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This Letter studies the dynamics of a quantum particle in 2D lattices with on-site disorder in the

presence of a static field. It is shown that the particle is localized along the field direction, while in the

orthogonal direction to the field it shows diffusive dynamics for algebraically large times. For weak

disorder an analytical expression for the diffusion coefficient is obtained by mapping the problem to a

band random matrix. This expression is confirmed by numerical simulations of the particle’s dynamics,

which also indicate the existence of a universal equation for the diffusion coefficient, valid for an arbitrary

disorder strength.
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1.—Nowadays one observes a resurgence of interest in
the phenomenon of Anderson localization in disordered
media, boosted by recent experiments with ultracold atoms
in optical traps (see Refs. [1,2] and references therein).
Because of the high degree of control over the parameters
and a possibility for direct measurement of atomic density
profiles, these systems have provided a new playground for
studying Anderson localization and related phenomena. In
the present Letter I discuss the localization properties of a
quantum particle in disordered lattices in the presence of a
static field. Besides the problem’s intrinsic interest, its
study is also relevant to that of conductivity with cold
atoms [3–5]. Indeed, in solid-state physics the theory of
Anderson localization is used to predict the conductivity of
a ‘‘dirty’’ crystal in the limit of weak electric fields, where
the Stark localization length, defined later in the text, is
larger than the system size. While this is always the case
for electrons in a crystal, the Stark localization length for
cold atoms subject to typical laboratory fields (for ex-
ample, the gravitational field) is smaller than the system
size and, in principle, can be as small as one lattice site.
Thus, when addressing atomic conductivity in disordered
lattices, a static field should be included into the analysis
from the very beginning.

For 1D lattices the question of the external fields effect
on Anderson localization was addressed earlier in Ref. [6],
where a special emphasis was given to the ac field. In this
Letter I report findings on the interplay between Anderson
and Stark localization in 2D disordered lattices, where the
effect of the dc field leads to new phenomena. In particular,
I show that the static field induces diffusive dynamics of a
quantum particle (an atom) in the direction orthogonal to
the field vector.

2.—I begin with the one-dimensional case of Stark and
Anderson localization. In the tight-binding approximation
the single-particle Hamiltonian of an atom in a 1D optical
lattice reads

Ĥ ¼ � J

2

X
n

ðjnþ 1ihnj þ H:c:Þ þ g
X
n

�njnihnj

þ Fd
X
n

njnihnj; (1)

where J is the hopping matrix element, F the magnitude of
the static field, d the lattice period, and g�n with j�nj �
1=2 random on-site energies. It is well known that eigen-
functions of the Hamiltonian (1) are localized for g � 0
and F ¼ 0 (Anderson localization), as well as for F � 0
and g ¼ 0 (Stark localization).
First I discuss Stark localization. For g ¼ 0 the

Hamiltonian (1) can be easily diagonalized, resulting in
the equidistant spectrum, Emþ1 � Em ¼ Fd, and the wave
functions, jc mi ¼

P
nJ n�mðJ=FdÞjni [here J mðzÞ are

Bessel functions of the first kind], which are localized
within the Stark localization length,

lSt �
�
2J=Fd; Fd & J
1; Fd * J

: (2)

The equidistant spectrum of the system has a direct con-
sequence on its dynamics. Namely, if one considers a
localized wave packet, its time evolution will be the cele-
brated Bloch oscillations with the period TB ¼ 2�@=Fd
and amplitude given by the Stark localization length (2). In
this Letter I shall restrict myself to moderate static fields,
where lSt varies from ten to hundred lattice sites [7].
Next I address Anderson localization. In the case of

weak disorder and finite lattice size one typically meets
localized states, associated with the bottom and top of the
Bloch band (below and above the so-called mobility
edges), and extended states, associated with central part
of the band. With an increase in the lattice size the ex-
tended states also become localized, however, with essen-
tially larger localization lengths. In what follows I concern
myself mainly with the case of weak disorder, where the
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mean Anderson localization length lAn is larger than the
Stark localization length lSt.

Finally I analyze the situation where g � 0 and F � 0.
Since I am interested in the case lAn > lSt, it is reasonable
to consider the second term in the Hamiltonian (1) as a
perturbation. It is easy to show numerically that this per-
turbation destroys Bloch oscillations and after a character-
istic time, �@=g, the initial wave packet becomes more or
less uniformly distributed over the finite region 0 & n &
lSt. (Initially the wave packet is assumed to be centered at
n ¼ 0.) This result can be understood analytically by con-
sidering the Hamiltonian (1) in the basis of the Wannier-
Stark states jc ni. One has

bHeff ¼ g
X
m�0

X
n

IðmÞ
n ðjc nþmihc nj þ H:c:Þ

þ Fd
X
n

njc nihc nj; (3)

where IðmÞ
n ¼ P

l�lJ l�ðnþmÞðJ=FdÞJ l�nðJ=FdÞ are the

new hopping matrix elements. Since these elements are
essentially given by the weighted sum of random numbers
�n, they are distributed according to the normal law with

zero average and a variance �1=
ffiffiffiffiffi
lSt

p � ffiffiffiffi
F

p
. Note that due

to the exponentially small overlap between mutually re-
mote Wannier-Stark states, the sum over m in (3) can be
restricted to m & lSt. Thus the Hamiltonian (3) is a band
random matrix from the mathematical point of view [8].
Comparing the characteristic value of the off-diagonal

elements, given by g
ffiffiffiffiffiffiffiffiffiffiffiffi
Fd=J

p
, with the characteristic dis-

tance between unperturbed levels, given by Fd, one con-
cludes that the considered case of weak disorder (g=J < 1)
corresponds to a perturbative regime, where a typical
eigenfunction of the Hamiltonian (3) is a random superpo-
sition of a few neighboring Wannier-Stark states. Since
lSt � 1, this only slightly corrects the final localization
length. Therefore, the maximal distance a wave packet
may travel is still defined by lSt.

3.—I now turn to 2D lattices. A straightforward general-
ization of the 1D model (1) yields,

bH ¼ � J

2

X
n;�

ðjnihn0j þ H:c:Þ þ g
X
n

�njnihnj

þ d
X
n

ðFnÞjnihnj; (4)

where n amounts to the pair of indexes, n ¼ ðn;mÞ, and n0
is either n0 ¼ ðn� 1; mÞ, hopping along the x axis, or n0 ¼
ðn;m� 1Þ, hopping along the y axis. I shall discuss local-
ization phenomena in 2D lattices in the same order as for
1D lattices.

Stark localization.—Without disorder the dynamics of a
quantum particle in a 2D lattice induced by a static field is a
superposition of Bloch oscillations along x and y direc-
tions, with the frequencies and amplitudes defined by
projections of the static field vector on the lattice crystallo-
graphic axes. Thus the particle is bounded to a finite region

in the configuration space, restricted by two Stark local-
ization lengths lx � 2J=dFx and ly � 2J=dFy [9]. For

future purposes it is convenient to introduce the total

Stark localization length lSt ¼ ðl2x þ l2yÞ1=2.
Anderson localization.—Unlike the one-dimensional

case, eigenfunctions of a quantum particle in a weakly
disordered 2D lattice are known to be only marginally
localized, which leads to an almost linear growth of
the mean squared displacement, MðtÞ ¼ P

n;mðn2 þ
m2ÞPðn;m; tÞ, for very long time (see lower panel in
Fig. 1). To some extent this mimics diffusion of a classical
particle in disordered media. However, an analysis of the
wave-packet profile, Pðn;m; tÞ ¼ jcnðtÞj2, indicates that its
spread is not diffusive. The upper panels in Fig. 1 show the
integrated distributions PxðnÞ ¼

P
mPðn;mÞ and PyðnÞ ¼P

mPðm; nÞ at the end of numerical simulation of the
system dynamics for g=J ¼ 0:8. A conelike profile, which
is a characteristic signature of Anderson localization, is
clearly seen in the figure. Let me also mention that for F ¼
0 the wave-packet spread is statistically isotropic, that is to
say, that after averaging over different samples the inte-
grated distributions for any direction are the same.
General case.—The results of numerical simulations for

nonzero field and disorder are shown in Fig. 2. It is seen in
Fig. 2 that, similar to 1D lattices, the wave-packet spread
along the field direction is restricted by the Stark localiza-
tion length lSt. However, in the orthogonal direction the
packet spreads diffusively, as is confirmed by its Gaussian
profile together with linear growth of MðtÞ. The rest of the
Letter is devoted to an explanation of this effect.
It is useful to rewrite the Hamiltonian (4) in the ba-

sis of two-dimensional Wannier-Stark states jc ni ¼
jc ðxÞ

n ijc ðyÞ
m i. One has
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FIG. 1 (color online). Wave-packet spread in a 2D disordered
lattice with g ¼ 0:8J. Bottom: Mean squared displacement of
the initially Gaussian packet along x (solid line) and y (dash-
dotted line) directions. Time is measured in units of the tunnel-
ing period TJ ¼ 2�@=J. Upper row: Integrated distributions
PxðnÞ ¼

P
mPðn;mÞ and PyðnÞ ¼

P
mPðm; nÞ at the end of nu-

merical simulation, where the dashed lines indicate initial dis-
tributions. Averaged over 10 different samples.
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Ĥ ¼ d
X
n

ðFnÞjc nihc nj þ g
X
n;n0

Vn;n0 jc nihc n0 j; (5)

where Vn;n0 ¼ P
m�mhc njmihmjc n0 i. Let us assume for

simplicity Fx ¼ Fy. Then we notice that there is no energy

mismatch between Wannier-Stark states in the direction
which is orthogonal to the field vector. Thus an arbitrary
weak random potential will couple these Wannier-Stark
states, possibly forming an extended state. In the limit of
small g an effective 1D Hamiltonian describing this cou-
pling has the structure of the Hamiltonian (3), where index
n now labels the 2DWannier-Stark states with indexes n ¼
ðn0 þ n; n0 � nÞ and where one should set F ¼ 0 by con-
struction. Repeating the arguments of the previous para-

graph one has the hopping matrix elements IðmÞ
n to be

distributed according to the normal law,

GðIðmÞÞ � GmðIÞ � expð�I2=2�2
mÞ; m & lSt;

with the variance �m � ffiffiffiffiffiffiffiffiffiffiffi
FxFy

p � F.

One can make certain predictions about dynamics of the
effective system (3), with the vanishing last term, by
appealing to the theory of band random matrices (BRM).
The properties of the BRM have attracted much attention
during the past two decades with respect to the problems
of electron propagation along a thin wire and dynami-
cal chaos (see Refs. [10–12] and references therein).
With relevance to the problem the results of BRM theory
are summarized below. (i) The density of states �ðEÞ
for an infinite BRM obeys the semicircle law �ðEÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðE=RÞ2p

, where R ¼ ffiffiffiffiffiffiffiffiffiffiffi
8bv2

p
with b being the band-

width and v2 the standard deviation of the distribution of
off-diagonal elements, v2 ¼ hH2

n;n0 i. Note that the parame-

ter v2 affects neither the statistical properties of the spectra
nor the structure of the eigenstates, since it can be scaled
out. (ii) In infinite BRM, all eigenstates are (asymptoti-
cally) exponentially localized with the localization length
l1 ¼ �2ðEÞb2. (iii) An initially localized wave packet
shows a diffusive spread with the diffusion coefficientD�
l1R, for algebraically large time tD � l1=R. (iv) For t �
tD diffusion saturates at Mðt ¼ 1Þ � b4. Adopting the
above results to the current problem (b � lSt, v2 �
h�2

mi), one has

MðtÞ � Dt; t < tD � @

g

�
2J

Fd

�
5=2

; (6)

where

D� g

@

�
2J

Fd

�
3=2

: (7)

It is worth noting with respect to Eq. (6), that the presented
results in Fig. 2 correspond to t 	 tD. To see a sign of
localization, which manifests itself as a deviation from the
linear dependence of MðtÞ, one has to simulate the system
dynamics at least until t ¼ 40TB ¼ 400TJ.
To check the predicted functional dependence (7) for the

diffusion coefficient across the field, I simulate the wave-
packet dynamics in 2D disordered lattices for different g,
F, and field direction. As an example, Fig. 3 showsMðtÞ at
t ¼ 100TJ for g=J ¼ 0:4, Fx=Fy ¼ 1, and Fd=J ¼ 0:2

(dashed line), 0.1 (solid line), and 0.05 (dash-dotted line).
The figure inset shows the same curves yet scaled by

factors 23=2, 1, and 2�3=2, respectively. A nice coincidence
of the scaled curves at small g confirms Eq. (7) for the
diffusion coefficient [13]. It is also seen in the figure that a
linear dependence of D on g holds only for g smaller than
some critical gcr which, in turn, is a function of F. The
existence of gcr is due to the ‘‘interline coupling,’’ which
the BRM model is unable to capture. Indeed, to reduce the
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FIG. 3 (color online). Mean squared displacement at tmax ¼
100TJ for g=J ¼ 0:4, Fx=Fy ¼ 1, and Fd=J ¼ 0:2 (dashed

line), 0.1 (solid line), and 0.05 (dash-dotted line). The inset
shows the same curves yet scaled by factors 23=2, 1, and 2�3=2,
respectively.
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FIG. 2 (color online). Wave-packet spread in a 2D disordered
lattice with g ¼ 0:4J in the presence of a static field Fd ¼ 0:1J,

Fx=Fy ¼
ffiffiffiffiffiffiffiffi
2=3

p
. Bottom: Mean squared displacement of the

initially Gaussian packet along (dash-dotted line) and across
(solid line) the field. Time is measured in units of the Bloch
period TB ¼ 2�@=Fd. Upper row: Integrated distributions at the
end of numerical simulation. Averaged over 10 different
samples.
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original 2D problem to an effective 1D problem I have
neglected the coupling between Wannier-Stark states be-
longing to different lines across the field [i.e., different n0
in the substitution n ¼ ðn0 þ n; n0 � nÞ, Fx=Fy ¼ 1]. This

approximation is justified for a small g, and this is the
parameter region that Eq. (7) refers to. As g is increased, I
eventually violate the above condition and, hence, should
observe a deviation from (7). One might naively expect the
interline coupling to enhance diffusion. However, this
thought contradicts with the ‘‘common sense’’ conclusion
that there can be no diffusion in the limit g ! 1. Indeed, I
found that the diffusion coefficient always goes to zero for
a large g, faster than D� 1=g2. It is an open problem to
find an analytical expression for D ¼ Dðg; FÞ valid in the
whole parameter space.

4.—In summary, I studied dynamics of a quantum par-
ticle in 2D disordered lattices, subject to a static field. The
static field is shown to localize the particle along the field
within the Stark localization length. At the same time it
induces the diffusivelike dynamics of the particle across
the field. Numerical simulations of the system dynamics
indicate that there is a universal dependence for the diffu-
sion coefficient on the field magnitude and disorder
strength. Moreover, for weak disorder this dependence
was found analytically by mapping the problem to a
band random matrix. This mapping also shows that the
discussed diffusion is a temporal phenomenon which,
however, persists for algebraically large times [14].

I left aside a number of important questions, like the
dependence of the diffusion coefficient on the field direc-
tion and the effect of residual atomic interactions [15].
These results will be published elsewhere. Nevertheless,
concluding the discussion I would like to stop briefly on the
effect of a noise, which is inevitably present in any labo-
ratory experiment and, as a very rough approximation,
substitutes for atomic interactions. It is well known that
noise destroys all localization phenomena and, hence, the
particle will diffuse both across and along the field. I have
found, however, that the resulting diffusion coefficients
across and along the field may differ by an order of
magnitude. This asymmetric diffusion would be a clear
indication of the discussed effect in a laboratory experi-
ment with cold atoms in optical lattices.
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