� FS pockets are fully gapped, the
additional condensation energy is gained �compare the topol-
ogy of the line nodes in Fig. 2�a� and FS topology in Fig.

4�b��. For the dxy-wave SC state this gain in energy will be
smaller �compare Fig. 2�b� and FS in Fig. 4�b��.

Presently, there is still a discussion on the details of the
Fermi surface topology in the water intercalated cobaltates.
In particular, ARPES experiments do not observe the eg�
pockets at the FS.31–33 It has been shown that an inclusion of
the electronic correlation within Gutzwiller approximation
may shift the eg�-bands below the Fermi level,34,35 although
this conclusion has been challenged.37–39 Another interpreta-
tion of this experimental result relays on the disorder intro-
duced by Na. As it was shown within LDA, the scattering
due to disorder can destroy the small eg�-pockets.44 For the
superconducting polycrystalline samples, recent experiments
indicate that the oxonium ions, H3O+, may introduce addi-
tional dopants,45–47 or result in oxygen vacancies reducing
Co oxidation state.48 Though, this conclusion has been
doubted by the NMR experiments49 which show the Co va-
lence state is insensitive to hydration and depends on the Na
content only. This was also confirmed later by the powder
neutron diffraction.50

In our study, we further consider the t2g-band model with
increased crystal filed splitting, ��=153 meV. This makes eg�
band sink below the Fermi level, as it is seen in the inset of
Fig. 6�a�. The behavior of the dynamical spin susceptibility
for U=0.15 eV at �=5 meV presented in Fig. 6�a� shows
more similarity to the simple a1g-band model with additional
features due to peculiarities �“rounded hexagon” form� of the
large FS pocket as shown in Fig. 6�b�. The scattering is most
pronounced at the wave vector QSDW= �0,0.633�. There is
also intensive scattering at the wave vector QSDW� , owing its
appearance to the curved shape of the FS.

Figures 6�c�–6�h� displays the magnetic susceptibility at
QAFM and at QSDW, respectively. Contrary to both a1g-band
model and t2g-band model with eg� FS pockets, here we ob-
serve a well-defined linear behavior of Im��0�q ,��� in the
considered frequency range at these wave vectors. For the
d-wave order parameter, the behavior of the susceptibility
resembles that in the t2g-band model with eg� FS pockets.
Again one could find a narrow range of parameters where the
resonance peak exists, which we illustrate in Figs. 6�e�–6�h�
for Ures=0.342 eV.

Similarly, the change of the FS topology does not influ-
ence significantly the temperature dependence of the Knight
shift and the spin-lattice relaxation rate above and below Tc.
This is illustrated in Fig. 7 where we plot both quantities as
a function of temperature.

IV. CONCLUSION

Our analysis of the dynamical spin susceptibility in appli-
cation to the NaxCoO2·yH2O have shown that the magnetic
response in the normal state is dominated by the incommen-
surate SDW fluctuations at large momenta close to QAFM.
This is consistent with experimental NQR data which shows
a pronounced AFM-like fluctuations in the temperature de-
pendence of the spin-lattice relaxation rate. It is interesting to
note that the presence of the eg� pockets at the Fermi surface
is not significantly affecting this result. In the normal state

FIG. 5. �Color online� Calculated temperature dependence of �a�
the Knight shift K�T� and �b� the spin-lattice relaxation rate 1 /T1T
for the t2g-band model. Note, in �b� the curve for U=0.26 eV was
scaled by a factor of 0.025.
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we note the absence of ferromagneticlike fluctuations. This
observation justifies our choice of spin-singlet order param-
eter, because to induce the spin-triplet Cooper-pairing the
fluctuations with small momenta are required. Below Tc our

results for dx2−y2- or dxy-wave �not shown� symmetries of the
superconducting order parameter are consistent with experi-
mental data which excludes nodeless dx2−y2 + idxy-wave sym-
metry. We further stress that the resonance peak, predicted
previously42 for the simple a1g-band model, is improbable
for the realistic band structure of NaxCoO2·yH2O. Moreover,
we find that even if present the resonance peak is confined to
the AFM wave vector and disappears away from it.
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FIG. 7. �Color online� Calculated temperature dependence of �a�
the Knight shift K�T� and �b� the spin-lattice relaxation rate 1 /T1T
for the t2g-band model without eg� FS pockets. Note, in �b� the curve
for U=0.342 eV was scaled by a factor of 0.002.

FIG. 6. �Color online� Calcu-
lated results for the t2g-band
model with enlarged crystal
field splitting. �a� q dependence
of the Im��0�q ,��� and the
Im��RPA�q ,��� at �=5 meV in
the normal �non-SC� phase. The
scattering wave vectors QAFM,
QSDW, QSDW� , and QSDW� are de-
noted by the arrows. The band
dispersion is shown in the inset of
�a�, where the bold curve denotes
the topmost band used for the sus-
ceptibility calculations, and the
horizontal line stands for the
chemical potential. �b� The calcu-
lated Fermi surface with the corre-
sponding scattering wave vectors.
�c�–�e� The calculated �c� imagi-
nary and �d� real parts of the
�0�QAFM,��, and �e� the imagi-
nary part of �RPA in the normal
and in the SC state with various
superconducting order parameters.
The same quantities are plotted in
�f�–�h� at q=QSDW. Here we
choose the amplitude of the super-
conducting order parameter �0

=2 meV. For numerical purposes
we also employ the broadening of
the Green’s function, �=0.2 meV.

DYNAMICAL MAGNETIC SUSCEPTIBILITY IN THE… PHYSICAL REVIEW B 77, 064510 �2008�

064510-7



*maxim@mpipks-dresden.mpg.de
1 D. Vollhardt and P. Woelfle, The Superfluid Phases of Helium 3

�Taylor and Francis, London, 1990�.
2 See H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, J. Bossy, A.

Ivanov, D. L. Milius, I. A. Aksay, and B. Keimer, Phys. Rev. B
61, 14773 �2000� and references therein.

3 K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A.
Dilanian, and T. Sasaki, Nature �London� 422, 53 �2003�.

4 G. Cao, C. Feng, Y. Xu, W. Lu, J. Shen, M. Fang, and Z.-a. Xu,
J. Phys.: Condens. Matter 15, L519 �2003�.

5 B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Physica C
402, 106 �2004�.

6 H. D. Yang, J.-Y. Lin, C. P. Sun, Y. C. Kang, C. L. Huang, K.
Takada, T. Sasaki, H. Sakurai, and E. Takayama-Muromachi,
Phys. Rev. B 71, 020504�R� �2005�.

7 R. Jin, B. C. Sales, S. Li, and D. Mandrus, Phys. Rev. B 72,
060512�R� �2005�.

8 A. Kanigel, A. Keren, L. Patlagan, K. B. Chashka, P. King, and
A. Amato, Phys. Rev. Lett. 92, 257007 �2004�.

9 T. Fujimoto, G.-q. Zheng, Y. Kitaoka, R. L. Meng, J. Cmaidalka,
and C. W. Chu, Phys. Rev. Lett. 92, 047004 �2004�.

10 K. Ishida, Y. Ihara, K. Kitagawa, H. Murakawa, Y. Maeno, C.
Michioka, M. Kato, K. Yoshimura, K. Takada, T. Sasaki, H.
Sakurai, and E. Takayama-Muromachi, J. Phys. Soc. Jpn. 72,
3041 �2003�.

11 G.-q. Zheng, K. Matano, R. L. Meng, J. Cmaidalka, and C. W.
Chu, J. Phys.: Condens. Matter 18, L63 �2006�.

12 Y. Ihara, H. Takeya, K. Ishida, H. Ikeda, C. Michioka, K.
Yoshimura, K. Takada, T. Sasaki, H. Sakurai, and E. Takayama-
Muromachi, J. Phys. Soc. Jpn. 75, 124714 �2006�.

13 C. Michioka, H. Ohta, Y. Itoh, and K. Yoshimura, J. Phys. Soc.
Jpn. 75, 063701 �2006�.

14 M. Kato, C. Michioka, T. Waki, K. Yoshimura, K. Ishida, H.
Sakurai, E. Takayama-Muromachi, K. Takada, and T. Sasaki,
Physica B 359-361, 482 �2005�.

15 Y. Ihara, K. Ishida, H. Takeya, C. Michioka, M. Kato, Y. Itoh, K.
Yoshimura, K. Takada, T. Sasaki, H. Sakurai, and E. Takayama-
Muromachi, J. Phys. Soc. Jpn. 75, 013708 �2006�.

16 A. Tanaka and X. Hu, Phys. Rev. Lett. 91, 257006 �2003�.
17 O. I. Motrunich and P. A. Lee, Phys. Rev. B 70, 024514 �2004�.
18 K. Kuroki, Y. Tanaka, and R. Arita, Phys. Rev. Lett. 93, 077001

�2004�.
19 M. D. Johannes, I. I. Mazin, D. J. Singh, and D. A. Papaconstan-

topoulos, Phys. Rev. Lett. 93, 097005 �2004�.
20 K. Kuroki, Y. Tanaka, and R. Arita, Phys. Rev. B 71, 024506

�2005�.
21 M. Mochizuki, Y. Yanase, and M. Ogata, Phys. Rev. Lett. 94,

147005 �2005�.
22 G.-q. Zheng, K. Matano, D. P. Chen, and C. T. Lin, Phys. Rev. B

73, 180503�R� �2006�.
23 Y. Kobayashi, T. Moyoshi, H. Watanabe, M. Yokoi, and M. Sato,

J. Phys. Soc. Jpn. 75, 074717 �2006�.
24 See I. I. Mazin and M. D. Johannes, Nat. Phys. 1, 91 �2005� and

references therein.
25 W. Higemoto, K. Ohishi, A. Koda, S. R. Saha, R. Kadono, K.

Ishida, K. Takada, H. Sakurai, E. Takayama-Muromachi, and T.
Sasaki, Phys. Rev. B 70, 134508 �2004�.

26 W. Higemoto, K. Ohishi, A. Koda, R. Kadono, H. Sakurai, K.
Takada, E. Takayama-Muromachic, and T. Sasaki, Physica B
374, 274 �2006�.

27 S. Florens and M. Vojta, Phys. Rev. B 71, 094516 �2005�.
28 H. W. Zandbergen, M. L. Foo, Q. Xu, V. Kumar, and R. J. Cava,

Phys. Rev. B 70, 024101 �2004�.
29 M. Mochizuki and M. Ogata, J. Phys. Soc. Jpn. 76, 013704

�2007�.
30 D. J. Singh, Phys. Rev. B 61, 13397 �2000�.
31 M. Z. Hasan, Y.-D. Chuang, D. Qian, Y. W. Li, Y. Kong, A. P.

Kuprin, A. V. Fedorov, R. Kimmerling, E. Rotenberg, K. Ross-
nagel, Z. Hussain, H. Koh, N. S. Rogado, M. L. Foo, and R. J.
Cava, Phys. Rev. Lett. 92, 246402 �2004�.

32 H.-B. Yang, S.-C. Wang, A. K. P. Sekharan, H. Matsui, S. Souma,
T. Sato, T. Takahashi, T. Takeuchi, J. C. Campuzano, R. Jin, B.
C. Sales, D. Mandrus, Z. Wang, and H. Ding, Phys. Rev. Lett.
92, 246403 �2004�.

33 T. Shimojima, K. Ishizaka, S. Tsuda, T. Kiss, T. Yokoya, A. Chai-
nani, S. Shin, P. Badica, K. Yamada, and K. Togano, Phys. Rev.
Lett. 97, 267003 �2006�.

34 S. Zhou, M. Gao, H. Ding, P. A. Lee, and Z. Wang, Phys. Rev.
Lett. 94, 206401 �2005�.

35 M. M. Korshunov, I. Eremin, A. Shorikov, V. I. Anisimov, M.
Renner, and W. Brenig, Phys. Rev. B 75, 094511 �2007�.

36 A. O. Shorikov, V. I. Anisimov, and M. M. Korshunov,
arXiv:cond-mat/0705.1408 �unpublished�.

37 H. Ishida, M. D. Johannes, and A. Liebsch, Phys. Rev. Lett. 94,
196401 �2005�.

38 C. A. Perroni, H. Ishida, and A. Liebsch, Phys. Rev. B 75,
045125 �2007�.

39 A. Liebsch and H. Ishida, arXiv:cond-mat/0705.3627 �unpub-
lished�.

40 See I. Eremin, D. K. Morr, A. V. Chubukov, K. H. Bennemann,
and M. R. Norman, Phys. Rev. Lett. 94, 147001 �2005�, and
references therein.

41 J. Chang, I. Eremin, P. Thalmeier, and P. Fulde, Phys. Rev. B 75,
024503 �2007�.

42 J.-X. Li and Z. D. Wang, Phys. Rev. B 70, 212512 �2004�.
43 Y. Ihara, K. Ishida, K. Yoshimura, K. Takada, T. Sasaki, H. Saku-

rai, and E. Takayama-Muromachi, J. Phys. Soc. Jpn. 74, 2177
�2005�.

44 D. J. Singh and D. Kasinathan, Phys. Rev. Lett. 97, 016404
�2006�.

45 D. P. Chen, H. C. Chen, A. Maljuk, A. Kulakov, H. Zhang, P.
Lemmens, and C. T. Lin, Phys. Rev. B 70, 024506 �2004�.

46 C. J. Milne, D. N. Argyriou, A. Chemseddine, N. Aliouane, J.
Veira, S. Landsgesell, and D. Alber, Phys. Rev. Lett. 93, 247007
�2004�.

47 K. Takada, K. Fukuda, M. Osada, I. Nakai, F. Izumi, R. A. Dila-
nian, K. Kato, M. Takata, H. Sakurai, E. Takayama-Muromachi,
and T. Sasaki, J. Mater. Chem. 14, 1448 �2004�.

48 P. W. Barnes, M. Avdeev, J. D. Jorgensen, D. G. Hinks, H. Claus,
and S. Short, Phys. Rev. B 72, 134515 �2005�.

49 I. R. Mukhamedshin, H. Alloul, G. Collin, and N. Blanchard,
Phys. Rev. Lett. 94, 247602 �2005�.

50 L. Viciu, Q. Huang, and R. J. Cava, arXiv:cond-mat/0603600
�unpublished�.

M. M. KORSHUNOV AND I. EREMIN PHYSICAL REVIEW B 77, 064510 �2008�

064510-8


