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Abstract — Formulas describing the influence of non-
homogeneous mechanical pressure on propagation of bulk 
acoustic waves in crystals have derived. Phase velocity 
dependence for small amplitude waves in Bi12SiO20 crystal 
subjected the action of non-homogeneous pressure has been 
investigated. Under those conditions the behavior of the wave 
front has researched. Numerical calculation of phase velocity of 
waves and their directions propagation changing have obtained.  

Keywords - bulk elastic wave,  non-homogeneous mechanical 
loading,  phase velocity,  wave surface. 

I. INTRODUCTION 

Propagation of bulk acoustic waves in crystals is defined by 
the well-known Green-Christoffel equation: 

( ) .0Uv lil
2

0il =δρ−Γ  (1) 

Propagation of acoustic waves in the finite deformed 
crystalline medium becomes complicated one. It is convenient 
to introduce three configurations of the crystal: 

1) Initial or natural state with density 0ρ  and coordinates XA. 

2) The intermediate state with density ρ  and coordinatesξα. 
3) Present state with density ρ~  and coordinates xi. 

Such representation allows to consider the displacement of 
particles as a result of superposition of static strain and the field 
of acoustic wave for which it is necessary to present following 
vectors: 

)(XU B  - displacement vector from the initial state to the 
intermediate one. This vector features the displacement caused 
by external finite influence and has stationary values; 

 t),(ξU β

~ - displacement vector from the intermediate to the 

present state. This vector features the small dynamic variations 
of particle displacement caused by acoustic wave propagating 
in the crystal. 

Vectors of displacement allow to connect mentioned states 
of crystalline medium by means of relations: 

( ),UXδξ AAβAβ +=  (2) 

( ).~
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The solution of problem of bulk acoustic wave propagation 
under the condition of finite strain has in mind the application 
of expanded elasticity theory. So Green-Christoffel tensor from 
(1) should be redefine as follows 
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where LALALA η2δC +=  is Green tensor of finite deformation; 

LAη  is the tensor of static strain, 
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FBLE ηCCC +=  are effective elastic constants; 

II
FBLEC  and III

FBLEPQC  are second and third order elastic 

constants; LMFELMFE ηCτ =  is the tensor of thermodynamic 
stress; 

FN  are components of the unit vector of bulk acoustic 
wave propagation. 

The form of Green–Christoffel tensor (4) takes into account 
both the homogeneous and non-homogeneous possibilities of 
the crystal deformation. But in the homogeneous case 
components of the tensor (4) have stationary values 
independent from the time and coordinates of crystal space. If 
non-homogeneous case is considered these quantities become 
dependent from coordinate of the point of observation. 

II. BASIC EQUATIONS 

 A. Linearization of a Green-Christoffel tensor 

A lot of applied tasks allows the presentation of a Green-
Christoffel tensor (4) in the linearized approximation. It can be 
received if the strain tensor has a form 
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As a  result we shall receive the following relation 
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For instance we will consider the influence of the non-
homogeneous pressure on wave propagation in Bi12SiO20 
crystal belonging to the cubic point symmetry 23.  
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 B. Model of non-homogeneous deformation 

Let's consider a crystal sample in the shape of a rod which 
edges coincide with axes of crystal orthogonal coordinate 
system. External force is attached to sides of rod which are 
parallel to (001) plane. The force value is changed along the X1 
axis under the linear law. As a result uniaxial non-
homogeneous mechanical squeezing appears (Fig. 1). Other rod 
sides except for specified ones are free from loading. 

 

Figure 1.  Coordinate system of crystal rod and profile of squeezing. 

Using m unit vector parallel to X3 axes, the force referred to 
unit area can be calculated as 

,pmp −= .1kXp =  (7) 

To such type of loading there is the tensor of strain in the 
form 

,DCCD mpmτ −=  (8) 

satisfying to boundary conditions: 

0τ33 = ( ),0X1 =  Pa 105τ
7

33 ⋅−= ( ),lX1 =  (9) 

where l is the rod size along X1 axes  and )1 ,0 ,0(↔m . Using 

(9) we find that coefficient /l105k 7⋅= . 

 C. Wave surface of an equal phase 

For the analysis of behavior of the acoustic wave 
propagation in non-homogeneously deformed crystal it is 
enough to consider the equation of wave surface of equal phase 
in the intermediate state  
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In general case the phase velocity in (10) depends on all 
spatial coordinates. 

Writing down components of unit vector 
α

n  in coordinates 
of the initial state we have obtained the calculated relation 
referred to the same coordinates 
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where SαSα, X/ξξ ∂∂=  are gradients of deformations and 

BAAB NNCλ =N   is the stretching  of material line. 

For considered example we shall take gradients of 
deformations as 

0,ξ Sα, =  Sα ≠  ( );3 2, 1,S α, =  (12) 
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where S11 and S12 are components of elastic compliances 
tensor. 

III. NUMERICAL CALCULATIONS 

 A. Difference scheme 

Using the local homogeneity of a Green-Christoffel tensor, 
the linear nonuniform problem can be reduced to a set of 
consecutive homogeneous ones. 

For this purpose the crystal rod was dissected by planes 
which are parallel to X2X3 plane and they equally spaced by 
ΔX1 distance. So each of such planes is satisfied the condition 
of homogeneous deformation. Then the approach well 
investigated earlier in the framework of the homogeneous 
theory can be used to define phase velocities of bulk waves. 

Let's set the direction of wave propagation along [100] axis 
in the sample of a crystal and the direction of loading 
application along [001] axis. Then all modes existing under the 
such external influence and possessing eigenvectors with  
[100], [010] and [001] polarization were examined. 

In calculation the rod with length l = 0.1 m has been 
dissected along X1 axis by (100) planes with the step of 0.01 m. 
For each plane the Green-Christoffel tensor (6) with a stress 
tensor (8) has used. Eigen values of tensor (6) and wave 
velocities have found. Results for some propagation directions 
of acoustic wave in crystal sample have been presented below. 

 B. Phase velocites 

In [100] direction of crystal under mentioned conditions 
three wave modes propagated. For each mode there is its own 
dependence of velocity distribution versus X1 coordinate.  

Fig. 2 is presented ( )1Xf
v

Δv =  dependences. Apparently 

from Fig. 2 the phase velocity of a longitudinal wave is 
decreasing linearly from the beginning to the end of rod and it 
is increasing for SF- and SS-waves. It means that the slowed 
and accelerated motion of waves in different parts of non-
homogeneous deformed crystal is possible.  
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Figure 2.  Distribution of ( )1Xf
v

Δv =  for ]100[||N . L, SF and SS are 

designations of longitudinal, shear fast and shear slow waves respectively.     
N is unit vector of wave propagation and P is the vector of pressure force. 

Let’s introduce the quantity 
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describing the angle slope of curves shown on Fig. 2. Using 
(14) it can define the phase velocity as a function of coordinate 
as: 

].Xβ[1 (0))(X 1vi1i i
vv +=  (15) 

For various propagation directions and polarization vectors 

of acoustic wave coefficients 
ivβ  and initial velocities (0)iv  

are given in the table I.  

TABLE I.  VELOCITIES (0)iv  AND COEFFICIENTS 
ivβ . 

Direction 
Wave (0)iv , 

m/s 
ivβ ,  

10-4 m-1 
N U P 

100 100 001 L 3761.45 -5.05 
100 010 001 SS 1635.44 6.11 
100 001 001 SF 1635.44 118.62 

010 100 001 SS 1635.44 6.11 
010 010 001 L 3761.45 1.06 
010 001 001 SF 1635.44 41.58 

001 100 001 SF 1635.44 66.65 
001 010 001 SS 1635.44 -9.78 
001 001 001 L 3761.45 45.46 

110 110 001 L 3373.57 -1.48 
110 011  001 SF 2332.84 1.29 

 

 

 C. Wavefronts 

Let's look how it will be change the plane of an equal 
phase in consequence of velocity distribution for acoustic 
waves propagating along [010], [001] and [110] directions.  

[010] and [001] propagation directions. Let's mark out 

( )const/ωt(0)vb i
1

i −=− . Then substituting (15), (12), (13) 
into (11), it can receive such equations:  

1XbXβ 2i1iv =+−  ( ),[010]||N  (16) 

1XbXβ 3i1iv =+−  ( ).[001]||N  (17) 

Straight-line equations in X1X2 and X1X3 planes are given 
by (16) and (17) relations accordingly. Let the initial phase of 
a wave is equal to zero at the time moment t. For other time 
moments counted of zero with some step Δt we have received 
a set of lines which are projections of wavefronts to coordinate 
planes (Fig. 3). 

For a [001] direction there are results which are analogous 
to the [010] direction with replacement of X1X2 plane on a 
X1X3 plane. 

[110] propagation direction. In this case the equation of 
projections of the wavefront has a form 

1.X
2

b2
Xβ

2

b2
2

i
1

i
iv =+− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (18) 

Relation (18) is the straight-line equation analogous (16), 
but there is the essential difference. Coefficient at X1 
coordinate depends from time and sets for each straight line its 
own intersection point with X1 axis, while (16) has one point 
only (Fig. 4). 

Presence of singular point in (16), (17) which is the center 
of rotation of wavefront lines allows to receive the time 
dependence of rotation angle θ(t) on which the projection of a 
wavefront on X1X2 or X1X3 plane eventually turns. Let’s 
represent (16) in the form 

).β(XbβX 1
v1iv2 ii

−+=  (19) 

Relation (19) is the straight-line equation too. Line passes 

through the fixed point with (
ivβ− , 0) coordinates, and slope 

of such line is defined by .1
iv bβtanθ

i

−=  Using (0)tb i
1

i v=−  

it can be obtained 

t].(0)βarctan[θ(t)
iviv=  (20) 
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Figure 3.  Projections of wavefronts of L-, SF- and SS- modes on coordinate 

plane X1X2  for ]010[||N . 

Let's estimate the time t1 which wavefront of L mode ([010] 
propagation direction) is required for its rotation on one degree. 
Using values from the table I we can obtain 

( )
s.10384
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 (21) 

 

 

Figure 4.  Projections of wavefronts of L-and SF- modes on coordinate plane 
X1X2  for ]110[||N . 

IV. CONCLUSION 

Green–Christoffel equation taking into account non-
homogeneous deformation of crystal has been presented. 
Deformation gradients have become functions of coordinates. 
Thus it can reduce the problem of the small amplitude acoustic 
wave’s propagation in non-homogeneous deformed crystal to 
uniform propagation problem in small vicinity of the geometric 
point, i.e. to local uniform problem. If it is considered any other 
geometric point there are exist new values of the wave phase 
velocities and polarization vectors which are not equal to 
previous ones. Thereby it is possible to connect the movable 
trihedron of polarization vectors and vectors of the wave phase 
velocities with each point of crystal. 

Account of non-homogeneity leads to the change in the 
position of time relative location of wave front which is 
conditioned by the variation of both wave phase velocity and 
directions of the wave propagation with the time.  

 
[1] M.P. Zaitseva, Yu.I. Kokorin, Yu.M. Sandler, V.M. Zrazhevsky, B.P. 

Sorokin, A.M. Sysoev, Non-linear Electromechanical Properties of 
Acentric Crystals. Novosibirsk: Nauka, Syberian Branch, 1986, 177 p. 

[2] B.P. Sorokin, A.N. Marushyak, K.S. Aleksandrov, “Influence of non-
homogeneous uniaxial pressure on the propagation of bulk acoustic 
waves in crystals”, Proc. 2000 IEEE/EIA Int. Freq. Contr. Symp. @ 
Exhibition (Kansas City, USA), 2000, pp. 404-409. 

1475 2008 IEEE International Ultrasonics Symposium Proceedings
Authorized licensed use limited to: State Public Scientific Technological Library-RAS. Downloaded on March 22,2021 at 11:01:56 UTC from IEEE Xplore.  Restrictions apply. 


