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1.

 

 It is known that the electron structure of the CuO

 

2

 

plane of high-temperature superconductors (HTSCs)
can be adequately described in the Emery model [1, 2].
At a low doping level, the relation between the param-
eters of the model allows the passage to the effective
Hamiltonian. In this Hamiltonian, the Cu ions are in the
homeopolar states, they are characterized by the spin

 

S

 

 = 1/2 and coupled through the mechanism of indirect
exchange interaction. The hole current carriers of the
oxygen subsystem interact with the localized spins of
the Cu ions through the 

 

s–d

 

 exchange coupling. There-
fore, the Kondo lattice is a good model for the low-
energy spectrum of HTSC Fermi excitations.

For the normal phase, the peculiarities of the ele-
mentary excitations found for the Kondo lattice have
been adequately studied. The key idea in this approach
is the spin polaron concept [3]. According to this con-
cept, an elementary excitation in the 2D antiferromag-
net (AFM) can be represented as a particle (electron or
hole) surrounded by a cloud of spin fluctuations. This
complicated quasiparticle, which has the renormalized
mass and moves against the background of the AFM
order, is the spin polaron [4].

This description of the Fermi excitations in the
HTSC is justified if the 

 

s–d

 

 exchange coupling constant
is larger than the hopping integral, and the current car-
rier concentration is relatively low. In this case, the spin
polaron concept ensures a comparatively simple repro-
duction of the features of the HTSC pseudogap behav-
ior [5]. In view of this circumstance, the problem of the
description of the superconducting phase under the

conditions where the Cooper instability is developed
not for the bare fermions but in the subsystem of the
spin polarons is of current interest. The objective of this
work is to consider the above problem.

 

2.

 

 To describe the superconducting phase in the
ensemble of the spin polarons, we write the Hamilto-
nian of the Kondo lattice as

(1)

Here, the first two terms of the Hamiltonian describe
the 

 

s

 

–

 

d 

 

exchange coupling of the AFM type (

 

J

 

 > 0)
between the localized spins of the Cu ions and the spins
of the holes, as well as the Hubbard repulsion of two
holes with the Hubbard energy 

 

U

 

 in the same site;

 

S

 

f

 

 is the vector operator of the localized spin; and 

 

s

 

f

 

 is
the vector operator of the hole spin. In the atomic rep-
resentation, these terms correspond to the Hamiltonian

. The interaction operator includes the kinetic
energy of the holes written in the Wannier representa-
tion, as well as the Heisenberg exchange interaction of
the AFM type in the subsystem of the localized spins;

 and 

 

c

 

f

 

α

 

 are the creation and annihilation operators,
respectively, for the hole on site 

 

f 

 

with the spin projec-
tion 

 

α

 

.
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t
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J

 

* model, the three-center interactions promote the Cooper pairing and ensure the appearance of the super-
conducting phase with a high critical temperature 
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. The calculated concentration dependences of 
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 agree
well with the experimental data for the cuprate superconductors.
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The deduction of the effective interactions arising
between the spin-polaron quasiparticles is based on the
condition that the 

 

s–d

 

 exchange integral 

 

J

 

 and Hubbard
energy 

 

U

 

 are the highest energy parameters of the sys-
tem under study. In this case, it is natural to pass to the
representation where the strong interactions become
diagonal. To this end, we introduce a complete set of
eight single-site states. Let 

 

|↑〉

 

 and 

 

|↓〉

 

 be the hole-free
single-site states, where the localized spin projections
are +1/2 and –1/2, respectively. Below in this section,
the site index will be omitted. The states with a single
hole on the site are classified according to the values of
the total angular momentum and its projection. The
vector

corresponds to the state of the spin singlet with zero
total angular momentum. The triplet states with the
total angular momentum projection 

 

±

 

1, 0 are described
by the vectors

Two states with the opposite projections of the local-
ized momentum and two holes on the same site are
described in terms of the vectors

We construct the Hubbard operators 

 

X

 

pq

 

 = 

 

|

 

p

 

〉〈

 

q

 

|

 

 [6, 7]
on the introduced basis of the single-site states and
implement the representation for the spin operators,

(2)

and Fermi operators,

(3)

The two-hole states and triplet states are separated from
the singlet one by the energy values 

 

U

 

 + 3

 

J

 

/4 and 

 

J

 

,
respectively.

 

3.

 

 When 

 

U 

 

and 

 

J 

 

are large, we can pass to the effec-

tive Hamiltonian , where the contributions from the
upper single-site states are taken into account in the
operator form of the perturbation theory. Introducing
the projection operator onto three lower single-site
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Ĥeff

states P =  and, using the small-
ness conditions,

the effective Hamiltonian

(4)

can be written (up to the terms of the second order in
the mentioned parameters) as

(5)

where σ = ↑, ↓ and the first term describes the set of
noninteracting spin polarons (the structure of these
quasiparticles in the initial basis is discussed in the
Conclusions) with the renormalized energy εsp =
−3J/4 + ∆ε. The renormalization

(6)

is determined by the quantum processes of virtual tran-
sitions to the triplet states due to hops and the exchange
interaction (see the representations for the spin and
Fermi operators) and µ is the chemical potential of the
system. The second term describes the kinetic energy of
the spin-polaron quasiparticles with the renormalized
hopping integral (spin-polaron narrowing of the band).
The exchange interaction is represented by the third

term of , which involves the quasispin operators

 =  and  =  reduced with respect

to the initial representation. As a result of the virtual
quantum “throws” to the upper single-site states, inter-
action between the spin polarons arises; this interaction

is represented by the fourth term in . The intensity
of this interaction is determined by the matrix element

(7)

It is seen that the processes of virtual throws to the trip-
let states induce the repulsion of the spin polarons,
while the virtual transitions to the states with two holes
on the site lead to their attraction. At the specified rela-
tions between the parameters, the total result of the pro-
cesses considered is the repulsion of the spin-polaron
quasiparticles. This interaction affects the Cooper
instability conditions, because it results in more strin-
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gent conditions compared to the limiting case U, J 

∞. The last term in  describes the three-center inter-
actions,

(8)

which are important for the HTSC implementation (see

below). We note that the operator  acts as the anni-
hilation operator for the hole with the spin projection
−σ, performing the transition of site f from the singlet

state to the hole-free state. The operator  corre-
sponds to the creation of the hole with spin projection
−σ, because its action reduces to the addition of the
hole to site f, which is thus transferred from the state |σ〉
to the singlet |S〉.

4. To obtain the self-consistency equations in the
superconducting phase, we used the method of the irre-
ducible Green’s functions [8]. Introducing the normal

 and anomalous  Green’s
functions, the equations of motion were written for
them. Further, we used the scheme of projecting these
equations onto the introduced basis of the spin-polaron
Green’s functions. This procedure resulted in the
Gor’kov equations

(9)

for the Fourier images of the normal and anomalous
Green’s functions,

(10)
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In the system of equations,  = –3J/4 + V0n + [(1 +
n)/4]tk is the renormalized spectrum of the Fermi exci-
tations determined by the polaron band; tk is the Fourier
image of the hopping integral; V0 is the Fourier image
of the matrix element of the spin polaron coupling for
zero quasi-momentum; and n is the hole concentration
per site. The superconducting gap appeared in the intro-
duction of the anomalous Green’s function is deter-
mined as

(11)

The function  in the kernel of this integral equa-
tion is associated with the repulsion of the spin polarons
(the effective Hamiltonian term ~Vfm) and with the
three-center interactions. In this case, some contribu-
tions from H(3), which do not contribute to the super-
conducting gap with the  symmetry, are omitted

here to shorten the expression. In the Wannier represen-

tation, the matrix element  renormalized owing to
H(3) has the form

(12)

Calculating the anomalous Green’s function and using
the spectral theorem, the self-consistency equation for
the superconducting gap ∆k = ∆ · (coskx – cosky) can be
written as

(13)

Hence, the transition temperature to the superconduct-
ing phase with the  symmetry of the order param-

eter is determined by the solution of the equation

(14)

where the coupling constant can be represented as

(15)

Here, the contributions determined by the hopping inte-
grals and the exchange parameters between the sites of
the long-range coordination spheres are neglected. This
simplification is possible because the mentioned
parameters decrease rather rapidly with the internodal
distance. For comparison, we note that the coupling
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constant in the absence of three-center interactions
would be given by the expression

(16)

The effective coupling constant  is formed due to
several factors. The first term I corresponds to the spin
polaron attraction and provides the positive contribu-
tion to the total mechanism of the Cooper pairing. The
physics of this attraction is simple and is associated
with the fact that the spin of the site occupied by the
polaron is zero. Therefore, if two polarons are at a dis-
tance longer than the interatomic distance, then the
exchange energy loss is ~8I. If the spin polarons are in
the nearest sites, then this loss is ~7I. Thus, the charac-
teristic attraction energy is I, which is represented by
the coupling constant. We note that the relative energy
increase in the 2D case exceeds the corresponding
increase for the 3D case.

The second contribution to the constant  is caused
by the two- and three-center interactions of the spin
polarons. The resulting interaction consists of three
terms. The first and third terms result from the pro-
cesses of the virtual transitions to the triplet spin-
polaron states due both to the hole hops and to the
exchange interaction. These contributions form the
repulsion of the spin polarons. The second term in the

expression for  results from the processes of throw
into the single-site states with two holes (this explains
the presence of U in the denominator). It is seen that
these processes lead to the mutual attraction of the
polarons. Therefore, the three-center interactions par-
tially compensate for a decrease in the coupling con-
stant caused by the spin polaron repulsion and thereby

G I
2t2

J
-------– 4t2

3 U 3J /4+( )
------------------------------

3I2

8J
-------.–+=

G̃

G̃

Ṽ fm

(see below) considerably affect the conditions of the
superconducting phase implementation.

We note that the importance of the three-center
interactions for the t–J* model was mentioned earlier in
[9]. However, in the case of the t–J* model, the three-
center interactions reduced the coupling constant (and,
thus, heavily reduced the critical temperature), while
the three-center interactions in the spin polaron system
have an opposite effect, considerably increasing the
critical temperature. This statement is illustrated in
Fig. 1. In the calculation of the critical temperature as a
function of the concentration, the parameters were cho-
sen so that the superconducting phase region could
exist in the absence of the three-center interactions. It is
seen that, when the three-site interactions are taken into
account, the critical temperatures Tc become suffi-
ciently high in the given range of the parameters and in
the optimal doping region (~170 K). If the three-center
interactions are neglected, then the maximum critical
temperature is about 13 K.

If the parameters are chosen so that the critical tem-
peratures typical of the cuprate semiconductors could
be reached in the optimal doping region, then the super-
conducting phase appears to be suppressed if the three-
center interactions are disregarded. Figure 2 shows the
calculated Tc(n) dependences with allowance for the
three-center interactions for two values of the Hubbard
parameter U. Clearly, an increase in U reduces the crit-
ical temperature because the efficiency of the virtual
throws to the states with two holes is suppressed under
this variation of U, and the total coupling constant
decreases. It follows from the concentration depen-
dences of the critical temperature that the concept of
Cooper instability considered in the system of spin
polarons can be an actual alternative in the HTSC inter-
pretation in cuprate oxides.

Fig. 1. Concentration dependence of the critical tempera-
ture calculated (upper curve) including and (lower curve)
disregarding H(3) for t = 1 eV, t' = 0.6|t |, t'' = 0.22|t |, J = 5|t |,
U = 5|t |, and I = 0.33|t |. The lower curve is shown enlarged
in the inset.

Fig. 2. Concentration dependence of the critical tempera-
ture calculated for t = 1 eV, t' = 0.6|t |, t'' = 0.22|t |, J = 5|t |, I =
0.3|t | at U = (solid curve) 7|t | and (dashed curve) 10|t |.
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5. To conclude, we consider the structure of the spin
polaron quasiparticles. First of all, we note that all cal-
culations after the passage to the effective Hamiltonian
are performed in the new basis. This means that, to con-
struct the function of a certain state in the initial repre-
sentation, it is necessary to perform the corresponding
transformations (this corresponds to conventional pro-
cedures under unitary rotations). Hence, to determine
the form of the wavefunction of the spin polaron in the
initial basis, it is necessary to perform the correspond-
ing transformations. Let the state with a single polaron
in the new basis be described by the function |1sp〉 =

|0〉. Here, |0〉 corresponds to the polaron-free state.
In the initial basis, this state is described with the
accepted accuracy by the wavefunction

(17)

where η(σ) = ±1 at σ = ↑, ↓, respectively. It is seen that
the spin polaron state in the initial basis is a coherent
mixture of the bar state and the states where the hole is
in the m triplet-state sites adjacent to the initial site (the
terms tfm), as well as the states for which site m is trans-
ferred to the triplet states (the terms Ifm), while the
neighboring sites are in the hole-free states correlated

with the value of the triplet momentum projection and
a certain projection of the spin. The Cooper instability
mechanism leading to HTSC is considered in this work
as applied to those complicated quasiparticles.
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