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Statistics of nodal points of in-plane random waves in elastic media
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We consider the nodal points (NPs) u=0 and v=0 of the in-plane vectorial displacements u=(u,v) which
obey the Navier-Cauchy equation. Similar to the Berry conjecture of quantum chaos, we present the in-plane
eigenstates of chaotic billiards as the real part of the superposition of longitudinal and transverse plane waves
with random phases. By an average over random phases we derive the mean density and correlation function
of NPs. Consequently we consider the distribution of the nearest distances between NPs.
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I. INTRODUCTION

Attracting interest in the field of wave chaos, elastome-
chanical systems are being studied analytically, numerically,
and experimentally. Weaver first measured the few hundred
lower eigenfrequencies of an aluminum block and worked
out the spectral statistics [1]. Spectral statistics coinciding
with random matrix theory has been observed in experiments
for monocrystalline quartz blocks shaped as three-
dimensional Sinai billiards [2], as well as in experimental
and numerical studies of flexural modes [3,4] and in-plane
modes [5,6] for stadium-shaped plates. Statistical properties
of eigenfunctions describing standing waves in elastic bil-
liards were first reported by Schaadt et al. [7]. The authors
measured the displacement field of several eigenmodes of a
thin plate shaped as a Sinai stadium.

Due to a good preservation of up-down symmetry in the
case of thin plates, they dealt with two types of modes. The
flexural modes with displacement ¢ perpendicular to the
plane of the plate are well described by the scalar biharmonic
Kirchoff-Love equation [8,9]

DV*y= phQ?y. (1)

Here, A is the thickness of the plate and D denotes the flex-
ural rigidity, given by D=Eh*/12(1-0?), where E is
Young’s modulus, o is Poisson’s ratio, and p is the density.
Solutions of Eq. (1) are characterized by nodal lines near
which fine powder is collected under vibrations which are
visualized as Chladni patterns [10]. As it is dependent on the
size of fine particles, a very thin powder can collect at anti-
nodal regions where the amplitude of vibrations is maximal
[11-13].

Other modes have vectorial displacement in the plane of
the plate. They are described by a two-dimensional Navier-
Cauchy equation for the in-plane displacement vector [9,14]:

uVu+ N+ ) V(V-u)+pQ2u=0, (2)

where u(x,y) is the displacement field in the plate and N and
w are the material-dependent Lamé coefficients. Introducing
the elastic potentials ¢ and A with the help of the Helmholtz
[14] decomposition the displacement field u can be written
as
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u=u+u, u,=V XA. (3)

u; = Vlﬂ,

Then Eq. (2) reduces to two Helmholtz equations for the
elastic potentials:

- Viy=k,

-V2A=EA. 4)

Here k)=w/c; and k,=w/c, are the wave numbers for the
longitudinal and transverse waves, respectively, and o’
=pQ?/E. In the two-dimensional case the potential A has
only one nonzero component A, and the dimensionless lon-
gitudinal and transverse sound velocities ¢;, are given by

1 , 1

2 b .
= € 2(1+0)’

1-o% ©)
where o is Poisson’s ratio [9,14]. o is a function of the Lamé
coefficients [9,14].

In chaotic elastic billiards the in-plane eigenstates can be
simulated by the real part of the random superposition of
longitudinal and transverse plane waves [15]:

N
)= 22 cos gy, coslth, -+ 6]
n=1

N
2
+1/ Wyz sin ¢,, cosli(k,, - x+ 6,,)],
n=1

N
o) = 22 in g, coslth, -+ 6,)]

n=

1
N
- \ %YE COos ¢tn COS[i(km X+ 6tn)]7 (6)
n=1

where ¢, and ¢, are the angles between k;, and k,, and the
x axis, respectively. The prefactors vy and \1 -y are chosen
from the normalization condition (u'u)=1, and {---) means
an average over the random phase ensembles. This superpo-
sition originates from Berry’s conjecture for quantum chaos
[16-22] for each solution of the Helmholtz equations (4).
The parameter y ranges from O (pure transverse waves) to 1
(pure longitudinal waves) for an infinite system and takes a
specific value
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for closed billiards [15] because of double ray splitting at its
boundary.

Here we derive the nodal-point (NP) density correlation
function of the vectorial in-plane elastic field (6) and statis-
tics of the nearest distances between NPs considered in
[23-30] for quantum chaos. Similar to the Chladni patterns
at nodal lines for the flexural modes [10,12], one can be
interested in the NPs of in-plane modes as centers of the
collection of viscous powder. For closed elastic plate (bil-

liard) the vectorial in-plane displacements u(x,y)
=u(x,y)v(x,y) have NPs
u(xg,y0) =0,  v(x0,y0) =0, (8)

at the point xy=(xy,y,). NPs of vectorial field are specified
by the Poincaré index (topological charge) [31]. Here, we
consider the statistical properties of NPs in elastic random
waves. In this case, only structurally stable zeros of the
Poincaré indices ¢ = 1 occur [29]:

o du
dx dy

g =sgn(det My ) =sgn(\\\,y), M= C)
: w
dx dy

where A , are eigenvalues of matrix M at NP x,,. Depending
on these eigenvalues NPs split on the four types [31]: (i)
centers for imaginary \; , with the index ¢g=1, (ii) nodes for
real \j, with the same sign and ¢g=1, (iii) focuses for com-
plex ;=\, with ¢g=1, and (iv) saddles for real \;, with
opposite sign and g=-1. Eigenvalues of the matrix M are

%ﬁ + (%)Z—J =%ﬁ +\VD/4 where we have introduced
S=(u,+v,)>—4J, J=det(M). (10)

If g=1 and S >0, the NP can be classified as node, while for
g=1 and §<0 we have the NP as focus (center for the par-
ticular case u,+v,=0). At last for g=—1 the NP is a saddle.
In order to clearly show these types of NPs we consider
the simple superposition (6) consisting of only three plane
waves with the wave vectors directed by 27/3 angles rela-
tive to each other. Moreover, we exclude all random phases
in the exponents. For y=1 we have the vectorial “electric”
field u=V. Then at the NP the “scalar potential” ¢ achieves
maximum or minimum for g=1 or has a saddle point for ¢
=-2. Respectively, the NP of u is a node or a saddle as
demonstrated in Fig. 1. For y=1 we have the vectorial “mag-
netic” field u=V X A the NPs of which are centers of dis-
placements and saddles as demonstrated in Fig. 2.

II. MEAN DENSITY OF NPs

A fragment of the vectorial in-plane random displacement
(u,v), Eq. (6), shown in Fig. 3 illustrates the nodal lines of u
and v and NPs at the intersection of them. Each NP can be
specified by the winding number g= = 1 which is exactly the
Poincaré index (9) [32,33] marked in Fig. 3 by circles and
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FIG. 1. (Color online) Intensity of in-plane displacement u?
+v? and vectorial field u=V shown by arrows for the superposi-
tion of three plane longitudinal waves with the wave vectors di-
rected by 27/3 angles relative each other and zero random phases
0,,=0. k;=20 and 0=0.5. NPs are shown by circles (nodes) and by
stars (saddles).

crosses, respectively. There is a close relation between nodal
points with opposite g as discussed in [34,35]. As one can
see from Fig. 3 at each nodal line the nearest NPs have the
opposite Poincaré index.

It is known that the density of NPs for a two-dimensional
complex random Gaussian field (RGF) [¢(x,y)=u(x,y)
+iv(x,y)] equals k%/4 [25,26]. Consider the density of NPs
for the case of an elastic vectorial field also given by the
RGF (6). We have for the NP density

p = {8u) 8v)|J]), (1

where the Jacobian M is given by formula (9). We eliminate
the modulus sign in (11) using the identity

® iwx

1
sgn(x) = . dw, (12)

—o0

to rewrite (11) as

FIG. 2. (Color online) Intensity of in-plane displacement u?
+v? and vectorial field u=V X A for the superposition of three
plane transverse waves with the wave vectors directed by 27/3
angles relative each other and zero random phases 6,,=0. k=10 and
0=0.5. Saddles are shown by stars and centers by circles.
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FIG. 3. (Color online) Random superposition of 100 waves for
0=0.345. y is given by (7). The nodal lines of components u and v
are shown by solid and dashed lines. Their intersections result in
focuses with the Poincaré index +1 (circles) and saddles with the
Poincaré index —1 (crosses).

~ lfoc lé’(é(u)é(v)e“"’)dw (13)

m)_ o @ Jw

An average (---) implies here integration over two RGFs u
and v and their four derivatives u,, u,, v,, and v,. Introducing
the total sixfold Gaussian random vector W
:(u,ux,uy,v ,vx,vy) we write the average as integration over
¥ [20]:

1
(Ou) Sv)expliw])) = ————— /—f (u) 5(v)
(2’77)3 detEl

Xexp(iod — WS TWT2)dW,
(14)

where T marks the transposed vector ¥ and the 6 X 6 corre-

lation matrix is EAI =(WTW¥), Straightforward easy integration
over random phases of random Gaussian wave (6) gives the
correlation matrix as

7200 0 00
0 £0 0 01

. 0 0g 0 10

= , 15

2 0 00 1200 (13)
0 07 0 go
0 10 0 0 f

where (see the Appendix)

3 1
f=gvki+ (1=K,

1

3
S+ =9k

g:
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FIG. 4. (Color online) The NP density versus o. w=1.

1 1
= gk = 5= Mk (16)

Note that for the in-plane random waves in elastic media the
mean values (u,v,) and (u,v,) are not zero.
The matrix (15) decomposes into

I 1 l l
rezell )eli )
2 2 I f [ g
Then the inverse matrix K~ can be easily found. As a result,
integration over the couples (u,,v,) and (u,,v,) in (14) gives
the expression
1 1 1
2w [(l+Q)iw—1]\[1 + (f+ Diw][1+ (g = Diw]
Here in accordance with (16) we used that g+/=f—1. Substi-

tuting (17) into (13) we obtain finally for the mean density of
NPs

(17)

oo [k + (1= Yk
2y +3(1 = Y3y + (1 — Yk

(18)

As seen from (6), this expression cannot be limited to the
known mean density of NPs for the Berry function k>/4
even for y=0 or y=1. The parameter y that superposes the
longitudinal and transverse random waves is arbitrary. In
elastic billiards it depends only on the material parameter,
the Poisson ratio o as given by (5) and (7). Substituting this
dependence into (18) we can find how the mean density de-
pends on o as shown in Fig. 4.
Similarly, we can introduce the mean density of saddles

po= 5 (W1 +sgn(- . (19)

where the last factor excludes in (19) all cases of positive
Poincaré indices. It is obvious for the random waves that
ps=5-

Moreover, one can consider the mean density of nodes
and focus on which can be distinguished by a sign of (10) at
corresponding NPs. Respectively, we write for the mean den-

sity of nodes and focuses
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FIG. 5. (Color online) Dependence of the density of saddles (red
dash-dotted line), focuses (green solid line), and nodes (blue dotted
line) on y for random in-plane waves given by (6). The material
parameter 0=0.345 (aluminum). w=1.

pos= GBI +sen()[1 = sgns)). (20

An evaluation of these integrals is rather cumbersome. More
easy way is to perform the average numerically. The result is
shown in Fig. 5.

III. CORRELATION FUNCTION OF NPs

The nodal density is defined by formula (11). The corre-
sponding correlation function is [23-26]

Gls) = %w(u) Sllou) o). (1)

where for brevity we omitted the coordinate arguments of
values except for the index s, which implies a distance be-
tween points x and x+s. Similarly, the charge correlation
function [23,25,26] gives the correlation of densities, but
weighted with their Poincaré indices g:

Gy(s) = éw(u) o) 3, v,)J). (22)

In the last formula there are no modules of Jacobians M and
M. Therefore, a calculation of the charge correlation func-
tion (22) presents a simpler problem compared to the density
correlation function G(s).

An average (---) implies integration over 12 RGFs ¢
=(u, e 1y, 0,0, 0y, U Uy, Uy, 0,03, 0) With 6 at point x and
6 at point x+s:

1 f 12
—————= | d""¢ &u)&v) &u,) v,)JJ
(27)5Vdet 3,

Xexp(— %(pi_IQDT), (23)

with the 12X 12 correlation matrix

Each matrix element depends on s, y, and ¢ and can be
evaluated by use of the random waves (6). The results are
collected in the Appendix.

In order to calculate the integrals in (23) we use the ap-
proach developed by Dennis [29]. First, the 12 X 12 matrix 3,
is decomposed as follows:

-1 ...
>, (26)

= ) ee(®

where the 8 X 8 block K “works” in the space of all deriva-

tives of RGFs. It was shown that det 3 =det K det = [29].
The next trick is to introduce differential operators to present
the charge correlation function as [29]

il
——| 4% exp(—
(2m)?p*Vdet K

Then we obtain

b

N | =

tﬁt)JVJVSES(t). (27)

1 1
G,(s)=——5——=W, (28)
! (zw)zpz Vdet K
where
W= [JyJy, exp(- tEt/2)]|,<. (29)

Dennis also presented a procedure to calculate the matrix

elements of the block =. Continuing this tedious procedure,
we finally obtain

Weal2s [F 4 HG 8ECD? 4E’D*(1 + 8B?)
= +IF + - +
(1 -4B%)(1 -—4A3?) (1-4B%?
4C?D?*(1 +8A%) 4B(GE?+2LED + HD?)
(1-44A2%?2 1-4B?
4A(IC? +2LCD + FD?)
- 2 (30)
1-4A
and
= (1 L\l
det 2=|--A%|| --B?|. (31)
4 4

A plot of G,(s) based on formulas (25), (28), (30), and (31)
is given in Fig. 6. Note that in Fig. 6 and what follows we
rescaled the distance s— 1 ps.
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FIG. 6. (Color online) The charge density correlation function
(22) for the random elastic in-plane waves (6). 0=0.345.

Using formula (12) we present the density correlation
function of NPs, Eq. (21), as follows:

1 dw,dw, P(8u) 3(v) 8uy) Sv,)e’ 7 +*2%s)
cw=2/ | ,

[OFY ) (90)] L?(l)z
(32)
with an average over RGFs of
1
()= —f d%e 8(u)8(v) 8u,) 8(v,)
(2m)°Vdet >,
Xexp(iwJ + iwyJ — @2_]¢T/2)
1 f 0O S—10T 8
= ——————| exp(iyQy" -y2]'y12)d%.
(2m)°Vdet >,
(33)

_ s 5 .5 .S S /TN :
Here y—[ux,uy,vx,vy,ux,uy,vx,vy] and 2, =(y’y) is a block
of >~!. Moreover,
)
-
.

)

=,
I
N | —

Wy
~w,
-,
)
(34)

The average (33) results in
3 1 1

2m2Vdet(S) Vdel - i (e, 00) + 37']

However, the calculation of these determinants is a very te-
dious procedure. Moreover, the next step of the calculation
of integrals over w; and w, can be performed only numeri-
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FIG. 7. (Color online) The density correlation function (21) for
in-plane random elastic waves (6) for =0.345 (solid line) com-
pared to that of the quantum chaotic wave function (dashed line)
given in [25,26].

cally. Therefore, at each point w;,w, we calculated the de-
terminant numerically with further summation over these fre-
quencies. The final result for the density correlation function
is shown in Fig. 7.

IV. DISTRIBUTION OF NEAREST DISTANCES
BETWEEN NPs

Knowledge of the density correlation function (21) allows
us to calculate the distribution function of the nearest dis-
tances between NPs. Following [26] we use here two ap-
proximations. According to Poisson’s law the probability that
no other points belong to a circle with dimensionless radius s
centered at any given one is given by

P(0,5) = exp[—(n(s))]. (35)
Taking into account that the mean number of NPs inside the
circle of radius s around a given one is

s

(n(s))= 27Tpf rG(r)dr, (36)

0

we can write the Poisson approximation of the distribution of
nearest distances between NPs in the form

f(s) =2mpsG(s)exp[ - (n(s))]. (37

The Bernoulli approximation is introduced in [26] to de-
scribe the competition among NPs to be the nearest neighbor
of the given one. It suggests that uncorrelated competing
NPs occur outside the circle with probability

<n(S)>)"
L)

P(0,s) = (1 - (38)

where n is the number of competing points; hence,

f(s) = 27psG(s)[1 = (n(s))/3], (39)

in case only three NPs are competing. Both distributions are
shown in Figs. 8 and 9 compared to numerical results. For
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FIG. 8. (Color online) Histogram of the distribution function of
the nearest distances between NPs for the random in-plane random
elastic waves (6). 0=0.345. The solid line shows the distribution
function calculated in the Poisson approximation (37). The dashed
line shows the special case of uniformly distributed and completely
random points [37] f(x) =5 "exp(-mx?/4).

numerical statistics we accumulated the nearest distances be-
tween more than 500 000 NPs for 120 realizations of the
random superpositions of 100 plane waves (6). The resulting
histogram is shown in Figs. 8 and 9. One can see that the
Bernoulli approximation fits the numerical histogram in the
vicinity of the mean distance between NPs better as com-
pared to the Poisson approximation. The reason is that the
Bernoulli approximation takes into account the competition
between neighboring points to be the nearest one of the
given NP. However, with an increase of the distance s the
Bernoulli approximation becomes invalid for any n because
(n(s)) exceeds n.

V. CONCLUSION

While the flexural eigenmodes of elastic billiards are fea-
tured by nodal lines, the in-plane eigenvibrations are charac-
terized by nodal points. By that, in-plane vibrations are simi-
lar to the complex quantum wave function which describes
open two-dimensional quantum billiards [25-27,35,36].
However, the nodal points of in-plane vibrations have more
rich variety. They might be nodes, centers, focuses, and
saddles (Figs. 1-3) as dependent on the superposition of lon-
gitudinal and transverse in-plane waves. In turn, that depen-
dence is defined by the material parameter o which affects
the mean density of NP as shown in Fig. 4, the density cor-
relation function, and correspondingly the distribution func-
tion of the nearest distances between NPs. However, surpris-
ingly, after rescaling of the distance s — sp that effect is not
profound as was expected. As shown in Fig. 7 the density
correlation functions for the in-plane random waves and for
the complex random waves [25,26] are close to each other.
Correspondingly the distribution functions of the nearest dis-
tances for both cases turned out to be very close to each other
too. For this reason the comparison is not shown here. The
reason lies in a geometric origin of NPs as a result of the
intersection of the nodal lines of u=0 and v=0 for the elastic
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si(s)

FIG. 9. (Color online) The same as in the previous figure except
that the distribution function of the nearest distances between NPs
is given in the Bernoulli approximation (39).

case or the nodal lines of the real and imaginary parts of the
complex wave function for the quantum case [34,35]. Al-
though local patterns of nodal lines are different, they be-
come equivalent after statistical averaging. As a result, the
density correlation function very weakly depends on the ma-
terial parameter o. Therefore we can conclude that the dis-
tribution function of the nearest distances between NPs can
serve as a signature of wave chaos not only for chaotic quan-
tum billiards [35], but also for elastic billiards.
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APPENDIX
The matrix elements of correlation matrix (24) are

A =vya(kss) + (1= v)b(k,s),

B = ya(kss) + (1 = y)b(k,s),

C=7%+(1—y)%,

D=y%—(l—y)%,

E=7%+(1—w%,
Fz_’%‘“-w%,
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d’b(k;s) ) d*b(k,s)
G=—y—5 +(1-v k,b(k,S)+Tj ,
d*b(k;s) d*a(k,s)
H=—y——— (1 -y—>5—,
Y ds® ( v ds?
- (kzb " )+d2b(k,s)> a )d%(k,s)
=Y\ K 0\k; ds? Y ds2
L= M + (1 )M (Al)
=Y ds? Y ds*>

where
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di 1
a(x)=-Jy(x) = E[JO(X) -],

D) = o) =500 = S )+ 1,00)

3kl (1- i
vk -k

f=F(0)=1(0) = g s

)

ki 3(1=y)k;
¢=G0) =)= 2L, U=V

s

K (1- 9k
Z:L(O):ﬂ_&.

s s (A2)
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