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1. INTRODUCTION

The microscopic nature of the superconducting state
in compounds with heavy fermions (HFs) is still mys-
terious in many respects, despite three decades of inves-
tigations into this directions (the first HF superconduc-
tor CeCu

 

2

 

Si

 

2

 

 was discovered in 1979 [1]). The main
feature of superconductivity in HF compounds is that
Cooper pairing takes place in a subsystem of heavy
quasi-particles [2] formed as a result of strong correla-
tion involving the magnetic degrees of freedom. The
proximity of the domains of the superconducting and
antiferromagnetic phases on the phase diagram led to
the hypothesis on the important role of spin fluctuations
in the mechanism of Cooper instability [3, 4]. This
hypothesis agrees well, in particular, with the anisotro-
pic order parameter that is experimentally observed in
many HF superconductors.

At present, it has been established that many of the
“classical” HF superconductors such as CeCu

 

2

 

Si

 

2

 

,
UBe

 

13

 

, and UPt

 

3

 

 exhibit superconductivity with 

 

d

 

-type
symmetry of the order parameter (see, e.g., [5, 6]).
Unusual properties of this superconducting phase can
be theoretically described, irrespective of a particular
mechanism of Cooper instability, by the stipulating
anisotropic order parameter in the initial assumptions
of the theory [7].

On the other hand, experimental investigations of
HF skutterudite LaFe

 

4

 

P

 

12

 

 [8], which is a superconduc-

tor at 

 

T

 

 < 

 

T

 

C

 

 = 4.1 K, led to the conclusion that the

 

s

 

-type symmetry of the order parameter in this com-
pound is preferred. More recently, an analogous sym-
metry type was observed in skutterudite PrRu

 

4

 

As

 

12

 

 [9].
These data stimulated investigations in which the 

 

s

 

-
type symmetry of the order parameter of the supercon-
ducting phase was related to the electron–phonon
mechanism of Cooper pairing [10]. At the same time,
data on the electronic specific heat and magnetic sus-
ceptibility of LaFe

 

4

 

P

 

12

 

, which allow this skutterudite to
be classified as an HF compound, point to the important
role of strong electron correlations. Evidently, these
correlations must be manifested in the mechanism by
which the superconducting 

 

s

 

-phase of LaFe

 

4

 

P

 

12

 

 forms.
In this context, it is also important to consider the elec-
tron mechanism of Cooper instability, which makes it
possible to describe the experimentally observed 

 

s

 

-
wave superconductivity under conditions of developed
processes of scattering on spin fluctuations in the local-
ized subsystem.

The properties of rare-earth intermetallides with
HFs are most frequently described in terms of the peri-
odic Anderson model. Using this model, the methodol-
ogy of investigations of superconductivity can be sub-
divided into several directions. One of these is based on
the Fermi-liquid description of heavy quasi-particles
and the Landau–Ginzburg theory. This approach was
successfully applied, in particular, to the construction
of the phase diagram of UPt

 

3

 

 [11]. Another direction in
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studying superconductivity in HF systems is related to
the application of perturbation theory up to the third
order with respect to the on-site Coulomb interaction
parameter 

 

U

 

 [12–14]. Unfortunately, this approach has
obviously limited applicability to the systems under
consideration, since the 

 

U

 

 value is not small and this
very fact serves as a basis for the HF state formation.
Some investigations in this direction were performed
using a different perturbative approach that was based
on the so-called 1/

 

N

 

 expansion, where the role of a
small parameter is played by the degeneracy 

 

N

 

 of the
rare-earth ion momentum [15].

In studies on the ground-state properties of HF sys-
tems as described in terms of the periodic Anderson
model, a useful approach is based on the Gutzwiller
wave function [16, 17]. In recent years, the dynamic
mean field theory has been widely used [18], but this
approach is strictly justified only in the limit of infinite
dimensionality of space. Finally, the method of slave
bosons (SBs) [19] is worth mentioning, which was
widely applied in many variants of investigating HF
superconductors until recently (see, e.g., [10, 20–22].
An advantage of this approach is the possibility of
using the Feynman diagram technique for calculating
Green’s functions, while the drawback is related to the
need for introducing special constraints eliminating the
contributions from nonphysical states. The latter cir-
cumstance is the source of difficulties encountered in
the development of the theory in the SB method. It
should be also mentioned that the mean field approxi-
mation that is usually employed in the SB method is,
strictly speaking, valid only in the case of small con-
centrations of the slave bosons (

 

n

 

SB

 

 

 

�

 

 1) and, hence,
cannot be considered correct states in the regime of
mixed valence or in the description of states with HFs.

The present investigation is based on the use of a
diagram technique for the Hubbard operators [23, 24],
which does not lead to the problem of nonphysical
states. In the physical aspect, the complicated character
of commutation relations for 

 

X

 

-operators is expressed
as an additional kinematic interaction [23] underlying
Cooper instability [25]. A principally new issue in the
proposed theory is the allowance for anomalous com-
ponents of the strength operator. Expressions obtained
for this operator in a one-loop approximation allowed
us to take into account the process of dynamic scatter-
ing on spin fluctuation in the description of a supercon-
ducting phase.

The subsequent presentation is arranged as follows.
In Section 2, the periodic Anderson model Hamiltonian
is written in the atomic representation for the regime of
strong correlations, exact representations of the Mat-
subara electron Green’s functions of the superconduct-
ing phase are obtained via the normal and anomalous
components of the mass and strength operators of the

 

f

 

-electron Green’s functions, and these representations
are compared to those obtained using of the SB method.
Section 3 is devoted to calculating the contributions of

components of the mass and strength operators of the

 

f

 

-electron Green’s functions in a one-loop approxima-
tion. In Section 4, an expression for the generalized
dynamic susceptibility is obtained in the same approx-
imation. Equations for the self-consistent calculation of
the critical temperature 

 

T

 

c

 

 and the order parameter are
considered in Section 5. Section 6 shows the results of
self-consistent numerical calculations in a graphical
representation. The concluding Section 7 considers the
dependence of the critical temperature of superconduc-
tivity on the concentration of electrons and the effect of
scattering on spin fluctuations on this dependence and
points to correlation of the results of self-consistent
numerical calculations with experimental values of the
critical temperature.

2. HAMILTONIAN OF THE PERIODIC 
ANDERSON MODEL AND EXACT 

REPRESENTATIONS OF GREEN’S FUNCTIONS

The Hamiltonian of the periodic Anderson model in
the atomic representation in the limit of infinite on-site
Coulomb repulsion for two 

 

f

 

-electrons can be written as
follows

(1)

where

(2)

Here, the first term in 

 

H

 

0

 

 describes the energy 

 

ξ

 

k

 

σ

 

 =

 

ε

 

k

 

 

 

−

 

 

 

σ

 

h

 

 – 

 

µ

 

 (measured relative to the chemical poten-
tial 

 

µ

 

) of the subsystem of itinerant (collectivized)
electrons with the dispersion 

 

ε

 

k

 

 in magnetic field 

 

h

 

(expressed in energy units); 

 

σ

 

 = 

 

±

 

1/2 is the electron

spin projection; and (

 

c

 

k

 

σ

 

) is the operator of elec-
tron creation (annihilation) in the state with quasi-
momentum 

 

k 

 

and electron spin projection 

 

σ

 

. The sec-
ond term in 

 

H

 

0

 

 describes the energy of the system of
localized 

 

f

 

-electrons in the magnetic field, where

 = 

 

E

 

0

 

 – 

 

σ

 

h

 

 – 

 

µ

 

 and 

 

E

 

0

 

 is the bare energy of a local-
ized level. The interaction Hamiltonian 

 

H

 

int

 

 describes
hybridization of the collectivized (band) states and
localized states with the intensity characterized by the
matrix element 

 

V

 

k

 

 and the Hubbard operators are
defined on a basis set of single-ion orbitals as 

 

X

 

mn

 

 =

 

|

 

m

 

〉〈

 

n

 

|

 

. For 

 

U

 

 = 

 

∞

 

, this basis set contains two one-elec-
tron states 

 

|↑〉, |↓〉

 

and one vacuum state 

 

|

 

0

 

〉

 

.

In the description of the superconducting phase, we
employ two sets of the Matsubara Green’s functions. As

H H0 H int,+=

H0 ξkσckσ
† ckσ

kσ
∑ ẼσX f

σσ,
fσ
∑+=

H int
1

N
-------- Vke

ikf– ckσ
† X f

0σ H.c.+( ).
kfσ
∑=

ckσ
†

Ẽσ
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is commonly accepted, we introduce the normal
Green’s functions as

(3)

and the anomalous Green’s functions as

(4)

which are constructed using the Fermi operators of
secondary quantization for the subsystem of itinerant
electrons. In Eqs. (3) and (4), Tτ is the operator of
ordering with respect to Matsubara time τ, all opera-
tors are used in the Heisenberg representation, and the
angle brackets denote thermodynamic averaging with
Hamiltonian (1).

Since the structure of Hamiltonian (1) includes the
X-operators (in addition to the secondary quantization
operators), it is also necessary to use the set of Green’s
functions for localized electrons, which are defined
using the Hubbard operators as

(5)

In order to determine Green’s functions (3)–(5), we
use a graphical representation of perturbation theory,
which combines the usual Feynman technique [26]
and the aforementioned diagram technique for the
Hubbard operators [23, 24]. The latter technique has
certain special features that are related to the compli-
cated character of the permutation relations for
X-operators (the result of permutation of two such
operators cannot be reduced to a numerical function).
This circumstance leads to the appearance of a special
class of diagrams called terminal diagrams [23]. The
complete set of diagrams constitutes a new structural
element called strength operator or (in terms of [24])
the terminal factor.

The diagram representations show that the Green’s
functions introduced above obey the following relation
in the momentum representation:

(6)

For brevity, we write this equation in the matrix form,
where

(7)

Gkσ τ τ '–( ) Tτc̃kσ τ( )c̃kσ
† τ '( )〈 〉 ,–=

G kσ– τ τ '–( ) Tτc̃ kσ–
† τ( )c̃ kσ– τ '( )〈 〉–=

Fkσ τ τ '–( ) Tτc̃kσ τ( )c̃ kσ– τ '( )〈 〉 ,–=

Fkσ τ τ '–( ) Tτc̃ kσ–
† τ( )c̃kσ

† τ '( )〈 〉 ,–=

Dab fτ; gτ '( ) Tτ X̃ f
a τ( ) X̃g

b– τ '( )〈 〉 ,–=

a b, 0 σ,( ) σ 0,( ),{ }.=

Ĝkσ iωn( ) Ĝkσ
0( )

iωn( )=

+ Ĝkσ
0( )

iωn( )V̂kD̂σ k iωn,( )V̂k
†
Ĝkσ

0( )
iωn( ).

Ĝkσ iωn( )
Gkσ iωn( ), Fkσ iωn( )

Fkσ iωn( ), G k– σ, iωn( )⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

D̂σ k iωn,( )

(8)

(9)

and take into account that, in writing the average of the
T-ordered product

〈Tτ (τ) (τ')Hint(τ1)Hint(τ2)…Hint(τn)〉,

the pairing of c-operators is performed independently
of the pairing of X-operators. The pairing of operator

ckσ(τl) from Hint(τl) with operator (τm) from Hint(τm)
yields the following operator:

(10)

which describes the process of localized electron hop-
ping from site m to site l. In this respect, the new oper-
ator is analogous to the operator of kinetic energy in the
Wannier representation, while the difference is that a
shift appears in the Matsubara time between the events
of electron annihilation on site m and its production on
site l. In the Hubbard model, these events take place
simultaneously. Despite this difference, the problem of
determining the Green’s functions of the f-electrons
formally reduces to an analogous problem for the Hub-
bard model in the regime of strong correlations, in
which the role of a hopping integral tk is played by the

quantity (k, iωn) = |Vk |2 (iωn). It should be noted
that, for the nonsuperconducting phase, such equiva-
lence was established for the first time by the method of
generating functional [27]. The dependence of the
effective hopping integral (k, iωn) on the Matsubara
frequency is determined by the aforementioned time
shift between the events of electron annihilation and
production (an analogous situation is revealed by the
analysis of electron–phonon interaction [26]). Once the
Green’s functions of the localized subsystem are found,
those of c-electrons are obtained by substituting

(k, iωn) into Eq. (6).
The presence of terminal diagrams results in the fact

that (k, iωn) in the (k, ωn) representation can be
expressed via the function

=  
D0σ 0σ, k iωn,( ), D0σ σ0, k iωn,( )
Dσ0 0σ, k iωn,( ), Dσ0 σ0, k iωn,( )⎝ ⎠

⎜ ⎟
⎛ ⎞

,

Ĝkσ
0( )

iωn( ) Gkσ
0( ) iωn( ), 0

0, G kσ–
0( )

iωn( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

V̂k
Vk, 0

0, V k–*–⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

Gkσ
0( ) iωn( ) 1

iωn ξkσ–
---------------------,=

G kσ–
0( )

iωn( ) 1
iωn ξ kσ–+
------------------------,=

X f
α X f

β–

ckσ
†

Vk
2Gkσ

0( ) τl τm–( ) ik l m–( )[ ]Xl
σ0 τl( )Xm

0σ τm( ),exp

t̃σ Gkσ
0( )

t̃σ

D̂σ

D̂σ
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(11)

and the strength operator

(12)

as follows:

It should be emphasized that, in addition to the normal
components, there are nonzero anomalous components

(k, iωn) and (k, iωn). In graphical form,
the system of equations for determining function (11)
can be presented as follows:

 (13)

where thick solid line corresponds to (k, iωn), the
encircled Σ symbol corresponds to the mass operator

(14)

symbol P in semicircle corresponds to the strength
operator, the double line corresponds to the function

(15)

the thin solid line corresponds to the diagonal matrix of
local propagators

(16)

and the wavy line corresponds to the effective interac-
tion matrix

(17)

�̂σ k iωn,( )

=  
�0σ 0σ, k iωn,( ), �0σ σ0, k iωn,( )
�σ0 0σ, k iωn,( ), �σ0 σ0, k iωn,( )⎝ ⎠

⎜ ⎟
⎛ ⎞

P̂σ k iωn,( )

=  
P0σ 0σ, k iωn,( ), P0σ σ0, k iωn,( )
Pσ0 0σ, k iωn,( ), Pσ0 σ0, k iωn,( )⎝ ⎠

⎜ ⎟
⎛ ⎞

D̂σ k iωn,( ) �̂σ k iωn,( )P̂σ k iωn,( ).=

P0σ σ0, Pσ0 0σ,

= + Σ

= + P

�̂σ

Σ̂σ k iωn,( )

=  
Σ0σ 0σ, k iωn,( ), Σ0σ σ0, k iωn,( )
Σσ0 0σ, k iωn,( ), Σσ0 σ0, k iωn,( )⎝ ⎠

⎜ ⎟
⎛ ⎞

,

�̂σ
0( )

k iωn,( )

=  
�0σ 0σ,

0( )
k iωn,( ), �0σ σ0,

0( )
k iωn,( )

�σ0 0σ,
0( )

k iωn,( ), �σ0 σ0,
0( )

k iωn,( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

ĝσ iωn( ) iωn Ẽσ–( ) 1–
, 0

0, iωn Ẽσ+( ) 1–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

t̂σ k iωn,( ) V̂kĜkσ
0( )

iωn( )V̂k
†

=

=  
Vk

2 iωn ξkσ–( ) 1– , 0

0, V k–
2 iωn ξ kσ–+( ) 1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

In the analytical form, Eqs. (13) are written as follows:

(18)

Excluding (k, iωn) from these relations, we arrive at
an exact matrix representation that relates function (11)
to the mass and strength operators:

(19)

Writing the components separately, we obtain

(20)

(21)

(22)

(23)

where

(24)

Equations (20)–(24) give exact representations of
the normal and anomalous Green’s functions of the
localized f-electrons in the superconducting phase via

�̂σ k iωn,( ) �̂σ
0( )

k iωn,( )=

+ �̂σ
0( )

k iωn,( )Σ̂σ k iωn,( )�̂σ k iωn,( ),

�̂σ
0( )

k iωn,( ) ĝσ iωn( )=

+ ĝσ iωn( )P̂σ k iωn,( ) t̂σ k iωn,( )�̂σ
0( )

k iωn,( ).

�̂σ
0( )

�̂σ k iωn,( ) ĝσ
1– iωn( )[=

–  P ̂ σ k i ω n ,( ) t ˆ σ k i ω n ,( ) Σ ˆ σ k i ω n ,( ) ] 
1–

 .–

�0σ 0σ, k iωn,( ) iωn Ẽσ Pσ0 σ0, k iωn,( ) V k–
2–+[=

× G kσ–
0( )

iωn( ) Σσ0 σ0, k iωn,( ) ]–

× detσ k iωn,( )[ ] 1– ,

�0σ σ0, k iωn,( ) P0σ σ0, k iωn,( ) V k–
2G kσ–

0( )
iωn( )[=

+ Σ0σ σ0, k iωn,( ) ] detσ k iωn,( )[ ] 1– ,

�σ0 0σ, k iωn,( ) Pσ0 0σ, k iωn,( ) Vk
2Gkσ

0( ) iωn( )[=

+ Σσ0 0σ, k iωn,( ) ] detσ k iωn,( )[ ] 1– ,

�σ0 σ0, k iωn,( ) iωn – Ẽσ P0σ 0σ, k iωn,( )–[=

× Vk
2Gkσ

0( )
iωn( ) Σ0σ 0σ, k iωn,( ) ]–

× detσ k iωn,( )[ ] 1– ,

detσ k iωn,( ) iωn Ẽσ– P0σ 0σ, k iωn,( )–[=

× Vk
2Gkσ

0( ) iωn( ) Σ0σ 0σ, k iωn,( ) ]–

× iωn Ẽσ Pσ0 σ0, k iωn,( )–+[

× V k–
2G kσ–

0( )
iωn( ) Σσ0 σ0, k iωn,( ) ]–

– P0σ σ0, k iωn,( ) V k–
2G kσ–

0( )
iωn( )[

+ Σ0σ σ0, k iωn,( ) ]

× Pσ0 0σ, k iωn,( ) Vk
2Gkσ

0( ) iωn( )[

+ Σσ0 0σ, k iωn,( ) ].
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the normal and anomalous components of the mass and
strength operators. These equations, together with
Eq. (6), also determine the exact representation of the
normal and anomalous Green’s functions of itinerant
electrons via the same (f-electron) mass and strength
operators. The further use of these equations implies
the choice of a particular approximation, with the
explicit calculation of the mass and strength operators.

Let us analyze the structure of the representation for
the normal phase, assuming that the anomalous compo-
nents of the mass and strength operators are zero and
Eq. (20) takes the following form:

(25)

Using the explicit form of the c-electron propagator

(iωn), we obtain the following expression for the
Green’s functions of localized electrons:

(26)

The equation with an analogous structure for the nor-
mal component of the Green’s functions of f-electrons
in a nonsuperconducting phase was obtained previ-
ously [27] using the generation functional method.
Substituting expression (26) into the equation

(27)

derived from matrix relation (6), we obtain the exact
representation of the Green’s functions of itinerant
electrons in the normal phase:

(28)

Let us compare the exact representations (26) and (28) to
those obtained within the framework of the method of
slave bosons (most popular until recently in the HF
superconductor theory), which can be written as follows:

(29)

(30)

Here, λ is the Lagrange renormalization factor deter-
mined from the condition nSB = 1 – nf, where nSB is the

�0σ 0σ, k iωn,( ) iωn Ẽσ– Σ0σ 0σ, k iωn,( )–[=

– P0σ 0σ, k iωn,( ) Vk
2Gkσ

0( ) iωn( ) ] 1– .

Gkσ
0( )

D0σ 0σ, k iωn,( ) iωn ξkσ–( )P0σ 0σ, k iωn,( )=

× iωn ξkσ–( ) iωn Ẽσ– Σ0σ 0σ, k iωn,( )–[ ]{

– P0σ 0σ, k iωn,( ) Vk
2 } 1–

.

Gkσ iωn( ) Gkσ
0( ) iωn( )=

+ Gkσ
0( ) iωn( )( )2

Vk
2D0σ 0σ, k iωn,( ),

Gkσ iωn( ) iωn Ẽσ– Σ0σ 0σ, k iωn,( )–[ ]=

× iωn ξkσ–( ) iωn Ẽσ– Σ0σ 0σ, k iωn,( )–[ ]{

– P0σ 0σ, k iωn,( ) Vk
2 } 1–

.

Dkσ
SB iωn( ) iωn ξkσ–( )=

× iωn ξkσ–( ) iωn Ẽσ– λ–( ) 1 n f–( ) Vk
2–[ ] 1–

,

Gkσ
SB iωn( ) iωn Ẽσ– λ–( )=

× iωn ξkσ–( ) iωn Ẽσ– λ–( ) 1 n f–( ) Vk
2–[ ] 1–

.

SB concentration. The comparison of Eqs. (28) and
(30) shows that the mass operator Σ0σ, 0σ of the exact
representation corresponds to factor λ in the SB
description, while the strength operator corresponds to
the slave boson concentration:

(31)

Adopting this correspondence, we note that the exact
representation (26) differs from approximate (29) by
the factor P0σ, 0σ(k, iωn) entering into the numerator.
Since the established correspondence implies that fac-
tor P0σ, 0σ(k, iωn) = 1 – nf , the difference between the
two representations is small provided that nf � 1. From
this it follows that the domain of applicability of the
mean field theory of slave bosons is restricted to small
concentrations of localized electrons (nf � 1) and,
hence, the use of this theory in the HF regime is not cor-
rect. In the absence of the aforementioned renormaliza-
tion factor in the numerator, application of the SB
approach to description of the localized electrons in the
Kondo regime (nf  1) significantly distorts the spec-
tral intensity and absolute values of thermodynamic
means. In concluding this comparative analysis, it
should be noted that, in view of the dependence of the
mass and strength operators on the Matsubara fre-
quency, the actual renormalizations will be different on
various energy scales. Evidently, this circumstance is
ignored in the methodology of slave bosons, at least in
the first approximation.

3. ONE-LOOP APPROXIMATION FOR THE MASS 
AND STRENGTH OPERATORS

IN A SUPERCONDUCTING PHASE

Self-consistent equations for calculating parameters
of the superconducting phase will be derived in a one-
loop approximation. The diagrams determining contri-

Σ0σ 0σ, k iωn,( ) λ,

P0σ 0σ, k iωn,( ) nSB 1 n f .–=

Table 1.  One-loop diagrams for the mass and force operators

Σ0σ, 0σ

δP0σ, 0σ

0σ

0σ

0σ 0σ 0σ

Σ0σ σ0,

0σ 0σ

0σ σ00σ

σ0

0σ σ0 0σ

σ0

0σ
0σ

0σ 0σ 0σ 0σ

0σ
0σ

P0σ σ0,

0σ

0σ0σ

σ0 σ0

σ0σ0

0σ
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butions to the mass and strength operators in this approx-
imation are presented in Table 1. These diagrams were
obtained using the topological continuity principle [28]
supplemented by the principle that the Fermi-like Hub-
bard operators are superior to Bose-like operators [24].
There is one diagram for a normal component of the
mass operator, and two diagrams for all other compo-
nents. The normal component of the strength operator in
the loopless approximation is nonzero and is expressed
as 1 – Nσ, where Nσ is the probability of occupation of
the f-level by an electron with the spin projection σ.
Denoting the one-loop correction to this value by
δP0σ, 0σ, we have P0σ, 0σ = 1 –  + δP0σ, 0σ.

Table 2 presents separate graphical elements of the dia-
grams and the corresponding functions, where the double-
dash line with a black circle corresponds to the Fourier
transform of the transverse quasi-spin Green’s function

(32)

and cross-hatched regions corresponds to the Fourier
transform of the irreducible Green’s function

(33)

of the quasi-Bose diagonal Hubbard operators, where
∆X = X – 〈X〉. For s = σ, this irreducible Green’s func-
tion corresponds to the region with two open circles,
and for s = , this function corresponds to the region
with one open and one black circle. The condition of
irreducibility implies the absence of split graphs (see,
e.g., [29]) in the diagrams of Green’s functions (33).
The other functions presented in Table 2 are as defined
above. Using the rules of the diagram technique for
Hubbard operators and the data of Tables 1 and 2, we
can write the following analytical expressions for the
normal and anomalous components of the mass and
strength operators:

(34)

Nσ

Dσσ σσ, fτ; gτ '( ) Tτ X̃ f
σσ τ( ) X̃g

σσ τ '( )〈 〉–=

Dσσ ss,
irr( ) fτ; gτ '( ) Tτ∆ X̃ f

σσ τ( )∆ X̃g
ss τ '( )〈 〉–=

σ

Σ0σ 0σ,

=  
T
N
---- Vq

2Gq σ,
0( ) iωm( )�0σ 0σ, q iωm,( ),

q ωm,
∑–

Σ0σ σ0,
T
N
---- Vq

2

q ωm,
∑=

(35)

(36)

(37)

As can be seen, the mass operator components in the
one-loop approximation are independent of the quasi-
momentum k and frequency ωn, and the mass operator
obeys the relation  = – . Expressions (36)
and (37) for the strength operator components contain
the Fourier transforms of the quasi-spin Green’s func-
tion (32) and the irreducible Green’s function [33].
Thus, the scattering on spin fluctuations influences, via
the strength operator, the mechanism of Cooper insta-
bility in HF systems.

Applying representation (21) to expressions (35)
and (37), we obtain a closed system of integral equa-
tions for determining the anomalous components of the
mass and strength operators of the superconducting
phase. Taking into account that the magnetic field in
this phase is absent, the system of equations for Σ12 =
Σ0↑, ↓0 and 2P(k, iωn) = P0↑, ↓0(k, iωn) – P0↓, ↑0(k, iωn)
can be written as follows:

(38)

(39)

× Gq σ,
0( ) iωm( )�0σ σ0, q iωm,( )[

– Gq σ,
0( ) iωm( )�0σ σ0, q iωm,( ) ],

δP0σ 0σ, k iωn,( ) T
N
---- Vq

2

q ωm,
∑–=

× Gq σ,
0( ) iωm( )�0σ 0σ, q iωm,( )Dσσ σσ, k q– iωn, iωm–( )[

+ Gq σ,
0( ) iωm( )�0σ 0σ, q iωm,( )

× Dσσ σσ,
irr( ) k q– iωn, iωm–( ) ],

P0σ σ0, k iωn,( ) T
N
---- Vq

2

q ωm,
∑–=

× Gq σ,
0( ) iωm( )�0σ σ0, q iωm,( )Dσσ σσ, k q– iωn, iωm–( )[

+ Gq σ,
0( ) iωm( )�0σ σ0, q iωm,( )

× Dσσ σσ,
irr( ) k q– iωn, iωm–( ) ].

Σ0σ σ0, Σ0σ σ0,

Σ12
2T
N
------ Vq

2Gq
0( ) iωm( )

q ωm,
∑–=

×
Vq

2Gq
0( )

iωm( )P q iωm,( ) Σ12+
det q iωm,( )

-------------------------------------------------------------------------,

P k iωn,( ) T
N
---- Vq

2Gq
0( ) iωm( )

q ωm,
∑=

× χC
–( ) k q– iωn, iωm–( )

×
Vq

2Gq
0( )

iωm( )P q iωm,( ) Σ12+
det q iωm,( )

-------------------------------------------------------------------------.

Table 2.  Graphical elements of diagrams and the corre-
sponding functions

g0σ(iωn) �0σ, 0σ(k, iωn)0σ 0σ 0σ

Dσσ σσ, k iωn,( ) 0σσ0 �σ0 0σ, k iωn,( )

Vk
2Gkσ

0( ) iωn( ) Dσσ σσ,
irr( ) k iωn,( )

Vk
2Gkσ

0( ) iωn( ) Dσσ σσ,
irr( ) k iωn,( )
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The passage to the symmetrized combination for P is
advantageous in that the longitudinal and transverse
quasi-spin Green’s functions enter into the equation in
an additive manner so that

(40)

In introducing the longitudinal quasi-spin Green’s
function D||(k, iωn) and the Green’s function of charge
fluctuations C(k, iωn), we took into account the com-

pleteness condition, according to which  +  +

 = 1, and the operator identity  = /2 + 2σ ,

where σ = ±1/2 and  =  + . With allowance
for these relations, the Fourier transforms of irreducible
Green’s functions [33] can be written as follows:

(41)

where C(k, iωn), D||(k, iωn), and D⊥(k, iωn) are
expressed by the expansions

(42)

(43)

(44)

under the condition that h = 0. In writing the last equa-
tion, we took into account that, for h = 0, the quasi-spin
Green’s functions are spherically symmetric, so that
D⊥(k, iωn) = 2D||(k, iωn).

4. QUASI-SPIN GREEN’S FUNCTIONS
IN THE ONE-LOOP APPROXIMATION

For the subsequent consideration of system of self-
consistent equations (38), it is necessary to calculate

(q, iωm). The characteristic energies of charge fluc-

χC
–( ) k iωn,( ) D⊥ k iωn,( ) D|| k iωn,( )+=

–
1
4
---C k iωn,( ) 3D|| k iωn,( ) 1

4
---C k iωn,( ).–=

X f
00 X f

σσ

X f
σσ X f

σσ N̂ f S f
z

N̂ f X f
↑↑ X f

↓↓

Dσσ σσ,
irr( ) k iωn,( ) 1

4
---C k iωn,( ) D|| k iωn,( ),+=

Dσσ σσ,
irr( ) k iωn,( ) 1

4
---C k iωn,( ) D|| k iωn,( ).–=

Tτ∆ Ñ̂ f τ( )∆ Ñ̂g τ '( )〈 〉–
T
N
----=

× ik f g–( ) iωm τ τ '–( )–[ ]C k iωm,( ),exp
k iωm,
∑

TτS̃ f
z τ( )S̃g

z τ '( )〈 〉–
T
N
----=

× ik f g–( ) iωm τ τ '–( )–[ ]D|| k iωm,( ),exp
k iωm,
∑

TτX f
σσ τ( )Xg

σσ τ '( )〈 〉–
T
N
----=

× ik f g–( ) iωm τ τ '–( )–[ ]D⊥ k iωm,( ),exp
k iωm,
∑

χC
–( )

tuations in most cases significantly exceed the energies
of spin fluctuations. For this reason, the contribution of
charge fluctuations is smaller than that of spin fluctua-
tions and can be ignored.

In the one-loop approximation, the graphic equation
for the transverse quasi-spin Green’s function is as fol-
lows:

(45)

where the black circle corresponds to the quasi-spin
strength operator (q, iωm) defined as

(46)

Here, the open circle corresponds to the zero-order con-
tribution (  – Nσ), and the next two elements repre-

sent the one-loop corrections (q, iωm). In
Eq. (45), the thick wavy element corresponds to the
effective interaction obeying the following equation:

(47)

where symbol P in the semicircle again denotes the
f-electron strength operator P0σ, 0σ(q, iωm). Using the
rules of the diagram technique for the Hubbard opera-
tors, we can write Eq. (45) in the analytical form as

(48)

Taking into account the relation (iωm) = 1/(iωm +
2σh) for a quasi-spin propagator, this equation can be
rewritten as follows:

(49)

Here, the spin mass operator (k, iωm) that repre-
sents contributions due to the two loops in the right-
hand part of Eq. (45) is expressed as

(50)

σσ σσ σσ

σ0 σ0

σσ σσ σσ

σσσσσσ

0σ 0σ

+ +=

+
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0σσ0 σ0 0σ

0σ
0σσ0

σ0

+ +=
PP

Nσ

δPσσ σσ,

P= +

Dσσ σσ, k iωm,( ) gσσ
0( ) iωm( )Pσσ σσ, k iωm,( )=

+ gσσ
0( ) iωm( )Σσσ σσ, k iωm,( )Dσσ σσ, k iωm,( ).

gσσ
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Dσσ σσ, k iωm,( )
Pσσ σσ, k iωm,( )

iωm 2σh Σσσ σσ, k iωm,( )–+
-------------------------------------------------------------------.=

Σσσ σσ,

Σσσ σσ, k iωm,( ) T
N
---- tσ q iωn,( )

q ωn,
∑–=

× 1 tσ q iωn,( )D0σ 0σ, q iωn,( )+[ ]Gσ0 σ0, k q– iωm n–,( )

–
T
N
---- tσ q iωn,( ) 1 tσ q iωn,( )D0σ 0σ, q iωn,( )+[ ]

q ωn,
∑

× G0σ 0σ, k q+ iωm n+,( ).
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For the strength operator (k, iωm) determined by
Eq. (46), the rules of the diagram technique for the
Hubbard operators yield the following analytical
expression:

(51)

Formulas (49)–(51), together with the system of self-
consistency equations derived in Section 3 and the rep-
resentations of quasi-spin Green’s functions, it is possi-
ble to study in a self-consistent manner the conditions

under which the superconducting phase exists in the
system under consideration.

5. SELF-CONSISTENCY EQUATIONS
AT THE POINT OF TRANSITION

Since the quasi-spin Green’s functions enter only
into the one-loop correction to the strength operator, we
can solve the self-consistency equations with the
assumed accuracy using some simplifying assump-
tions. First, in calculating the quasi-spin mass operator

(k, iωm), the electron Green’s functions can be
taken in the loopless approximation. This allows sum-
mation over Matsubara frequencies in Eq. (50) to be
performed in an analytical form that yields

(52)

where f(x) = [exp(x/T) + 1]–1 is the Fermi–Dirac func-
tion and  = Eσ + Σ0σ, 0σ – µ is the energy of a local-
ized electron level. Note that, in calculating the trans-
verse Green’s functions, the magnetic field is consid-
ered to be nonzero and the limit h  0 is taken only
at the final stage. The one-particle mixon spectrum is
given by the following expression:

where

(53)

The summation over Matsubara frequencies in
Eq. (51) yields the following expression for the
strength operator:

(54)

where

The first term in Eq. (54) is written with allowance for
smallness of the magnetic field. The resulting static sus-
ceptibility is determined in the limit as

(55)

The generalized dynamic susceptibility

(56)

is calculated using formulas (49), (52), and (54), where it
is necessary to take into account the difference between
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α( )
Vq

2 Ẽqσ
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2 Ẽqσ

α ξqσ–( ) iωm– Ẽqσ
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α
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zero value of the Matsubara frequencies (m = 0) and non-
zero values (m ≠ 0). For m = 0, the functions Rσ(k, iωm)
and (k, iωm) at small magnetic fields are propor-
tional to 2σh and the Green’s function (49) can be repre-
sented as

(57)

For m ≠ 0, the functions Rσ(k, iωm) and (k, iωm)
remain finite as h  0 and can be written as products
of iωm and the following real functions of ωm:

(58)

where

(59)

(60)

Thus, for ωm ≠ 0, the spin Green’s function (49) takes
the following form:

(61)

Expressions (57) and (61) determine the spin Green’s
function as a real function of the Matsubara frequency.
These will be used below in self-consistent numerical
calculations.

As was mentioned above, HF skutterudite LaFe4P12
features the transition to a superconducting phase with
s-type symmetry of the order parameter [8]. For this
symmetry type, details of variation of the quasi-spin
Green’s function within the Brillouin zone are insignif-
icant and we can use a widely used approximation [30,
31] in which the generalized susceptibility (56) is
replaced by its average value over the Brillouin zone:

(62)

In this case, as can be seen from self-consistency equa-
tions (38), the strength operator P depends only on the

Matsubara frequency. Taking into account that Σ12 and
P(iωn) vanish at the point of the superconducting tran-
sition, we can introduce the function

(63)

which remains finite at T = Tc. Substituting P(iωn) =
Σ12ρ(iωn) in Eq. (38) and canceling Σ12, we obtain a
system of equations for simultaneously determining
ρ(iωn) and the critical temperature:

(64)

where

(65)

Note that, since system of equations (64) is used to deter-
mine the critical temperature, all functions and the Mat-
subara frequencies are taken for T = Tc. The obtained sys-
tem of self-consistent equations should be supplemented
with an equation for the chemical potential,

(66)

where ne is the total concentration of electrons per unit
cell in both subsystems. The average values of the
occupation numbers of itinerant (nc) and localized (nf)
electrons are calculated using the following formulas:
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(67)

For determining the boundaries of the domain of exist-
ence of the superconducting phase, the Green’s func-
tions D0σ, 0σ(k, iωn) and Gkσ(iωn) in Eq. (67) are given
by expressions (26) and (28) without contributions due
to anomalous components of the mass and strength
operators.

6. DEPENDENCE OF THE CRITICAL 
TEMPERATURE ON THE ELECTRON 

CONCENTRATION

Calculation of the critical temperature using numer-
ical solution of Eqs. (64) involves preliminary determi-
nation of the normal component of the strength opera-
tor P0σ, 0σ(k, iωn) = 1 – n/2 + δP0σ, 0σ (entering into for-
mula (65) for Φ(iωm)) as a function of the Matsubara
frequency. This problem was solved using analytical
expression (36), in which the spin and irreducible
Green’s functions averaged over the Brillouin zone
were used as described in the preceding section.

Figure 1 shows the typical frequency dependences
of the real and imaginary parts of δP11 = δP0↑, 0↑
obtained using self-consistent calculations for a total
electron concentration of ne = 1.482 (the corresponding
f-electron concentration is nf = 0.83). Since the real
components of δP11(iωm) are even functions of the fre-
quency, while the imaginary parts are odd, the curves
are presented only for the positive Matsubara frequen-
cies. In these calculations, we assumed that the crystal-
line structure of HF skutterudite LaFe4P12 possesses a
cubic symmetry and the bare spectrum of itinerant

n f 2
T
N
---- iωnδ( )D0σ 0σ, k iωn,( ),exp

kωn

∑=

nc 2
T
N
---- iωnδ( )Gkσ iωn( ), δ +0.exp

kωn

∑=

(band) electrons can be written in the tight binding
approximation as

(68)

with a bandwidth of W = 12|t1| (t1 < 0) and a hybridiza-
tion constant equal to one-tenth of the band width,
V/|t1| = 1.2. The localized level occurs in the conduction
band, at a distance of W/3 from the minimum (E0/|t1| =
–2). For other values of the parameters, the qualitative
pattern presented in Fig. 1 is retained.

Figure 2 shows characteristic features in the behav-
ior of the function ρ(iωn) (63) introduced in the course
of self-consistent calculations of the critical tempera-
ture Tc (for the system parameters indicated above). For
the same reasons as above, we present only the real and
imaginary parts of ρ(iωn) for the positive Matsubara
frequencies.

The main result obtained in this part of numerical
calculations was that, for frequencies on the order of
the width of the conduction band, both δP11(iωm) and
ρ(iωm) exhibit a strong dependence on ωm. At low fre-
quencies, the real part of δP11(iωm) amounts approxi-
mately to –0.1 and the renormalization of the effective
hybridization parameter toward a decrease is more pro-
nounced. As a result, the real part of the renormaliza-
tion factor for the hybridization constant in the region
of low frequencies is 1 – nf/2 – 0.1 = 0.485. This value
is intermediate between those obtained using the Hub-
bard-I approximation (1 – nf/2 = 0.585) and the slave-
boson approach (1 – nf = 0.17). A significant distinctive
feature is that, in both latter approximations, the imag-
inary component of renormalization (which accounts
for the scattering) is not taken into account and the fre-
quency dependence is totally ignored.

Figure 3 presents the typical frequency dependences
of the Matsubara susceptibility χ(iωm) = –3D||(iωm),
which was calculated simultaneously with the compo-
nents of the strength operator. As can be seen, this func-

εk 2t1 kxcos kycos kzcos+ +( )=

1086420
ωm/|t1|

0.04

0

–0.04

–0.08

–0.12

ReδP11

0.04

0

–0.04

–0.08

–0.12

20ImδP11

Fig. 1. Typical frequency dependences of the real and imag-
inary parts of a correction to the normal component of the
strength operator.

1086420
ωm/|t1|

0.3

0.2

0.1

Reρ

0.3

0.2

0.1

0

–20Imρ

Fig. 2. Typical frequency dependences of the function ρ (63).
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tion at low frequencies is significantly different from
zero at low frequencies in the interval 0 < |ωm | < W/3.
In addition, the susceptibility exhibits an outburst at
ωm = 0 (see the remark after Eq. (55)).

By jointly solving the equations for χ(iωm),
δP11(iωm), ρ(iωm), and chemical potential, it is possible
to follow the critical temperature of the transition to a
superconducting state with s-type symmetry of the
order parameter. The results of self-consistent numeri-
cal calculations of the critical temperature as a function
of the electron concentration, obtained using Eqs. (64)
with allowance for the dynamic character of spin fluc-
tuations, are presented in Fig. 4 (solid curve). A charac-
teristic feature of this dependence is that the Cooper
instability is observed only in the region of electron
concentrations ne ≥ ncr , where the upper hybridized
subband contains quasi-particles. If the chemical
potential occurs in the lower subband, the conditions
for s-wave superconductivity are not satisfied. As the
upper band is occupied, Tc initially exhibits a sharp
increase, passes through a maximum at an optimum
electron concentration, and then gradually decreases.

In order to elucidate the role of dynamic spin fluctu-
ations in the formation of an s-wave superconducting
state, let us compare the obtained dependence of Tc on
the electron concentration to the analogous depen-
dences calculated within simpler models, in particular,
using (a) the approximation ignoring the dynamics of
spin fluctuations (static approximation) and (b) the
mean-field approximation.

In the static approximation, the quasi-spin Green’s
functions are nonvanishing only for zero Matsubara fre-
quency. In real experiments, this corresponds to high
temperatures and, accordingly, this approximation may
be called the high-temperature limit. Indeed, according
to formula (61), the Green’s function (k, iωm) is
inversely proportional to T2. This allows all harmonics
of the magnetic susceptibility except for ωm = 0 to be

Dσσ σσ,

ignored at high temperatures. In this case, Eq. (64)
yields the following solution for ρ(iωm):

(69)

where

(70)

On the other hand, we have ρ(iωn) = –T (0)Φ(iωn).
Then, summing ρ(iωn) over the Matsubara frequencies
and taking into account the second equation (64), we
obtain the following sum rule:

(71)

which allows the equation for the critical temperature
Tc to be written in an explicit form as

(72)

ρ iωn( )
Tχ 0( )Φ1 iωn( )

1 Tχ 0( )Φ2 iωn( )+
---------------------------------------------,–=

Φ1 iωm( ) 1
N
----=

×
Vq

2 iωm ξq+( )

iωm ξq–( ) iωm ε̃ f–( ) P0σ 0σ, iωm( ) Vq
2–

2
-----------------------------------------------------------------------------------------------------,

q

∑

Φ2 iωm( ) 1
N
----=

×
Vq

4

iωm ξq–( ) iωm ξ̃ f–( ) P0σ 0σ, iωm( ) Vq
2–

2
------------------------------------------------------------------------------------------------------.

q

∑

χ

2 ρ iωn( )
ωn

∑ χ 0( ),=

1 2T
Φ1 iωn( )

1 Tχ 0( )Φ2 iωn( )+
---------------------------------------------

ωn

∑+ 0.=

86420
ωm/ |t1|

0.4

0.3

0.2

0.1

χ(iωm)|t1|

Fig. 3. Typical plot of the dynamic magnetic susceptibility
versus Matsubara frequency.

1.81.71.61.51.4
ne

0.012

0.008

0.004

0

Tc/ |t1|

Fig. 4. Plots of the temperature of transition to the super-
conducting state with s-type symmetry of the order param-
eter versus electron concentration, as calculated using (solid
curve) the dynamic spin-fluctuation approximation by
Eqs. (64), (dashed curve) static approximation by for-
mula (73), and (dash-dot curve) the mean field approxi-
mation by formula (74).
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It should be noted that the same equation was previ-
ously derived [32] under the condition that the Cooper
channel has a pole in the scattering amplitude calcu-
lated for the normal phase with allowance for the static
spin-fluctuation contributions. This coincidence shows
that inclusion of the anomalous components of the
strength operator into the theory of a superconducting
phase corresponds to allowance for the spin and charge
fluctuations. In this context, it should be noted that Zait-
sev [33] solved the problem of Cooper instability and
demonstrated importance of taking into account the
scattering on spin fluctuations for the Hubbard model in
the regime of strong correlations. Figure 4 (dashed
curve) shows the dependence of the critical temperature
on the concentration of electrons as calculated using
formula (72). The static approximation used in this
study can be justified not only at high temperatures.
Since only the smallness of all nonzero components of
the dynamic susceptibility as compared to that for
ωm = 0 is important, it should be noted that this condi-
tion can be also satisfied, for example, in the vicinity
of the point of ferromagnetic instability at tempera-
tures on the order of the Curie point, which may be
relatively low.

The mean-field approximation is obtained under the
condition of vanishing of the one-loop corrections to
the strength operator, which formally corresponds to
the case where the susceptibility of localized electrons
is zero. Setting (0) = 0 in Eq. (72), considering Hub-
bard-I approximation for the normal component of the
strength operator (P0σ, 0σ(iωn) = 1 – nf/2), and summing
over Matsubara frequencies, we can rewrite the equa-
tion for Tc as follows:

(73)

This relation, with a correction for the two-band struc-
ture, corresponds to the equation for Tc in the t-model
in the mean-field approximation, where the scattering
on spin fluctuations is ignored. This can be readily
checked by taking into account the aforementioned
equivalence of the diagram series for the Green’s func-
tions in the Anderson model and the series for Green’s
functions in the Hubbard model for U = ∞. The plot of
Tc(ne) calculated in the mean-field approximation using
formula (73) is depicted in Fig. 4 by the dash-dot curve.

A comparison of the curves in Fig. 4 shows to what
extent allowance for the scattering on spin fluctuations
influences the domain of existence of a superconduct-
ing phase. In particular, comparison of the dashed and
dash-dot curves shows that taking this scattering into
consideration even in the static approximation leads to
a significant decrease in the critical temperature as

χ

1
1
N
----

Vq
2ξq

Ẽq
+( )

2
Ẽq

–( )
2

–
-------------------------------

q

∑=

×
Ẽq

+
/2Tc( )tanh

Ẽq
+

---------------------------------
Ẽq

–
/2Tc( )tanh

Ẽq
–

---------------------------------– .

compared to that in the mean-field approximation,
while the values of critical concentrations for these
curves nearly coincide. This behavior is related to the
fact that the contributions of the strength operator com-
ponents in the static approximation vanish as T  0.

A different situation is observed in the case of allow-
ance for the dynamic spin-fluctuation processes of scat-
tering, where the sums over the Matsubara frequencies
are calculated explicitly. As is known, this summation
in the region of lowest temperatures can be replaced by
integration (T   /2π). Calculations show

that contributions to the strength operator components
remain finite even as T  0. It is this difference that
accounts for a significant shift of the boundary of the
domain of superconductivity due to allowance for the
dynamics of scattering on spin fluctuations. Figure 4
shows that, besides producing this shift, the dynamic
spin fluctuations induce an additional decrease in the
critical temperature. The magnitude of this decrease
depends on the particular system parameters, but the
indicated trends are retained in all cases.

7. CONCLUSIONS

The results presented above show that the supercon-
ducting phase with s-type symmetry of the order
parameter observed in HF skutterudite LaFe4P12 [8] can
be described using the periodic Anderson model with
recourse to the electron mechanism of the Cooper insta-
bility. This scenario of electron pairing is qualitatively
analogous to that of the formation of high-temperature
superconductivity proposed [25] for the Hubbard
model in the regime of strong electron correlations. At
the same time, features of the Anderson model led to
some modifications. For example, the mixing of band
and localized states results in the fact that all kernels of
the integral equations of self-consistency can be
expressed via characteristics of a two-band mixon spec-
trum of Fermi excitations. It is established that the
superconducting phase is achieved only for the electron
concentrations at which occupied quasi-particle states
appear in the upper mixon band.

Going beyond the mean-field approximation leads
to an infinite system of integral equations for the super-
conducting phase. Solutions of these equations
describe the behavior of the normal and anomalous
components of the mass and strength operators. It
should be emphasized that the influence of the strength
operator components is not restricted to renormaliza-
tion of the spectrum of elementary excitations. As can
be seen from our results for the representations of
Green’s functions, this operator also significantly influ-
ences the values of the spectral intensity and the mean
normal and anomalous components. It is also important
that the strength operator mediates in the influence of
the processes of scattering on spin fluctuations. The
inclusion of these processes leads to a decrease in the
critical temperature of the transition into a supercon-

m∑ ωd∫
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ducting phase, which comes close to the experimental
Tc values.

We have studied the conditions of transition to the
superconducting state with s-type symmetry of the
order parameter in the regime of strong electron corre-
lations and developed spin fluctuations. As was men-
tioned above, this situation is met in HF skutterudites
LaFe4P12 [8] and PrRu4As12 [9]. At the same time, the
traditional HF superconductors are characterized by the
anisotropic order parameter. The approach developed
in this study is also applicable to the description of
d-wave superconductivity, with the process of scatter-
ing on spin fluctuations realized via the strength opera-
tor components. However, in order to obtain the mech-
anism of Cooper instability leading to the d-wave pair-
ing state, it is necessary to construct preliminarily an
effective low-energy Hamiltonian for the periodic
Anderson model in the limit of large but yet finite Cou-
lomb repulsion U. Recently, we obtained [34] such a
Hamiltonian in the regime of mixed valence.
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