
 

ISSN 0021-3640, JETP Letters, 2008, Vol. 87, No. 6, pp. 334–339. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © V.E. Zobov, V.P. Shauro, A.S. Ermilov, 2008, published in Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, 2008, Vol. 87, No. 6, pp. 385–
390.

 

334

 

INTRODUCTION

Quantum computations on 

 

d

 

-level basis elements
(qudits) with 

 

d

 

 > 2 can be preferable. For example, the
number of qudits required for the computational basis
of a given size is smaller than the number of qubits [1–
4]; therefore, qudits are easily controlled. Other advan-
tages are also expected. However, quantum computa-
tions on qudits are insufficiently studied although it is
proved [1, 5] that any algorithm can be implemented
using a universal set of one- and two-qudit elementary
logic operators (gates) [3, 6, 7]. However, only a few
particular quantum circuits were developed to elemen-
tary operations that can be implemented by experimen-
tal tools. In particular, on four levels of the quadrupole
Na nucleus, the search algorithm was experimentally
implemented in [8] and the Dutch algorithm was imple-
mented in [9]. An adder was organized on eight levels
of the Cs nucleus in [10]. In the mentioned works, the
notion of virtual qubit, rather than qudit, was used [2].

In this work, the algorithm of finding the permuta-
tion order, which was implemented on five qubits by
Vandersypen et al. [11] using NMR methods, is studied
on two qudits. Such an algorithm underlies the known
Shor’s quantum factorization algorithm, which was
demonstrated by Vandersypen et al. [12] on seven
qubits.

QUANTUM ALGORITHM OF FINDING 
THE PERMUTATION ORDER

Let permutation 

 

s

 

 be applied on a set 

 

Y

 

 consisting of

 

d

 

 elements. Each permutation is the product of its inde-
pendent cycles [13]:

(1)

Here, 

 

l

 

i

 

 is the length of the 

 

i

 

th cycle, (

 

y

 

) = 

 

y

 

, and 

 

y

 

 is
an element of the set 

 

Y

 

 belonging to the subset on which
the permutation 

 

s

 

i

 

 is applied. The order 

 

r 

 

of the permu-
tation 

 

s

 

 (

 

s

 

r

 

 = 

 

e

 

 is the identity permutation) is equal to the
least common multiple of the lengths of the cycles 

 

l

 

1

 

,

 

l

 

2

 

, …, 

 

l

 

k

 

 appearing in decomposition (1) of 

 

s

 

.

To implement the quantum algorithm under consid-
eration [11], it is necessary to write the results of mul-
tiple applications of the permutation on the states of
two registers, two qudits in our case. As will be shown
below, this can be made for each cycle 

 

s

 

i

 

 by means of
the 

 

SUM

 

 gate [6, 7]:

(2)

where 

 

|

 

x

 

〉

 

1

 

 is the state of the control qudit and 

 

|

 

y

 

〉

 

i

 

 is the
target virtual qudit formed of 

 

l

 

i

 

 successive levels of the
initial qudit (the use of the neighboring levels makes it
possible to avoid forbidden transitions, but this is not
important for implementing the algorithm).

The 

 

SUM

 

 gate for two qudits with the numbers of
levels 

 

d

 

1

 

 and 

 

d

 

2

 

 can be implemented by the scheme [7]

(3)

Here, 

 

P

 

12

 

 is the operator of the controlled phase shift
with the (

 

d

 

1

 

d

 

2

 

 

 

×

 

 

 

d

 

1

 

d

 

2

 

) diagonal matrix in the space of

s s1s2…sk,=

where si y si y( ) … si
li 1–

y( ), , ,( ).=

si
li

SUM1i x| 〉1 y| 〉i⊗ x| 〉1 x y mod li( )+| 〉i,⊗=

SUM12 E1 QFTd2⊗( ) 1– P12 E1 QFTd2⊗( ).=
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the states of two qudits whose matrix elements are
defined as

(4)

 

E

 

 is the identity matrix, and 

 

QFT

 

d

 

 is the quantum Fou-
rier transform (QFT) operator (see, e.g., [14, 15]).

For a more detailed investigation, we take qudits
with eight and four levels, which correspond to the
sizes of the registers in the already studied system of
five qubits [11] and are convenient for comparison. The
quantum algorithm for finding the permutation order on
two such qudits can be implemented through the circuit
that is shown in Fig. 1 and operates as follows:

(0) The first qudit (representation of the 

 

x 

 

number)
and the second qudit (representation of the 

 

y

 

 number)
are set in the initial state 

 

|

 

0

 

〉

 

1

 

 

 

⊗

 

 

 

|

 

0

 

〉

 

2

 

.
(i) The first qudit is subjected to the quantum Fou-

rier transform, which transforms the first register to the
superposition state

(ii) The oracle applies the 

 

SUM

 

 gate (with 

 

r

 

 = 4 or 2
at discretion), which transforms the separable state of
two registers to an entangled state

(iii) The quantum Fourier transform of the states of
the first qudit makes it possible to determine the period
of the function 

 

f

 

(

 

x

 

) = 

 

s

 

x

 

(

 

y

 

) written in these states.
(iv) The states of the first qudit are measured and the

permutation order 

 

r

 

 = 8/

 

∆x is determined in terms of the
distance ∆x between the maxima (see Fig. 3).

SIMULATION OF THE ALGORITHM

To control the qubits, the rotation operators selective
in spins are used [11, 12, 20], whereas to control the
multilevel systems, operators selective in levels are

used [2–10, 14–16] and denoted as , where θ is

xy〈 |P12 xy| 〉 ixy
2π
d2
------⎝ ⎠

⎛ ⎞ ,exp=

x 0… d1 1–( ), y 0… d2 1–( ),= =

QFT8 0| 〉

=  0| 〉 1| 〉 2| 〉 3| 〉 4| 〉 5| 〉 6| 〉 7| 〉+ + + + + + +( )/ 8.

SUM12 x| 〉1

x 0=

7

∑ 0| 〉2⊗ x| 〉1

x 0=

7

∑ sx 0( )| 〉2.⊗=

θ{ }α
m n–

the angle, α is the rotation axis, and m and n are the
ordinal numbers of the levels between which the transi-
tion occurs. The sequences of the selective rotation
operators for the quantum Fourier transform at d = 4
and 8 were obtained in our work [14]. However, using
the linear algebra method described in [15, 16], we
obtained shorter sequences presented in Tables 1 and 2.
These sequences are used in this work.

As a physical system, we take two quadrupole
nuclei with the spins I1 = 7/2 and I2 = 3/2 in the axially

Fig. 1. Quantum circuit for the order-finding algorithm on
two qudits at d1 = 8 and d2 = 4.

Fig. 2. RF-amplitude dependence of the error of implement-
ing the order-finding algorithm on two qudits (see Fig. 1),

∆ = , where  are the ele-

ments of the 32 × 32 matrix of the ideal algorithm operator
as a whole and Uij are the elements of the numerically cal-
culated matrix of the algorithm operator obtained by means
of the product of evolution operators (6). The magnitudes of
the spin–spin interaction in units of 105J/q1 are given near
the curves. The other parameters are ω1 = 3000, ω2 = 6000,
q1 = 100, and q2 = 200. The curves for r = 2 and 4 coincide.

1
32
------ Uij Uij

theor
–

2

i j,∑ Uij
theor

Table 1.  Parameter values in the sequence of the rotation

operators  for implementing the quantum Fou-

rier transform on the four-level quantum system

j α θj, rad m – n

1 Y –π/2 3 – 4

2 Y –2 2 – 3

3 Y 2π/3 3 – 4

4 Y –2π/3 1 – 2

5 Z 3π/4 1 – 2

6 Z –π/2 2 – 3

7 Z π/4 3 – 4

8 Y –2π/3 3 – 4

9 Y 2 2 – 3

10 Y π/2 3 – 4

Π j θ j{ }α
m n–

2( )arctan

2( )arctan
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Fig. 3. Probabilities |cxy |2 of the |x〉1 ⊗ |y〉2 states at the end
of the order-finding algorithm on two qudits (see Fig. 1) for
r = (a) 4 and (b) 2. Bars present the values at J/q1 = 10–5 and
100Ω2/q1 = 2.18 and the circles represent the values at

J/q1 = 10–4 and 100Ω2/q1 = 6.35. The other parameters are
ω1 = 3000, ω2 = 6000, q1 = 100, and q2 = 200. The lower
digits are the ordinal numbers of the first-qudit states (x = 0,
1, …, 7). The states of the second qudit (y = 0, 1, 2, 3) are
not indicated and are presented in ascending order from left
to right.

symmetric crystal field and a strong static magnetic
field with the Hamiltonian [17]

(5)

Here, ωi = B0γi is the Larmor frequency of the ith-spin
precession, J is the spin–spin coupling constant, q1 and
q2 are the coupling constants of the nuclear quadrupole
moments with the crystal-field gradient, and I1Z is the
operator of the spin projection on the direction of the
static external field (the Z axis) for the corresponding
nucleus. We set � = 1; i.e., the energies are expressed in
frequency units.

To control the system, we apply an RF magnetic
field. An RF pulse is obtained by switching on the field
with the amplitude B1 and frequency ω during a finite
time tp � 1/ω. In the reference frame rotating with the

H0 ω1I1Z– ω2I2Z– q1 I1Z
2 21/4–( )+=

+ q2 I2Z
2 5/4–( ) J I1ZI2Z.–

frequency ω [17], the time variation of the state is spec-
ified by the evolution operator

. (6)

Here, the time-independent effective Hamiltonian is
given by the expression

(7)

where Ωi = B1γi. The phase of the RF field ϕ determines
the direction of the field in the rotating reference frame.
If the frequency of the alternating field is taken to equal
the frequency of the transition between the energy lev-
els ω = εn – εm, the states corresponding to given levels
first change and we obtain the selective rotation

 by the angle θ = tpΩImn, where Imn is the abso-
lute value of the matrix element of the operator IX. The
selective rotation about the Z axis is implemented fol-
lowing [11] by means of the phase shift of the subse-
quent RF pulses.

The permutation with the order r = 4 has one cycle
s = (0, 1, 2, 3) and is specified by one gate SUM (3),
where the diagonal operator P12 given by Eq. (4) can be
expressed in terms of the operators I1Z and I2Z with the
use of the relation

(8)

The substitution of Eq. (8) into Eq. (4) transforms P12

to the product of three operators and a common phase
factor:

(9)

The first operator is obtained by the free evolution of
the system with the spin–spin interaction Hamiltonian
HJ = –JI1ZI2Z during the time

(10)

To remove the phase shift caused by the quadrupole and
Zeeman interactions, the time is set to be a multiple of
the period 2π/q1 [9]. The second and third operators in
Eq. (9) reduce to the action of additional Z pulses on the

U t( ) e iHt–=

H H0 ω I1Z I2Z+( ) Ω1 I1X ϕcos I1Y ϕsin+( )–+=

– Ω2 I2X ϕcos I2Y ϕsin+( ),

θ{ }α
m n–

π
2
---xy

π
2
--- 7

2
--- I1Z–⎝ ⎠

⎛ ⎞ 3
2
--- I2Z–⎝ ⎠

⎛ ⎞=

=  
π
2
--- I1ZI2Z

3
2
--- I1Z–

7
2
--- I2Z– 21

4
------+⎝ ⎠

⎛ ⎞ .

P12 i
π
2
--- I1ZI2Z⎝ ⎠

⎛ ⎞ i
7π
4

------ I2Z–⎝ ⎠
⎛ ⎞expexp=

× i
3π
4

------ I1Z–⎝ ⎠
⎛ ⎞ i

21π
8

---------–⎝ ⎠
⎛ ⎞ .expexp

tJ π/2J .=
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Table 2.  Parameter values in the sequence of the rotation

operators  for implementing the quantum Fou-

rier transform on the eight-level quantum system

j α θj, rad m – n

1 Y –π/2 7 – 8

2 Y –2 6 – 7
3 Y –2π/3 5 – 6
4 Y –2 4 – 5

5 Y –2 3 – 4

6 Y –2 2 – 3
7 Z –7π/4 2 – 3
8 Z –1.0409 7 – 8
9 X –1.1086 7 – 8

10 Z –1.5508 6 – 7
11 X –1.4928 6 – 7
12 Z –1.7886 5 – 6
13 X –1.7680 5 – 6
14 Z –1.8803 4 – 5
15 X –1.9954 4 – 5
16 Z 0.0451 4 – 5
17 Z –0.2086 7 – 8
18 X –0.9564 7 – 8
19 Z –0.4371 6 – 7
20 X –1.3518 6 – 7
21 Z 0.6691 6 – 7
22 Z 6.9736 7 – 8
23 X –0.9160 7 – 8
24 Z 0.3558 7 – 8
25 Z 6.0410 5 – 6
26 X –1.6806 5 – 6
27 Z –0.5993 5 – 6
28 X –1.3518 6 – 7
29 Z –0.4371 6 – 7
30 X –0.9564 7 – 8
31 Z –0.2086 7 – 8
32 Z –4.6096 3 – 4
33 X –2.1944 3 – 4
34 Z –1.8833 3 – 4
35 X –1.9954 4 – 5
36 Z –1.8803 4 – 5
37 X –1.7680 5 – 6
38 Z –1.7886 5 – 6
39 X –1.4928 6 – 7
40 Z –1.5508 6 – 7
41 X –1.1086 7 – 8
42 Z –1.0409 7 – 8
43 Z π/8 1 – 2

44 Y 2 1 – 2

45 Y 2 2 – 3

46 Y 2 3 – 4

47 Y 2 4 – 5
48 Y 2π/3 5 – 6

49 Y 2 6 – 7
50 Y π/2 7 – 8

Π j θ j{ }α
m n–

2( )arctan

2( )arctan

5( )arctan

6( )arctan

7( )arctan

6( )arctan

5( )arctan

2( )arctan

2( )arctan

corresponding spins. The pulses acting on spin 1 have
the form

(11)

and the pulses acting on spin 2 have the form

(12)

As a permutation with the order r = 2 with two
cycles, we take the permutation s = (0, 2)(1, 3), because
it can also be specified by one SUM gate (3) in the oper-
ator P12, where the exponent should be doubled. This
means that the duration of evolution interval (10) and
Z-rotation angles in Eqs. (11) and (12) are doubled.

Figures 2 and 3 show the computation results. For
comparison, the computation results for the five-qubit
algorithm that we obtained using the circuit developed
in [11] with RF pulses (6) are shown in Fig. 4. In order
to approach the conditions of two implementations, we
choose constants that are different from the experimen-
tal values. The differences in the location of the max-
ima in Figs. 3 and 4 are attributed to the difference
between the quantum Fourier transform operators. The
fast Fourier transform leading to the inverse bit-to-bit
result is implemented on qubits, whereas the complete
quantum Fourier transform is implemented on qudits.

The error is associated with two basic causes. First,
an RF pulse acts not only on the selective rotation on a
chosen transition, but also on other nonresonant transi-
tions. This error increases with the RF-pulse amplitude.
Second, the spin–spin interaction changes the state of
the system during the action of the RF pulses. This error
increases with a decrease in the amplitude of the RF
pulse.

Owing to these two factors, a minimum is observed
on the curves plotted in Fig. 2. The error in this mini-
mum increases with J. The largest contribution to the
error comes from the change in the phase of the states.

PSEUDOPURE STATE

For the quantum computations using the NMR
methods, it is necessary to prepare a pseudopure state
from the thermal equilibrium state. The method of such
preparation for one quadrupole nucleus is presented,
e.g., in [8, 18]. In particular, a multifrequency (modu-
lated) selective RF pulse, which holds the ground-state
population and equates the populations of all other lev-
els, was applied in [18] for eight levels of the 133Cs
nucleus with I = 7/2.

5
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

7–8

π{ }Z
6–7 3

4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z–

5–6

× 3
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z–

3–4

π{ }Z
2–3 5

4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

1–2

;

5
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

3–2

π{ } Z–
2–3 5

4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

1–2

.
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We do not know any ready procedure for creating
the pseudopure state in two quadrupole nuclei. We pro-
pose to apply the filtration method by means of time-
phase cycling [19]. To this end, before the above multi-
frequency selective pulse, spin 1 is subjected to two
intense nonselective RF pulses separated by the free-
evolution interval:

(13)

The transverse component of spin 1 during time tk

acquires the phase depending on the orientation of the
second spin:

where the phase shift of the second pulse is chosen so
as to compensate for the time dependence of the ground
state I2Z = I2. Let us perform the experiment 2I2 + 1

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

tk
1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

ϕk Y–

.

J I2Ztk ϕk+ Jtk I2Z I2–( ),=

times successively with various intervals between the
pulses,

, (14)

where the time is specified as a multiple of the period
2π/q1, and sum the experimental results. After that, the
result corresponding to the ground state remains,
whereas the contributions of the other states disappear.

In particular, four experiments should be performed
for I2 = 3/2. Note that the results of nine experiments
were added in order to prepare the pseudopure state by
means of the time averaging on five qubits in [11].

When the quantum algorithms are implemented
using the NMR methods, a signal is observed from a
large ensemble of quantum systems. For this reason, the
quantum yield probabilities are manifested through the
intensities of the lines in the NMR spectrum in the case
of the spectral detection or through the elements of the
density matrix in the case of the tomographic detection:

(15)

where β is the amplitude of the pseudopure state, which
is inversely proportional to the temperature, and

(16)

CONCLUSIONS

Thus, we derive the formulas that make it possible
to implement the quantum algorithm for finding the
permutation order on two quadrupole nuclei with I1 =
7/2 and I2 = 3/2 instead of five spins I = 1/2 [11]. The
implementation requires 70 RF pulses in the first case
and 80 RF pulses for r = 2 (100 pulses for r = 4) in the
second case. The simulation showed that the accuracies
of the two methods are close to each other at compara-
ble parameters. To reduce the error, the case of simple
pulse sequences should be changed to more complex
sequences. Necessary special techniques have already
been developed for qubits [11, 12, 20], whereas these
technique for quadrupole nuclei have not yet been
developed.

As an example, we take two quadrupole nuclei con-
trolled by the RF field, because NMR is a leading tech-
nique for simulating quantum algorithms [20]. How-
ever, after the appropriate changes, formulas can be
extended to other multilevel systems such as molecular
magnetic materials, impurities in crystals, atoms and
ions in traps, etc. The multilevel basis elements
(ququarts [21]) were also obtained in optics, but, for
example, the Shor’s algorithm was experimentally
demonstrated on qubits [22, 23]. The main difference of
such linear optical schemes from our scheme is that the

tk 2πk/J 2I2 1+( ) k 0 1 … 2I2, , ,=( )=

ρ f
1 β–( )
d1d2

-----------------E1 E2 β Ψ f| 〉 Ψ f〈 |+⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

,=

Ψ f| 〉 cxy x| 〉1

x 0=

7

∑
y 0=

3

∑ y| 〉2⊗ U 0| 〉1 0| 〉2.⊗= =

Fig. 4. Probabilities |cxy |2 of the |x1〉 ⊗ |y2〉 states at the end
of the order-finding algorithm on five qubits [11] for r = (a)
4 and (b) 2 and s = (0, 1)(2, 3). The bars represent the values
at J/∆ω = 10–5 and the circles represent the values at J/∆ω =
10–4, where ∆ω = 10000. The other parameters are ωj = j∆ω
(j = 1, 2, 3, 4, 5), Ω1/∆ω = Ω2/∆ω = Ω3/∆ω = Ω4/∆ω =
Ω5/∆ω = 0.0125. The lower digits are the ordinal numbers
of the first-register states (x = 0, 1, …, 7). The states of the
second register (y = 0, 1, 2, 3) are not indicated.
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entanglement of the photon states in them is obtained
without direct interaction between these photons.

The work of A.S.E. was supported by the Krasno-
yarsk Science Foundation (project no. 17G092).
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