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The relationship is established between quantum phase transitions and complex geometric phases for open
quantum systems governed by a non-Hermitian effective Hamiltonian with accidental crossing of the eigen-
values. In particular, the geometric phase associated with the ground state of the one-dimensional dissipative
Ising model in a transverse magnetic field is evaluated, and it is demonstrated that the related quantum phase
transition is of the first order.
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A quantum phase transition �QPT� is characterized by
qualitative changes of the ground state of a many-body sys-
tem and occurs at zero temperature. The QPT, being a purely
quantum phenomenon driven by quantum fluctuations, is as-
sociated with energy level crossing and implies a loss of
analyticity in the energy spectrum at the critical points �1�. A
first-order QPT is determined by a discontinuity in the first
derivative of the ground state energy. A second-order QPT
means that the first derivative is continuous, while the sec-
ond derivative has either a finite discontinuity or a diver-
gence at the critical point. Since the QPT is accomplished by
changing some parameter in the Hamiltonian of the system,
but not the temperature, its description in the standard frame-
work of Landau-Ginzburg theory of phase transitions fails,
and identification of an order parameter is still an open prob-
lem �2�. In this connection, an issue of a great interest is the
recently established relationship between geometric phases
and quantum phase transitions �3–6�. This relation is ex-
pected since the geometric phase associated with the energy
level crossings has a peculiar behavior near the degeneracy
point. It is supposed that the geometric phase, being a mea-
sure of the curvature of the Hilbert space, is able to capture
drastic changes in the properties of the ground state in the
presence of a QPT �4–7�.

In this Rapid Communication, we analyze the relation be-
tween the geometric phase and the QPT in an open quantum
system governed by a non-Hermitian Hamiltonian. We found
that the QPT is closely connected with the geometric phase
and the latter may be considered as a universal order param-
eter for description of the QPT. By studying the dissipative
one-dimensional Ising model in a transverse magnetic field,
we demonstrated that a QPT that is of second order in the
absence of dissipation is of first order for an open system.

We consider an open quantum mechanical system which
together with its environment forms a closed system. The
description of such systems by an effective non-Hermitian
Hamiltonian is well known, beginning with the classical pa-

pers by Weisskopf and Wigner on metastable states �8,9�.1

For the Hermitian Hamiltonian coalescence of eigenval-
ues results in different eigenvectors, and the related degen-
eracy referred to as a “conical intersection” is known also as
a “diabolic point.” However, in a quantum mechanical sys-
tem governed by a non-Hermitian Hamiltonian merging not
only of eigenvalues of the Hamiltonian but also the associ-
ated eigenvectors can occur. The point of coalescing is called
an “exceptional point.” At the latter the eigenvectors merge,
forming a Jordan block �for a review and references, see,
e.g., �13,14��.

In the context of the Berry phase the diabolic point is
associated with a “fictitious magnetic monopole” as follows.
Assume that for adiabatic driving of a quantum system two
energy levels may cross. Then the energy surfaces form
sheets of a double cone, and its apex is called a diabolic
point �15�. Since for a generic Hermitian Hamiltonian the
codimension of the diabolic point is 3, it can be characterized
by three parameters R= �X ,Y ,Z�. The eigenstates �n ,R� give
rise to the Berry connection defined by An�R�
= i�n ,R��R�n ,R�, and the curvature Bn=�R�An associated
with An is the field strength of the magnetic monopole lo-
cated at the diabolic point �16,17�. The Berry phase �n
=�CAn ·dR is interpreted as a holonomy associated with the
parallel transport along a circuit C �18�. A similar treatment
of the non-Hermitian Hamiltonian yields the fictitious com-
plex monopole located at the exceptional point �19�.

The Berry phase was extended to non-Hermitian systems
for the first time by Garrison and Wright as follows �20�. Let

an adjoint pair 	���t�� , ��̃�t��
 be a solution of the time-
dependent Schrödinger equation and its adjoint equation
��=1�,

i �
�t ���t�� = H„��t�…���t�� , �1�

− i �
�t ��̃�t�� = ��̃�t��H„��t�… , �2�

where ��M, the parameter space being M. Let ��n���� and

��̃n���� be right and left eigenvectors of the Hamiltonian:

H�����n����=En��� ��n����, ��̃n����H���=En�����̃n����.
Now suppose that there exists a time period T for which
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��T�=��0�; then a complex geometric phase �n is given by
the integral �13,20�

�n = �
C

A�n� = i�
C

��̃n�����a��n����d�a

��̃n�����n����
, �3�

where the integration is performed over the contour C in the
parameter space, and a=1, . . . ,dim M, A�n� being the con-
nection one-form. Further, we assume that the instantaneous

eigenvectors form a biorthonormal basis ��̃m ��n�=�mn.2

To analyze the relation between the QPT and the geomet-
ric phase we begin with consideration of a two-level system
described by a generic non-Hermitian Hamiltonian
H=�01+R�t� ·�, where 	i are the Pauli matrices, R�t�
= �X ,Y ,Z� is slowly varying, and �0 ,X ,Y ,Z�C. Using the
spinless fermionic creation and annihilation operators, which
obey anticommutation relations 	C ,C
=0, 	C† ,C†
=0, and
	C ,C†
=1, one can rewrite the Hamiltonian as H= ��0−R�1
+2RC†C, where R= �X2+Y2+Z2�1/2. The ground state �u−� is
defined as the vacuum state determined by C�u−�=0.

The instantaneous eigenvectors are found to be

�u−� = �− e−i
 sin �
2

cos �
2

, �ũ−� = �− ei
 sin �
2 ,cos �

2� ,

�u+� = �e−i
 cos �
2

sin �
2

, �ũ+� = �ei
 cos �
2 ,sin �

2� , �4�

where � ,
 are the complex angles of the complex spherical
coordinates, and the complex energy spectrum is given by
E�=�0�R. Coupling of eigenvalues occurs when R=0, and
there are two cases. The first one is the diabolic point located
at the origin of coordinates. The second case yields the ex-
ceptional point �X0 ,Y0 ,Z0�. At the latter the eigenvectors co-
incide up to a phase factor, �u+�=ei �u−� and �ũ+�=e−i�ũ−�
�14,26�.

The geometric phase of the ground state is given by �
= �1 /2��Cq�1−cos ��d
, where integration is performed over
the contour C on the complex sphere Sc

2. Let us assume that
the contour C of integration is chosen as �=const. Then the
geometric phase of the ground state is given by �=��1
−Z /R� and can be written as �=��1+�E− /�Z�, where E− is
the ground state energy. As can be observed, lost of analyt-
icity occurs at the degeneracy point defined by R=0 and on
the Dirac string attached to the complex fictitious monopole
and crossing the complex sphere Sc

2 at the south pole.
Further simplification can be made by writing R=�− i�,

where we set �= �x ,y ,z�. Without loss of generality we may
choose the coordinate system such that �= �0,0 ,��. Then
computation of the geometric phase yields

� = ��1 −
z − i�

�r2 + �z − i��2 �5�

where r=�x2+y2.

In what follows we consider the behavior of the geometric
phase near the critical points, starting with the Hermitian
Hamiltonian. Inserting �=0 in Eq. �5�, we obtain
�=��1−z / �r2+z2�1/2�. This implies that the geometric phase
behaves as a step function near the diabolic point. Consider-
ing the general case, we obtain

Re � = �� if r � � �z = 0� ,

��1 �
�

��2 − r2 if r � �, z → � 0, � �6�

where the upper �lower� sign corresponds to z→ �0, As can
be observed in Fig. 1, if �=0 the geometric phase behaves as
a steplike function near the diabolic point. In addition,
Re �→ �� at the exceptional point r=�, and it behaves as a
steplike function as r→0. Similar consideration of the
imaginary part yields

Im � = �0 if r � � �z = 0� ,

��

�r2 − �2
, if r � � �z = 0�; � �7�

clearly it diverges at the exceptional point, Im �→�.
We return to the general non-Hermitian N-dimensional

problem and consider the non-Hermitian diagonalizable

Hamiltonian H���=�i=1Ei ��i���̃i�. The ground state is given
by ��g����= � i=1

N ��i����, and computation of the geometric
phase yields

� = i�
C

��̃g����
�

��a ��g����d�a = �
i=1

N

�i, �8�

where �i is the geometric phase associated with the eigen-
vector ��i����. Then, applying the Stokes theorem and the
Schrödinger equation H��m�=Em��m� together with its ad-
joint equation ��̃m�H=Em��̃m�, we obtain

� = − i�
i=1

N

�
m�i

N � �
�

��̃i��aH��m���̃m��bH��i�d�a ∧ d�b

�Em − Ei�2 .

It follows from this that the curvature F�i�=dA�i� diverges at
the degeneracy points, where the energy levels, say En and
En+1, are crossing, and reaches its maximum values at the
avoided level crossing points. Thus, the critical behavior of
the system is reflected in the geometry of the Hilbert space
through the geometric phase of the ground state.

2This can alter the definition �3� up to the topological contribution
�n, n�Z �21�. The geometric phases for systems governed by the
non-Hermitian Hamiltonian have been studied by various authors;
for details and references see, e.g., �13,17,20,22–25�.

FIG. 1. �Color online� Left panel ��=0�: Clear step function
behavior of the geometric phase at the diabolic point r=z=0. Right
panel: Re � near the exceptional point ��=0.5�.
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Since in the neighborhood of either a diabolic or an ex-
ceptional point only terms related to the invariant subspace
formed by the two-dimensional Jordan block make substan-
tial contributions, the N-dimensional problem becomes effec-
tively two dimensional �for details see �27,28��. This implies
that there exists a map 
 :M�Sc

2 such that, in the vicinity of
the degeneracy points, the quantum system can be described
by the effective two-dimensional Hamiltonian Heff=�01
+R ·�, where R= �En+1−En� /2. Then we have

� �
1

2
�

��

R · dS

R3 + �
i�n,n+1

�i�R� �9�

where ��=
����Sc
2. The behavior of the geometric phase

described by the first term is independent of the peculiarities
of a quantum mechanical system. Therefore, one can con-
sider the complex Bloch sphere as a universal parameter
space for description of the QPT in the vicinity of the critical
point.

Following �4�, we define the overall geometric phase of
the ground state as �g= �1 /N��i=1

N �i. In the thermodynamic
limit �g=���x�d��x�, where d��x� is a suitable measure. As
has been shown by Zhu �5� on the example of an XY spin
chain, the overall geometric phase associated with the
ground state exhibits universality, or scaling behavior in the
vicinity of the critical point. In addition, the geometric phase
allows one to detect the critical point in the parameter space
of the Hamiltonian �3–7�. These works indicate that the over-
all geometric phase �g can be considered as a universal order
parameter for description of the QPT.

As an illustrative example we consider the one-
dimensional Ising model in a transverse magnetic field with
dissipation governed by the non-Hermitian Hamiltonian

H = − J�
n=1

N �h	n
x + 	n

z	n+1
z − i

�

2
	n

+	n
− �10�

with the periodic boundary condition �N+1=�1. The external
magnetic field is described by the parameter h and spontane-
ous decay is described by �=��	n

− with the source of deco-
herence being 	n

−= �	n
z − i	n

y� /2.
To study the geometric phase in this system we consider

the more general Hamiltonian H�h ,� ,
�=g
Hg

† , where g


=�n=1
N ei�
/4�	n

x
and 0�
�2�. After applying the standard

Jordan-Wigner transformation and following the procedure
outlined in �4,29�, we find that the system can be described
in terms of noninteracting quasiparticles with the reduced
Hamiltonian

H+ = − J�
n=1

N

�cn
†cn+1 + ei
cn+1cn + g + i� − 2gcn

†cn + cn+1
† cn

+ e−i
cn
†cn+1

† � , �11�

where g=h− i�, and cn are fermionic operators satisfying the
anticommutation relations 	cm ,cn

†
=�mn and 	cm ,cn

= 	cm

† ,cn
†
=0. Applying the Fourier transformations cn

=e−i�/4�kcke
ikna /N1/2 with the antiperiodic boundary condi-

tion cN+1=−c1, we obtain H+=J�k	2�g−cos�ka��ck
†ck

+sin�ka��e−i
ck
†c−k

† +ei
c−kck�−g− i�� /2�
, where k
= �� /Na , . . . , � �N−1�� /Na is a half-integer quasimomen-
tum, the lattice spacing being a.

The Hamiltonian H+ can be diagonalized by using the
Bogoliubov transformation ck= ũkbk+v−kb−k

† , ck
†=ukbk

†

+ ṽ−kb−k. The Bogoliubov modes �uk ,vk� and �ũk , ṽk� satisfy
the Schrödinger equation and its adjoint equation, respec-
tively, with the Hamiltonian H�k�=−iJ�1+R�k� ·�, and
R�k�=2J�sin�ka�cos 
 , sin�ka�sin 
 ,g−cos�ka��. There are
two eigenstates for each k with the complex energies ���k�
=�0���k�, where we set �0=−iJ� and ��k�=2J�g2

−2g cos�ka�+1�1/2. The positive energy eigenstate �u+�k��
= �

uk

vk
�, �ũ+�k��= �ũk , ṽk�, normalized so that ũkuk+ ṽkvk=1, de-

fines the quasiparticle operators bk= ũkck+ ṽkc−k
† and bk

†

=ukck
†+vkc−k as follows: bk=ei
 cos��k /2�ck+sin��k /2�c−k

† ,
bk

†=e−i
 cos��k /2�ck
†+sin��k /2�c−k, where

cos �k =
g − cos�ka�

�g2 − 2g cos�ka� + 1
. �12�

Using these results, we obtain the diagonalized Hamil-
tonian as a sum of quasiparticles with half-integer quasimo-
menta, H+=�k��0+��k��bk

†bk− 1
2 ��. Its ground state is given

as a product of qubitlike states

��g� = �
k
�cos

�k

2 �0�k�0�−k − e−i
 sin
�k

2 �1�k�1�−k� ,

��̃g� = �
k
�cos

�k

2 �0�k�0�−k − ei
 sin
�k

2 �1�k�1�−k� ,

where �0�k is the vacuum state of the mode bk, and �1�k is the
first excited state, �1�k=bk

†�0�k. Each single state lies in the
two-dimensional Hilbert space spanned by �0�k�0�−k and
�1�k�1�−k. For a given value of k, the state in each of these
two-dimensional Hilbert spaces can be presented as a point
on the complex two-dimensional sphere Sc

2 with coordinates
��k ,
�.

For �g��1 the ground state is a paramagnet with all spins
oriented along the x axis, and from Eq. �12� we obtain
cos �k→1 while �g�→�. Thus, the north pole of the complex
Bloch sphere corresponds to a paramagnetic ground state. On
the other hand, when �g��1, there are two degenerate ferro-
magnetic ground states with all spins polarized up or down
along the z axis. The real part of the complex energy reaches
its minimum at the point defined by cos �k=−1, and, hence,
the south pole of the complex sphere is related to a pure
ferromagnetic ground state with broken symmetry when all
spins have orientation up or down. However, in the thermo-
dynamic limit, the system passing through the critical point
ends in a superposition of the up and down states with finite
domains of spins separated by kinks �21�.

The geometric phase of the ground state is found to be

� = i�
0

2�

��̃g�
�

�

��g�d
 = �

k�0
��1 − cos �k� . �13�

As can be shown, in the thermodynamic limit the energy gap
���h ,k� vanishes and the geometric phase diverges at the
exceptional point hc= �1−�2�1/2, kc=arcsin � /a. However,
the overall geometric phase �g= �� /N��k�0�1−cos �k�, writ-
ten in the thermodynamic limit as

�g = �
0

� �1 −
g − cos x

�g2 − 2g cos x + 1
dx , �14�

has finite jump discontinuity at the exceptional point �Fig. 2�.
The result of integration can be written in terms of the com-
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plete elliptic integrals of the first and second kinds

�g = � +
1 − g

g
K� 2�g

1 + g
 −

1 + g

g
E� 2�g

1 + g
 . �15�

We note that �g can be written as �g=��1+�Eg /�h�,
where Eg=�0−�0

���x�dx=−iJ�−2�g+1�E�2�g / �g+1�� is the
ground state energy per spin. Besides, one can show that
�g=��1+ �	n

z��. As known, the total magnetization per spin
�	n

z� can be served as the order parameter for Ising model in
a transverse magnetic field �1,3�. This supports the statement
�3–6� that the geometric phase can be treated as the order
parameter for the QPT.

In Figs. 2 and 3 the real and imaginary parts of the overall
geometric phase and its derivative as functions of external
magnetic field h and decay parameter � are depicted. As can
be observed �g is a continuous function of h, if �=0, and it
behaves as a steplike function, if ��0. In the limit cases
�g��1 and �g��1 we have Re �g→� and Re �g→0, respec-
tively.

According to the Ehrenfest classification, the QPT occur-
ring at the exceptional point, which actually is the circle hc

2

+�c
2=1, is of the first order. In the absence of dissipation

��=0�, we have the second-order QPT. Indeed, as can be
observed in Figs. 2 and 3, the first derivative of the ground

energy �or, equivalently, the geometric phase� is a continuous
function of h and its second derivative diverges at the critical
point hc=1��=0�.

In summary, we established a connection between the
geometric phase and the QPT in a generic dissipative system
and found the relation between the geometric phase and
ground state energy. We showed that the critical point where
the QPT occurs can be identified as the degeneracy point in
the parameter space. Studying the critical behavior of a dis-
sipative one-dimensional Ising chain in a transverse mag-
netic field, we found that the related QPT is of the first order.
In the absence of dissipation it becomes a second-order QPT.
Our results support the claim that the relation between QPTs
and geometric phases is a very general result, and the geo-
metric phase may be considered as a good candidate for a
universal order parameter for quantum phase transitions
�4,5�.
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FIG. 2. �Color online� Real part of the overall geometric phase
�g �left� and imaginary part of the overall geometric phase �g

�right� versus � and h.

FIG. 3. �Color online� Real part of derivative of the overall
geometric phase ��g /�h �left� and its imaginary part �right� versus �
and h.
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