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1. INTRODUCTION

At present, multilayered film structures (1D super-
lattices) that consist of periodically alternating layers of
two or more materials with different physical properties
are being investigated extensively. In particular, photon
and magnon crystals that have received much attention
belong to such structures. The spectrum of waves of
any nature in periodic systems is known to have a band
structure characterized by the reciprocal lattice vector 

 

q

 

(

 

|

 

q

 

|

 

 

 

≡

 

 

 

q

 

 = 2

 

π

 

/

 

l

 

, where 

 

l 

 

is the 1D superlattice period).
The degeneracy is removed and band gaps 

 

∆ω

 

n

 

 appear
at the edge of the Brillouin zones in a superlattice at 

 

k

 

 =

 

nq

 

/2. The gap width is determined by the change in the
physical parameters of the neighboring layers and by
the band number 

 

n

 

. In actual materials, an ideal period-
icity in the arrangement of layers can be maintained
only approximately. There are always random devia-
tions from periodicity due to natural or technological
factors; the purposeful formation of a particular aperi-
odicity is also possible. This has stimulated the appear-
ance of theoretical works in which the transition from
ideally periodic superlattices to partially stochastized
ones is studied.

Several theoretical methods have been developed to
date to investigate the spectral properties of such super-
lattices: the introduction of a 1D random phase [1, 2];
modeling the disorder in the arrangement of layers of

two different materials [3–9]; the numerical simulation
of random deviations of the interfaces between layers
from their initial periodic arrangement [10–12]; postu-
lating the form of the correlation function for a super-
lattice with inhomogeneities [13, 14]; the application of
geometrical optics approximations [15]; and the devel-
opment of a dynamical theory of composite elastic
media [16].

In [17–23], the method of averaged Green functions
was used to describe the spectral properties of superlat-
tices. The only characteristic describing a random
medium that appears in the expression for the averaged
Green function is the correlation function 

 

K

 

(

 

r

 

), which
depends on the distance 

 

r

 

 between two points of the
medium: 

 

r

 

 = 

 

x

 

 – 

 

x

 

'. Therefore, the first part of the prob-
lem is reduced to finding the function 

 

K

 

(

 

r

 

) for a super-
lattice with particular inhomogeneities and its second
part consists in extracting the spectral characteristics
from the expression for the Green function containing
this correlation function by standard approximate
methods. The model of a random phase that was
assumed to be a function of all three coordinates with
an arbitrary correlation length was used to describe the
inhomogeneities of the geometric structure of an initial
sinusoidal superlattice. A random space modulation
(RSM) method [17] was developed to find the correla-
tion function 

 

K

 

(

 

r

 

) of a superlattice. This method is a
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generalization of the well-known method of determin-
ing the time correlation function for the random fre-
quency (phase) modulation of a radio signal [24, 25] to
the case of a space (generally 3D) modulation of the
superlattice period. The advantage of this method is
that the form of the correlation function for a superlat-
tice is not postulated but is derived from the most gen-
eral assumptions about the pattern of random space
modulation of the superlattice period. This function
was shown to generally have a complex form that
depends significantly on the size of the inhomogene-
ities, the structure of the interfaces between layers, etc.

The spectrum of waves, their damping, and the high-
frequency susceptibility of an initially sinusoidal super-
lattice that contained 1D phase inhomogeneities mod-
eling the random displacements of the interfaces
between the superlattice layers from their initial peri-
odic arrangement and 3D isotropic phase inhomogene-
ities modeling the random deformations of these inter-
faces were investigated in [17–23]. The influence of the
simultaneous presence of 1D and 3D inhomogeneities
on the spectral characteristics was also investigated
both in the absence [20] and in the presence [22, 23] of
cross- correlations between them.

Inhomogeneous deformations of the interfaces
between layers should generally be modeled by aniso-
tropic 3D correlation functions with different correla-
tion lengths:  along the superlattice 

 

z

 

 axis and  in
the 

 

xy

 

 plane of the superlattice layers. A wide variety of
relations between these correlation lengths can be
encountered in practice. The relation between the cor-
relation length  and the mean superlattice layer thick-
ness 

 

l

 

/2 can also play a significant role in this case. If
 

 

�

 

 

 

l

 

/2, then the deformations of the neighboring lay-

ers are virtually independent. If  

 

�

 

 

 

l

 

/2, then the
deformations on the neighboring layers are correlated.
The extreme case of large correlation lengths  where

both inequalities hold,  

 

�

 

 

 

l

 

/2 and  

 

≅

 

 , corre-
sponds to complete identity of the inhomogeneities at
all interfaces between the superlattice layers. In this
extreme case, an anisotropic 3D correlation function
turns into a 2D one.

In practice, such a situation can take place, for
example, when the inhomogeneities of the superlattice
layer surfaces result from an inhomogeneous deforma-
tion of the substrate on which these layers are depos-
ited. In this case, the random (in the 

 

xy 

 

plane) deforma-
tions can be repeated almost in phase on the surface of
each new deposited layer and the superlattice will be
roughly described by a 2D correlation function with a
finite correlation length in the 

 

xy 

 

plane and an infinite
one along the 

 

z 

 

axis.
The modification of the dispersion law and the

damping of a sinusoidal superlattice due to 2D inhomo-
geneities were briefly considered in [17]. In this case, in
contrast to 1D and 3D inhomogeneities, the damping

r̃ | | r̃⊥

r̃ | |

r̃ | |

r̃ | |

r̃ | |

r̃ | | r̃ | | r̃⊥

 

due to 2D inhomogeneities was shown to arise only on
one branch in the spectrum located above the gap at the
boundary of the Brillouin zone, while the frequency of
the lower branch remains real. In this paper, we investi-
gate the high-frequency susceptibility (Green function)
of a sinusoidal superlattice with 2D inhomogeneities
and discuss the physical mechanism that leads to an
asymmetry in the influence of such inhomogeneities on
the lower and upper branches of the wave spectrum.

2. THE MODEL AND CORRELATION FUNCTION 
OF A SUPERLATTICE

Recall briefly the main features of the model and
method used in [17–23]. The superlattice is character-
ized by the dependence of some material parameter 

 

A

 

on the spatial coordinates 

 

x

 

 = {

 

x

 

, 

 

y

 

, 

 

z

 

}. The parameter

 

A

 

(

 

x

 

) can vary in physical nature. This parameter can be
the density of the material or the force constant for an
elastic medium, the magnetic anisotropy, magnetiza-
tion, or exchange for a magnetic system, etc. We will
represent 

 

A

 

(

 

x

 

) as

(1)

where 

 

A

 

 is the mean value of the parameter, 

 

∆

 

A

 

 is its
root-mean-square (rms) deviation, and 

 

ρ

 

(

 

x

 

) is a cen-
tered (

 

〈ρ

 

(

 

x

 

)

 

〉

 

 = 0) and normalized (

 

〈ρ

 

2

 

(

 

x

 

)

 

〉

 

 = 1) function.
The function 

 

ρ

 

(

 

x

 

) describes both the periodic depen-
dence of the parameter along the superlattice 

 

z 

 

axis and
the random space modulation of this parameter, which
generally can be a function of all three coordinates: 

 

x

 

 =
{

 

x

 

, 

 

y

 

, 

 

z

 

}. The angular brackets denote averaging over an
ensemble of random realizations of 

 

ρ

 

(

 

x

 

).

We consider a superlattice with a sinusoidal depen-
dence of the material parameter on the 

 

z 

 

coordinate in
the initial state when there are no random inhomogene-
ities. As in [17], we will represent the function 

 

ρ

 

(

 

x

 

) as

(2)

where 

 

d

 

 = 1, 2, 3 is the dimension of the inhomogene-
ities. The sinusoidal superlattice may be considered as
a special case of a multilayered structure with very
smooth interfaces between the layers. In this case, the
positive and negative regions of 

 

ρ

 

(

 

x

 

) along the superlat-
tice 

 

z

 

 axis correspond to the alternating layers of such a
multilayered structure and the zero points of 

 

ρ

 

(

 

x

 

) cor-
respond to the interfaces between the superlattice lay-
ers. In this interpretation, depending on the value of 

 

d,

 

the function 

 

u

 

d

 

(

 

x

 

) models the random displacements
(d = 1) or the random deformations (d = 3 or 2) of these
interfaces. The coordinate-independent phase ψ is dis-
tributed uniformly in the interval (–π, π).

The static and dynamic properties of randomly
inhomogeneous materials are determined by the sto-
chastic properties of their inhomogeneities described
by the correlation function. Let us calculate it for the
superlattice under consideration.

A x( ) A ∆Aρ x( ),+=

ρ x( ) 2 q z ud x( )–[ ] ψ+{ },cos=
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The correlation function K(r) depends only on the
coordinate difference r = x – x' and is defined by

(3)

Here, the averaging is performed both over the random
phase ψ and over the random function χ, where

(4)

Under the assumption of a Gaussian distribution of
χ, a general expression was derived for K(r) in the form
[17]

(5)

where the decreasing part of the correlation function
Kd(r) is defined by

(6)

Here,

is the dimensionless superlattice structure function that
can be represented as

(7)

where Sϕ(k) is the spectral density of the correlation
function Kϕ(r) that describes the stochastic properties
of the gradient of the modulating function ud(x) (recall
that the stochastic properties of ud(x) cannot be
described by a correlation function that depends only
on the coordinate difference x – x', since ud(x) is not a
homogeneous random function):

(8)

The correlation function Kϕ(r) in this expression can
be chosen from the most general ideas of the pattern of
random modulation ud(x). For 2D inhomogeneities, the
random modulation u2 depends only on the vectors

that lies in the xy plane. To model the 2D deformations
of the interfaces in the superlattice, we will choose the
correlation function that describes isotropic (in the xy
plane), exponentially decreasing correlations:

(9)

where σ2 is the rms fluctuation of the gradient of the
random function u2(x⊥), k2 is the correlation wave num-

ber of the 2D inhomogeneities (  =  is the correla-

K r( ) ρ x( )ρ x r+( )〈 〉ψχ.=

χ x r,( ) q ud x r+( ) ud x( )–[ ].=

K r( ) qrz( )Kd r( ),cos=

Kd r( ) 1
2
---Qd r( )– .exp=

Qd r( ) q2 ud x r+( ) ud x( )–[ ]2〈 〉=

Qd r( ) 2q2 kd

k2
------Sϕ k( ) 1 k r⋅( )cos–( ),∫=

Sϕ k( ) 1

2π( )3
------------- Kϕ r( )e ik– r⋅ r.d∫=

x⊥ x y,{ }, r⊥ rx ry,{ },= =

Kϕ r( ) σ2
2 k2r⊥–( ),exp=

k2
1– r̃⊥

tion length), and r⊥ = |r⊥|. The spectral density Sϕ(k)
defined by Eq. (8) is then

(10)

Substituting (10) into (7) and integrating yields

(11)

Here, C ≈ 1.78 is the Euler constant,

is the integral exponential function, and the parameter

γ2 = qσ2/ k2 defines the rms fluctuations of the func-
tion u2(x⊥). In the extreme cases of large and small r⊥,
Eq. (11) takes the form

(12)

where e is the base of the natural logarithm.
Recall that a Gaussian modeling correlation func-

tion was used in [17] when the dispersion law and
damping of waves in a superlattice with 2D phase inho-
mogeneities were investigated,

(13)

Accordingly, an expression differing from (11) was
derived for Q2(r). However, in the extreme cases for
both k2r⊥ � 1 and k2r⊥ � 1, this expression matches
Eq. (12). This confirms the general proposition that the
correlation function K(r) of a superlattice is asymptoti-
cally independent of the form of the modeling function
Kϕ(r), which was established previously for 1D and 3D
inhomogeneities [17]. At the same time, the asymptot-
ics of the correlation function K(r) for the superlattice
differ significantly for 1D, 2D, and 3D phase inhomo-
geneities.

Substituting Eq. (11) for Q2(r) into Eq. (6) yields an
excessively cumbersome expression for the correlation
function K(r). Therefore, we approximated the decreas-
ing part of the correlation function K2(r) by the expres-
sion

(14)

Figure 1 shows the decreasing parts of the exact corre-
lation function (6) with Q2(r) in form (11) and the

approximating function K2(r) in form (14) for  = 0.3
and 1.0. We see that the model correlation function

Sϕ k( )
σ2

2

2π
------δ kz( )

k2

k2
2 kx

2 ky
2+ +( )3/2

-------------------------------------.=

Q2 r( ) 4γ 2
2 E1 k2r⊥( ) k2r⊥C( )ln+{=

+ k2r⊥–( )exp 1 }.–

E1 z( ) e t–

t
------ td

z

∞

∫=

2

Q2 r( ) γ 2
2 k2

2r⊥
2 , k2r⊥ � 1

4 k2r⊥C/e( ), k2r⊥ � 1,ln⎩
⎨
⎧

=

Kϕ r( ) σ2
2 1

2
---k2

2r⊥
2–⎝ ⎠

⎛ ⎞ .exp=

K2 r( ) 1
C2

e2
------k2

2r⊥
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γ 2
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.=

γ 2
2
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describes well the exact one in the entire r⊥ range and
has asymptotics coincident with that of the exact func-
tion for both k2r⊥ � 1 and k2r⊥ � 1. The latter is the
main requirement in choosing the approximating corre-
lation function, since, as was shown previously [20–23]
(for both 1D and 3D inhomogeneities and for their mix-
ture), the spectral properties of the waves are deter-
mined mainly by the asymptotic form of the correlation
function for the inhomogeneities when r  ∞.

3. THE HIGH-FREQUENCY SUSCEPTIBILITY
OF A SUPERLATTICE

The wave equation for the time Fourier transform in
a superlattice can be represented as

(15)

where the function m = m(x, ω) and the parameters ν
and Λ are different for waves of different nature. For
spin waves, Eq. (15) corresponds to a ferromagnetic
superlattice with a nonuniform magnetic anisotropy
parameter β(x) (A = β and ∆A = ∆β in Eq. (1)) in a sit-
uation where the directions of the external magnetic
field H, the constant magnetization component M0, and
the magnetic anisotropy axis coincide with the direc-
tion of the superlattice z axis. In this case, m = Mx + iMy,

∇2m ν Λ
2

-------ρ x( )– m+ 0,=

ν = (ω – ω0)/αgM0, and Λ = ∆β/α, where ω is the
frequency, ω0 = g[H + (β – 4π)M0] is the frequency of
a uniform ferromagnetic resonance, g is the gyromag-
netic ratio, and α is the exchange constant. For elastic
waves in the scalar approximation in a superlattice with
a nonuniform density of the medium p(x) (A = p and

∆A = ∆p), we have ν = (ω/s)2 and Λ = ω2(∆p)/ps2,
where s is the speed of the elastic waves. For electro-
magnetic waves in the same approximation in a
medium with a nonuniform permittivity ε(x) (A = ε and

∆A = ∆ε), we have ν = ε(ω/c)2 and Λ = ω2(∆ε)/εc2,
where c is the speed of light.

The Fourier transform of the averaged Green func-
tion for Eq. (15) is

(16)

where M(ν, k) is a classical analogue of the mass oper-
ator that can be represented in Bourret’s approximation
[26] as [19]

(17)

Let us calculate the Green function (16) for the
waves in a superlattice with 2D inhomogeneities. Pass-
ing to a spherical coordinate system with the polar axis
along the z axis (k || z) in Eq. (17) for the mass operator
and integrating over the azimuth angle, we obtain

(18)

where c = cosϑ, ϑ is the polar angle.
Here, we investigate the high-frequency susceptibil-

ity at the edge of the first Brillouin zone at k = kr ≡ q/2.
After the integration over r in Eq. (18), substituting the
derived expression into the Green function (16) and
introducing dimensionless quantities, we obtain in the
two-wave approximation

(19)

where X = (ν – νr)/Λ, νr = , η2 = 2k2kr/Λ:

2

2

2

G ν k,( ) 1

ν k2– M ν k,( )–
---------------------------------------,=

M ν k,( ) Λ2

8π
------ K r( )

r
------------∫–=

× i k r⋅ ν r+( )–[ ]dr.exp

M ν k,( ) Λ2

2
------ rr i νr–( )expd

0

∞

∫–=

× c
qrc( ) krc( )coscos

1
C2

e2
------k2

2r2 1 c2–( )+
γ 2

2
-----------------------------------------------------,d

0

1

∫

ΛG ν( ) X
νr

2Λη2
2

------------- e
C
----⎝ ⎠

⎛ ⎞ 2γ 2
2

+
⎩
⎨
⎧

=

× cd

1 c2–( )
γ 2

2
----------------------J c X,( )

0

1

∫ ⎭
⎬
⎫

1–

,

kr
2

0.2

0 2

K2

k2r⊥

0.4

0.6

0.8

1.0

4 6 8 10

Fig. 1. Decreasing part of the correlation function for a

superlattice with 2D inhomogeneities for  = 0.3 (the

upper pair of curves) and  = 1.0 (the lower pair of

curves). The solid and dashed curves correspond to Eq. (6)
with Q2(r) in form (11) and the approximating correlation
function (14), respectively.

γ2
2

γ2
2
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(20)

Here, we denote

(21)

Hα(z), Yα(z), and Γ(z) are the Struve, Neumann, and
gamma functions, respectively. However, Eq. (20) is

valid at  ≠ n, where n is an integer. At  = n, simpler
expressions appear in Eq. (19) instead of the function

J(c, X). Thus, for example, at  = 1, we should right
the following function under the integral in (19):

(22)

while at  = 2, accordingly, we write the function

(23)

In deriving Eq. (19), we used the approximation of
narrow band gaps, Λ � νr, and the condition for the
damping due to the inhomogeneities being small,

k2  � kr. The integral over c was calculated numeri-
cally. In the absence of inhomogeneities and when the
wave self- damping is neglected, the gap width in the
spectrum at k = kr (corresponding to the distance
between the levels of the split spectrum ν+(kr) and
ν−(kr)) is equal to Λ. In this case, two δ-like peaks sep-
arated by the distance Λ will be observed on the depen-
dence G''(ν) = ImG(ν). Recall briefly what happens to
the gap in the spectrum and to the form of G''(ν) when
1D or 3D inhomogeneities appear in the superlattice
structure. As the rms fluctuations of the 1D inhomoge-
neities γ1 increase, the distance between the levels in the
spectrum ∆ν =  – , where  = Reν±(kr),
decreases and the gap in the spectrum is closed at some
critical value of γ1. The damping (k) = Imν±(k),
which as a function of k has a maximum at k = kr [17],
increases simultaneously with γ1. The peaks on the
dependence G''(ν) decrease and approach each other
with increasing γ1, while their FWHMs increase until

J c X,( ) 2
1/2– γ 2

2–
πΓ 1 γ 2

2–( )–=

× e2

C2 1 c2–( )
-------------------------⎝ ⎠

⎛ ⎞
1 γ 2

2– 2
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2+

πΓ 2 γ 2
2–( )
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–
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iw( )
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----------------------------

Y
3/2 γ 2

2–
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iw( )
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---------------------------+ .

w
e

η2C 1 c2–
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2νr

Λ
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γ 2
2 γ 2

2

γ 2
2

J1 c X,( ) 1
2
--- e w– E1 w–( ) ewE1 w( )+[ ],=

γ 2
2

J2 c X,( ) C2 1 c2–( )
2e2

-------------------------=

× 1
w
2
---- ewE1 w( ) e w– E1 w–( )–[ ]–

⎩ ⎭
⎨ ⎬
⎧ ⎫

.

γ 2
2

ν+' ν–' ν±'

ν±''

these peaks merge into one peak at some γ1 [18]. The
distance between the peaks ∆νm ≈ ∆ν at any γ1. As the
rms fluctuations of the 3D inhomogeneities γ3 increase,
∆ν also decreases and, accordingly,  and Γ increase.
However, the decrease in ∆ν and ∆νm for 3D inhomo-
geneities is slower than that for 1D inhomogeneities
and, if the exact formulation is used, leads not to the
closure of the gap, but to its exponential smallness [22].
This also applies to the distance between the peaks ∆νm.
A characteristic feature of these two cases (1D and 3D
inhomogeneities) is that all spectral parameters, the fre-
quencies (kr) and (kr), the dampings (kr) and

(kr), the positions of the maxima of the peaks  and

, and their FWHMs Γ, are symmetric about the gap
center in the approximation under consideration.

The picture for the frequency dependence of the
Green function is different when 2D inhomogeneities
are present in the superlattice. The results of our calcu-
lations for the imaginary part of the Green function (19)
are presented in Fig. 2. We see that the left and right
peaks of the function G'' differ significantly in behavior
as the rms fluctuations of the inhomogeneities γ2
increase: the left peak shifts to the gap center and
slightly increases in amplitude, while the amplitude of
the right peak decreases sharply and its FWHM
increases. Note that the finite height of the left peak in
Fig. 2 and its nonzero FWHM are due to the introduc-
tion of a seed damping, Γ0/Λ = 0.03, in our numerical

ν±''

ν+' ν–' ν+''

ν–'' νm
–

νm
+

5

0
–0.6

G ''Λ

10

15

20

–0.4 –0.2 0.20 0.4 0.6
ν kr

2–( )/Λ

Fig. 2. Imaginary part of the Green function (19) for 2D
inhomogeneities at the edge of the first Brillouin zone in a

superlattice for η2 = 4, νr/Λ = 20, and various values of :

0 (thick solid curve), 0.2 (thin solid curve), 0.45 (dashed
curve), 1.1 (dotted curve), and 1.9 (dash–dotted curve).

γ2
2
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calculations to eliminate the divergences. Thus, the gap
closure mechanism for 2D inhomogeneities increasing
in intensity turns out to differ from that for 1D or 2D
inhomogeneities: the gap disappears due to the reduc-
tion in the right peak, while the left peak is retained, as
distinct from 1D and 3D inhomogeneities where the
gap was closed due to the symmetric approach and
broadening of the peaks.

In Fig. 3, the distance between the peaks of the
imaginary part of the Green function (19) is plotted
against the square of the rms fluctuation of the 2D inho-

mogeneities  (squares). The previously investigated

dependences ∆νm( ) and ∆νm( ) corresponding to
the presence of 1D (solid curve) or 3D (dotted curve)
inhomogeneities in the superlattice are also shown here
for comparison. We see that the gap in the spectrum is
most sensitive to the action of 1D inhomogeneities: the
maxima of the Green function merge into a single max-

imum even at  =  = 0.18 (for η1 = 4). Under the
action of 3D inhomogeneities, the gap decreases much
more slowly: while exponentially decreasing, it virtu-

ally disappears at  that are an order of magnitude

larger than . The gap in the spectrum and, accord-
ingly, the distance between the maxima m decreases
most slowly under the action of 2D inhomogeneities.

While decreasing with increasing , ∆νm decreases

only by 15% at  = 2, while for  = 2 the gap is
already negligible (at η2 = η3 = 4).

γ 2
2

γ 1
2 γ 3

2

γ 1
2 γ 1c

2

γ 3
2

γ 1c
2

γ 2
2

γ 2
2 γ 3

2

Figure 4 shows the full widths of the peaks at half
maximum of the corresponding peaks of the function
G''(ν). For the previously investigated FWHMs of the
peaks under the action of 1D (solid curve) and 3D (dot-
ted curve) inhomogeneities, the peaks are symmetric
and the FWHMs of the left and right peaks are equal.
The sharp maximum on the solid curve corresponds to
the point at which the two peaks merge into one peak at

 = . The dependences of the FWHMs of the left

and right peaks on  for 2D inhomogeneities investi-
gated here are indicated by the crosses and circles,
respectively. When constructing these dependences, we
subtracted the seed damping Γ0/Λ = 0.03 from the cal-
culated FWHMs of the peaks. Therefore, the FWHMs
in this figure do not correspond to those in Fig. 2; in
particular, the FWHM of the left peak after this opera-
tion approximately becomes zero. We see a sharp
asymmetry in the FWHMs of the left and right peaks

that increases with  almost linearly.

In Fig. 5, the positions of the maxima of the left and
right peaks are plotted against the rms fluctuation for
1D, 2D, and 3D inhomogeneities. We see that, in con-
trast to 1D and 3D inhomogeneities, there is a small
asymmetry in the positions of the peaks with respect to
the gap center and a shift of the gap center to the higher
frequencies for 2D inhomogeneities.

Note that the physical quantities shown in Figs. 3–5
were calculated using expression (20) in Eq. (19) for all

values of , except  = 1 and 2. For the last two val-
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Fig. 3. Distance between the peaks of the imaginary part of

the Green function ∆νm versus  for 1D (solid curve), 2D

(squares), and 3D (dotted curve) inhomogeneities; ηd = 4
(d = 1, 2, 3).
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FWHMs of the left (crosses) and right (circles) peaks for 2D
inhomogeneities.
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ues of , we used, respectively, expressions (22) and
(23) in Eq. (19). We see that the values of the physical
quantities for these selected points fit well into the

sequence corresponding to other values of .

4. DISCUSSION

As was shown previously [20–23], the basic charac-
teristics of the wave spectrum are determined mainly by
the asymptotics of the correlation functions K(r) for a
superlattice when r  ∞. Figure 6 shows the shape of
the decreasing parts of the correlation functions Kd(r)

γ 2
2

γ 2
2

for 1D, 2D, and 3D inhomogeneities in rz and r⊥ coor-

dinates for k1 = k2 = k3 and  =  =  = 0.3. Recall
the analysis of the relationship between the characteris-
tics of the wave spectrum and the asymptotics of the
correlation functions for superlattices with 1D and 3D
inhomogeneities performed in [20]. We consider an ini-
tial wave propagating along the z axis perpendicularly
to the plane of the superlattice layers. The correlation
function of the 1D inhomogeneities with exponential
asymptotics for rz  ∞ decreases to zero along the
same axis (Fig. 6a). Therefore, the initial wave is inten-
sively scattered by such inhomogeneities, causing a

strong damping and a gap closure at low values of 
(Figs. 3 and 4, the solid curves). The correlation func-
tion for isotropic 3D inhomogeneities decreases
equally along all coordinate axes to some asymptote

L = exp(–3 ), but not to zero (Fig. 6c). Thus, the cor-
relation volume above and below this asymptote has
finite and infinite correlation lengths, respectively. It is
the existence of a correlation volume with an infinite
correlation length that leads to a weak wave damping
and a slow gap reduction in the spectrum with increas-

ing  (Figs. 3 and 4, the dotted curves).

Let us make a similar comparison of the results
obtained in this paper with the correlation function for
2D inhomogeneities. This correlation function
decreases as a power law only in the xy coordinate
plane (Fig. 6b). Along the propagation axis z of the ini-
tial wave, it is constant, i.e., is characterized by an infi-
nite correlation length. Thus, the damping and modifi-
cation of the dispersion law for the initial wave is deter-
mined in this case only by the x and y components of
the scattered waves. As a result, the gap in the spectrum

decreases with increasing  much more slowly than it
does in the cases of 1D and 3D inhomogeneities (Fig. 3,
the squares).

It is more convenient to discuss the revealed asym-
metry in the FWHMs and amplitudes of the peaks of
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Fig. 5. Positions of the maxima of the peaks versus  for

1D (solid curve) and 3D (dotted curve) inhomogeneities.
For 2D inhomogeneities, the crosses and circles correspond
to the left and right peaks, respectively.
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the Green function arising under the action of 2D inho-
mogeneities by representing the mass operator of the
Green function M(ν, k) not via the correlation function,
as in Eq. (17), but via its Fourier transform, the spectral
density S(k). In this case, in Bourret’s approximation,

(24)

As is well known, in the processes of wave scattering
by inhomogeneities considered here, the energy conser-
vation law must hold for the incident and scattered
waves, while the momentum conservation law does not
hold. Nevertheless, the constraints that follow from the
energy conservation law for the incident and scattered
waves and from the dispersion law for the scattered
wave are imposed on the absolute value of the momen-
tum. In terms of the frequency of the incident wave ν
and the wave vector of the scattered wave ks, the energy
conservation law in an elementary scattering process
corresponds to the pole on the real ks axis in the inte-
grand of Eq. (24) that defines the damping of the inci-
dent wave.

Let us consider what constraints the dimension of
inhomogeneities imposes on the fulfillment of the
energy conservation law. For 3D inhomogeneities, the
integration in Eq. (24) is over all directions and magni-
tudes of the vector ks; hence, for any frequency ν, the

conservation law is  = ν. Thus, the damping due to
the scattering by inhomogeneities appears at any fre-
quency ν. In the case of 1D inhomogeneities, i.e., ran-
dom displacements of the interfaces between the super-
lattice layers, the random phase u1 depends only on the
z coordinate and the spectral density in Eq. (24) takes
the form

(25)

Substituting this expression into (24) and integrating
over ksx and ksy, we find that for a wave propagating
along the z axis, the energy conservation law in an ele-

mentary scattering process takes the form  = ν. Only
the waves scattered either along the incident wave or in
the opposite direction are involved in such processes.
However, the integration in (24) is performed over all
ksz, which again leads to the possibility of the relation

 = ν holding for any frequency ν.

A completely different picture is observed in the pres-
ence of 2D inhomogeneities. In this case, for a wave
propagating along the z axis, the spectral density is

(26)

Near the right boundary of the Brillouin zone, the
second δ function in square brackets may be neglected.
This corresponds to the two-wave approximation in

M ν k,( ) Λ2

2
------

S k ks–( )
ν ks

2–
---------------------- ks.d∫=

ks
2

S k ks–( ) S1 kz ksz–( )δ kx ksx–( )δ ky ksy–( ).=

ksz
2

ksz
2

S k k1–( ) 1
2
---S2 ks⊥( )=

× δ kz ksz– q–( ) δ kz ksz– q+( )+[ ].

which M(ν, k) after the substitution of Eq. (26) into
(24) and the integration over ksz takes the form

(27)

and the energy conservation law is

(28)

The presence of the reciprocal superlattice vector q in
the energy relation (28) may suggest that, in this case,
we are dealing with one of the types of umklapp pro-
cesses; the type of the process is difficult to identify
accurately, because the momentum conservation law
does not hold. It follows from Eq. (28) that the energy
conservation law at the boundary of the Brillouin zone
for kz = kr = q/2 takes the form

(29)

where νr ≡  is the frequency corresponding to the
center of the band gap in a perfect superlattice. This law
can be fulfilled only for frequency ν > νr. For ν < νr, the
wave scattering is forbidden. In particular, damping
will arise in the region of the right peak of the unper-
turbed Green function at ν = νr + Λ/2 and will be absent
in the region of the left peak corresponding to ν = νr –
Λ/2. Thus, the sharp asymmetry in the dampings for the
lower and upper branches of eigenfrequencies and,
accordingly, the asymmetry in the FWHMs and ampli-
tudes of the left and right peaks of the Green function
in the case of wave scattering by 2D inhomogeneities is
a direct consequence of the energy conservation law for
the incident and reflected waves.

5. CONCLUSIONS
The following should be noted as a general conclu-

sion to the paper. We found an asymmetry in the ampli-
tudes and FWHMs of the peaks of the Green function
at the edges of the band gap in the spectrum of superlat-
tices that arises under the action of 2D inhomogene-
ities. In our view, this asymmetry can be of interest both
in further developing the general theory of the com-
bined effect of periodic and random inhomogeneities of
various dimensions on the wave spectrum and in appli-
cations. As a result of the asymmetry in the peaks, the
gap in the spectrum is closed with increasing rms fluc-
tuations of 2D inhomogeneities not in the traditional
way of the approach and symmetric broadening of the
peaks of the Green function, characteristic of both 1D
and 3D inhomogeneities, but through the broadening
and disappearance of only one peak of the Green func-
tion corresponding to the high-frequency boundary of
the band gap. This effect was shown to be a direct con-
sequence of the energy conservation law for the inci-
dent and scattered waves. On the other hand, the asym-
metry in the peaks of high-frequency susceptibility can
be used in practice to study the inhomogeneities in a

M ν k,( ) Λ2

4
------

S2 ks⊥( ) ks⊥d

ν kz q–( )2– ks⊥
2–

------------------------------------------,∫=

ksx
2 ksy

2+ ν kz q–( )2.–=

ksx
2 ksy

2+ ν νr,–=

kr
2
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superlattice by spectral methods. An experimental
observation of this effect would suggest the presence of
precisely 2D inhomogeneities in a superlattice.

Note also the successful (judging by Fig. 1) approx-
imation of the complex formula for the decreasing part
of the correlation function for 2D inhomogeneities
(Eqs. (6) and (11)) by the simple expression (14), which
can also be used in further studies of 2D inhomogene-
ities.
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