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1. INTRODUCTION

The microscopic theory of high-temperature super-
conductivity (HTSC) is developed in most cases using
model Hamiltonians reflecting the presence of strong
electron correlations in the system. This explains the
wide recognition of the Hubbard model [1], as well as
multiband generalizations of this model [2, 3]. After
[4], the so-called 

 

t

 

–

 

J

 

 model providing a description for
the exchange and spin-fluctuation mechanisms of sin-
glet electron pairing with the 

 

d

 

-type order parameter
symmetry has become an object of intense investiga-
tion [5–12]. At the same time, new mechanisms of pair-
ing in cuprate superconductors were proposed proceed-
ing from general properties of strongly correlated sys-
tems [13–15].

In microscopic models of strongly correlated sys-
tems, self-consistent equations for the superconducting
phase can be derived using several methods. One of
these methods is based on the irreducible Green’s func-
tion constructed on Hubbard operators [5, 7]. Another
approach is associated with the graphical form of per-
turbation theory for the Matsubara Green’s functions in
the atomic representation [6, 10, 16–19]. This method
for studying strongly correlated systems is usually
referred to as the diagram technique for Hubbard oper-

ators. Calculations performed using these approaches
show that the structure of equations obtained for the
superconducting phase is qualitatively similar to the
structure of equations in the BCS theory.

Beyond the mean-field approximation, the structure
of equations for the superconducting phase of strongly
correlated systems becomes qualitatively different. One
of the reasons for this difference is the presence of so-
called terminal diagrams in the graphic series for the
Matsubara Green’s functions [6, 10, 16]. The important
role of these diagrams in the quantum theory of magne-
tism was established long ago (see, for example, [10,
18]). The complete set of such diagrams is referred to
as the terminal factor [6, 10, 18] or strength operator.
The latter term was proposed in [20], in which the fea-
tures of the diagram technique for spin operators were
analyzed.

The description of the superconducting phase
involves the introduction of normal as well as anoma-
lous Green’s functions [21]. Accordingly, the self-
energy operator acquires the matrix structure and is
characterized by normal and anomalous components.
Analogously, we can expect that the strength operator
can also be presented in matrix form. Its nondiagonal
components reflect the anomalous components of the
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long-range hoppings and three-center interactions are reflected by normal (
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, 0

 

σ

 

) and anomalous ( )
components of the strength operator. Three-center interactions result in different renormalizations of the kernels
of the integral equations for the superconducting 

 

d

 

 phase in the expressions for the self-energy and strength
operators. In this approximation for the 

 

d

 

-type symmetry of the order parameter for the superconducting phase,
the system of integral equations is reduced to a system of nonhomogeneous equations for amplitudes. The
resultant dependences of critical temperature on the electron concentrations show that joint effect of long-range
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strength operator and must be taken into account in
constructing the theory of the superconducting phase of
strongly correlated systems. However, this has not been
accomplished so far.

We will show that the diagram series for normal and
anomalous Green’s functions indeed contains the dia-
grams belonging to the class of anomalous terminal
diagrams and making a contribution to the anomalous
components of the strength operator. Taking this fact
into account, we will present equations for the Matsub-
ara Green’s function graphically for the 

 

t

 

–

 

t

 

'–

 

t

 

"–

 

J

 

*
model accounting for long-range hoppings and three-
center interactions and write these equations in analytic
form. We will prove that the anomalous components of
the strength operator play a significant role in the calcu-
lation of anomalous means. The calculations will be
performed in the one-loop approximation, in which, in
contrast to the self-energy operator, the anomalous
components of the strength operator are functions of
the Matsubara frequency. As a result, the superconduct-
ing phase in this approximation can be described by an
infinitely large system of integral equations. This sys-
tem will be solved numerically for calculating the
superconducting transition temperature with the 

 

d

 

-type
symmetry of the order parameter. Our calculations
enabled us to analyze the joint effect of electron hop-
pings to the sites from far coordination spheres, three-
center interactions, and spin fluctuations on the super-
conducting phase region with a preset type of the order
parameter symmetry. We will show that spin-fluctua-
tion scattering processes are reflected in normal and
anomalous components of the strength operator and
considerably affect the concentration dependence of
the superconducting transition temperature. The effect
of spin fluctuations is manifested most strongly in the
range of model parameters, in which the phase diagram
of the system in the simplest approximations is close to
the experimentally observed diagram. This means that
in a consistent development of the theory of the super-
conducting phase of Hubbard fermions, anomalous
components of the strength operators must be taken
into account along with anomalous components of the
self-energy operator.

The article has the following structure. In Section 2,
the derivation of the general equations for normal and
anomalous Matsubara Green’s functions is described
taking in to account the contributions from anomalous
components of the strength operator. It is shown that
these anomalous components basically change the
structure of the expression for anomalous averages.
Section 3 is devoted to analytic calculation of anoma-
lous components of the self-energy and strength opera-
tors in the one-loop approximation for the 

 

t

 

–

 

t

 

'–

 

t

 

"–

 

J

 

*
model. In Section 4, an infinite set of self-consistent
integral equations for the superconducting phase is
derived. A simplification of this set for the 

 

d

 

-type sym-
metry of the order parameter is given in Section 5, in
which the computational algorithm for the supercon-
ducting transition temperature is derived. Normal com-

ponents of the strength and self-energy operators are
calculated in Section 6. The results of numerical calcu-
lations demonstrating the significant role of spin-fluctu-
ation scattering processes reflected in the strength oper-
ator components are also given in this section. The
main results of this study are discussed in concluding
Section 7.

2. GOR’KOV EQUATIONS TAKING
INTO ACCOUNT ANOMALOUS COMPONENTS 

OF THE STRENGTH OPERATOR

Let us analyze a modification of self-consistent
equations for the superconducting phase, induced by
taking into account the anomalous components of the
strength operator in explicit form. The analysis will be
carried out in the 

 

t

 

–

 

t

 

'–

 

t

 

"–

 

J

 

* model, which correctly
reflects the strong correlation limit in the Hubbard
model. In atomic approximation, the Hamiltonian of
the 

 

t

 

–

 

t

 

'–

 

t

 

"–

 

J

 

* model can be written in the form [12]

(1)

Here,  are the Hubbard operators:  ( )
describes the transition of an ion located at site 

 

f

 

 from
an electron state with the spin momentum component 

 

σ

 

(  = –

 

σ

 

) to a state without electrons, while 
describes the reverse process. Single-site transitions
associated with a change in the spin momentum com-

ponent are reflected by operators  and . Diago-

nal operators  and  are projection operators for
one-electron and zero-electron sectors of the Hilbert
subspace corresponding to site 

 

f

 

. The energy of one-
electron one-ion state is denoted by 

 

ε

 

, 

 

µ

 

 is the chemical
potential of the system, 

 

t

 

fm

 

 is the integral of electron
hopping from site 

 

m

 

 to site 

 

f

 

, and 

 

J

 

fm

 

 is the parameter of
exchange coupling between electron states at sites 

 

m

 

and 

 

f

 

.
The first three terms of Hamiltonian (1) are known

to correspond to the 

 

t

 

–

 

J

 

 model, while the last term (

 

H

 

(3)

 

)
describes three-center interactions, which are some-
times referred to as correlated hoppings. Hamiltonian
(1) can be derived from the Hubbard model in the
strong electron correlation mode 

 

|

 

t

 

fm

 

|

 

 

 

�

 

 

 

U

 

 if charge car-
rier concentration 

 

n

 

 < 1 [12]. The inclusion of 

 

H

 

(3)

 

 is
dictated by the fact that the effects induced by this com-
ponent considerably influence the concentration depen-
dence of superconducting transition temperature 

 

T

 

c

 

(

 

n

 

)

H ε µ–( )X f
σσ

fσ
∑ t fmX f

σ0 Xm
0σ

fmσ
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–+ X f
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t fmtmg
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[22]. Since the specific form of this dependence
changes after the addition of hoppings between sites
from remote coordination spheres, we will not confine
our further analysis to the nearest neighbor approxima-
tion and assume that three hopping parameters (t, t ', and
t") differ from zero. Such a model is often referred to as
the t–t '–t"–J* model (the asterisk indicates the pres-
ence of term H(3) in the interaction Hamiltonian). It
should be noted that the need to take into account three-
center interactions in analyzing the properties of the
Hubbard model has been demonstrated recently by
many authors (see, for example, [23]).

It is well known that traditional superconductors can
be described using the Gor’kov equations connecting
Green’s functions with normal Σ0↑, 0↑(k, iωn) and anom-
alous Σ0↑, ↓0(k, iωn) components of self-energy operator

(k, iωn). It was noted in the Introduction that anoma-
lous components P0↑, ↓0(k, iωn) and P0↓, ↑0(k, iωn) of

strength operator (k, iωn) must also be taken into
account in analyzing electron systems with strong cor-
relations on the basis of the graphic form of perturba-
tion theory. In this connection, we will briefly discus
the changes in the equations for the superconducting
phase, which are associated with the inclusion of anom-
alous components (k, iωn) and (k, iωn).

Let us introduce the Matsubara Green’s functions in
atomic representation [16]:

(2)

Here, α and β are a pair of indices for one-site states,
e.g., (0 σ), (  0), or (+ –). In this case, if β = (p q), then
–β = (q p). Operator Tτ is the ordering operator in Mat-
subara time. The Hubbard operators on the right-hand
side of definition (2) are taken in the “Heisenberg” rep-
resentation with Matsubara time τ,

(3)

where T is the temperature of the system and H is its
Hamiltonian.

To derive the Gor’kov equations, let us consider nor-
mal (D0σ, 0σ and ) and anomalous (  and

) Green’s functions. For brevity, we introduce
the matrix electron function

(4)

and define its Fourier transform (k, iωm):

Σ̂

P̂

P0σ σ0, Pσ0 0σ,

Dαβ fτ; gτ '( ) Tτ X̃ f
α τ( ) X̃g

β– τ '( )〈 〉 .–=

σ

X̃ f
α τ( ) τH( )X f

α τH–( ),expexp=

0 τ 1/T ,< <

Dσ0 σ0, D0σ σ0,

Dσ0 0σ,

D̂σ fτ; gτ '( )

=  
D0σ 0σ, fτ; gτ '( ), D0σ σ0, fτ; gτ '( )
Dσ0 0σ, fτ; gτ '( ), Dσ0 σ0, fτ; gτ '( )

D̂σ

(5)

The graphic form for function (k, iωm) leads to
the matrix relation

(6)

where (k, iωm) is the strength operator,

(7)

and (k, iωm) is a function satisfying the Gor’kov
equation

. (8)

Here, the bold segment denotes the matrix Green func-
tion

(9)

and symbol  inscribed in the circle denotes the matrix
self-energy operator

(10)

Double fine lines are juxtaposed to collective Green

function (k, iωm) defined by the graphic equation

(11)

The fine line correspond to the initial matrix Green
function in atomic representation,

(12)

while the semicircle with  is the strength operator
introduced above, and the wavy line corresponds to the
interaction operator

D̂σ fτ; gτ '( ) T
N
---- ik R f Rg–( ){exp

k ωm,
∑=

– iωm τ τ '–( ) }D̂σ k iωm,( ).

D̂σ

D̂σ k iωm,( ) Ĝσ k iωm,( )P̂σ k iωm,( ),=

P̂σ

P̂σ k iωm,( )

=  
P0σ 0σ, k iωm,( ), P0σ σ0, k iωm,( )
Pσ0 0σ, k iωm,( ), Pσ0 σ0, k iωm,( )

,

Ĝσ

= + Σ̂

Ĝσ k iωm,( )

=  
G0σ 0σ, k iωm,( ), G0σ σ0, k iωm,( )
Gσ0 0σ, k iωm,( ), Gσ0 σ0, k iωm,( )

,

Σ̂

Σ̂σ k iωm,( )

=  
Σ0σ 0σ, k iωm,( ), Σ0σ σ0, k iωm,( )
Σσ0 0σ, k iωm,( ), Σσ0 σ0, k iωm,( )

.

Ĝσ
0( )

= + .P̂

Ĝ0 iωm( )

=  
1/ iωm ε– µ+( ), 0

0, 1/ iωm ε µ–+( )
,

P̂
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(13)

Equations (8) and (11) can be written in analytic form

(14)

It follows hence that

(15)

Considering that the anomalous components of both
self-energy ( ) and strength ( ) operators
differ from zero in the superconducting phase, we
obtain from Eq. (15) the following expressions for

Green’s functions components (k, iωm) that will be
used in subsequent analysis:

(16)

where

(17)

It follows from these expressions that anomalous
components (k, iωm) of the strength operator are
important for calculating anomalous thermodynamic
averages. Indeed, taking into account relation (6), we
obtain

(18)

Consequently, the expression for an anomalous one-
time single-site mean is defined by two terms:

V̂σ k( ) V0σ 0σ, k( ), V0σ σ0, k( )
Vσ0 0σ, k( ), Vσ0 σ0, k( )

tk, 0

0, tk–⎝ ⎠
⎜ ⎟
⎛ ⎞

.= =

Ĝσ k iωm,( ) Ĝσ
0( )

k iωm,( )=

+ Ĝσ
0( )

k iωm,( )Σ̂σ k iωm,( )Ĝσ k iωm,( ),

Ĝσ
0( )

k iωm,( ) Ĝ0 iωm( )=

+ Ĝ0 iωm( )P̂σ k iωm,( )V̂σ k( )Ĝσ
0( )

k iωm,( ).

Ĝσ k iωm,( ) Ĝ0
1–

iωm( ){=

– P̂σ k iωm,( )V̂σ k( ) Σ̂σ k iωm,( ) } 1– .–

Σ0σ σ0, P0σ σ0,

Ĝσ

G0σ 0σ, k iωm,( )

=  
iωm ε µ– tkPσ0 σ0, k iωm,( ) Σσ0 σ0, k iωm,( )–+ +

det k iωm,( )
----------------------------------------------------------------------------------------------------------------,

G0σ σ0, k iωm,( )

=  
Σ0σ σ0, k iωm,( ) tkP0σ σ0, k iωm,( )–

det k iωm,( )
---------------------------------------------------------------------------------,

det k iωm,( ) iωm ε µ– tkPσ0 σ0, k iωm,( )+ +{=

– Σσ0 σ0, k iωm,( ) }

× iωm ε– µ+{
– tkP0σ 0σ, k iωm,( ) Σ0σ 0σ, k iωm,( ) }–

– Σ0σ σ0, k iωm,( ) tkP0σ σ0, k iωm,( )–{ }

× Σσ0 0σ, k iωm,( ) tkPσ0 0σ, k iωm,( )+{ }.

P0σ σ0,

D0σ σ0, k iωm,( ) G0σ 0σ, k iωm,( )P0σ σ0, k iωm,( )=

+ G0σ σ0, k iωm,( )Pσ0 σ0, k iωm,( ).

(19)

It can be seen that the anomalous average under inves-
tigation in strongly correlated systems is not a quantity
proportional to only the anomalous component of the
self-energy operator. In view of the presence of the
anomalous component of the strength operator, an addi-
tional contribution (second term in the braces) appears.
This means that the condition of vanishing (in accor-
dance with the algebra of Hubbard operators) of the
anomalous average considered here plays the role of an
additional relation between normal and anomalous
components of the self-energy and strength operators.

The above analysis shows that the description of the
superconducting phase of Hubbard fermions must gen-
erally be based not on the single equation defining the
anomalous self-energy operator, but on a system of
equations which simultaneously define the anomalous
components of the self-energy and strength operator.

3. ANOMALOUS COMPONENTS
OF THE SELF-ENERGY AND STRENGTH 

OPERATORS IN THE ONE-LOOP 
APPROXIMATION

To derive explicit equations describing the super-
conducting phase, we will calculate anomalous quanti-
ties in the one-loop approximation. In this case, anom-
alous component Σ0↑, ↓0(k, iωm) of the self-energy oper-
ator is defined by ten diagrams. Four diagrams

(20)

are due to the interactions corresponding to the t–J
model [10], while six diagrams

X f
0σX f

0σ〈 〉 T
N
---- iωmδ( )exp

k ωm,
∑=

×
Σ0σ σ0, k iωm,( )Pσ0 σ0, k iωm,( )

det k iωm,( )
-----------------------------------------------------------------------

⎩
⎨
⎧

+
iωm ε µ– Σσ0 σ0, k iωm,( )–+[ ]P0σ σ0, k iωm,( )

det k iωm,( )
-------------------------------------------------------------------------------------------------------------

⎭
⎬
⎫

 = 0,

δ +0.

0↓

↓0

↑0

0↑ 0↑ 0↑0↑ ↓0

↓0

0↑

, ,

↓0 ↓0 ↓0 0↑0↑0↑0↑0↑ 0↓ ↑0
, .+ –++ +
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(21)

reflect the contributions from three-center interactions.
The wavy lines with an arrow in diagrams (20) juxta-
pose hopping integral tq in the momentum representa-
tion. The end of such a line with a light (dark) arrow
forms a fragment of the diagram induced by operator

 ( ). Wavy lines without arrows correspond to
exchange integrals Jq. In this case, the longitudinal

interaction Jfm  is depicted by a wavy line with
two large circles. The end with a light circle corre-
sponds to the fragment of the diagram in which opera-

tor  participated in pairing. In this sense, the

hatched circle corresponds to operator . On the

other hand, the transverse interaction Jfm  is jux-
taposed to a wavy line with a sequence of two opposite
values of the spin momentum projections indicated at
its ends. This sequence unambiguously indicates one of
the two operators participating in the description of the
transverse interaction, the pairing with which induced
the given fragment of the diagram. In diagrams (21),
the matrix element of the three-center interaction in
momentum representation corresponds to two wavy
lines connected either by light (or hatched circle), or
directly without a circle at an acute angle. The topolog-
ical structure of the connection of the ends of such lines
to fragments of diagrams is the same as for the interac-
tion lines corresponding to hopping processes. The
presence of a circle indicates that the diagonal operator
participated in pairing during the application of the
Wick theorem, while nondiagonal quasi-Bose operator

 participated in the case of connection at an angle.

Putting diagrams (20) and (21) in correspondence
with analytic expressions, we obtain the components of
the anomalous component of self-energy operator

(22)

where

, , ,
↓0

↓0
↓0 ↓0 0↑

0↑

0↑0↑

0↑0↑
0↑ 0↓

0↓

↑0
↑0

↑0

0↓ 0↑

0↑ 0↑
0↑

, , 0↑

0↑

0↑0↑ ↓0 ↓0

↓0

↓0

↓0

X f
0↑ X f

0↓

X f
++Xm

––

X f
++

X f
––

X f
+–Xm

–+

X f
σσ

Σ0↑ ↓0,
t–J( ) k( ) T

N
---- tq Jk q–+( )δF q( ),

q ωl,
∑=

Σ0↑ ↓0,
3( ) k( ) T

N
---- Ak

3( ) q( )δF q( ),
q ωl,
∑=

(23)

In formula (22), δF denotes the difference between
anomalous Green’s functions:

(24)

Summing the components, we obtain the anomalous
component of the self-energy operator,

(25)

where

(26)

It can be seen that the coefficient of Jk–q experienced
the renormalization (1  1 – (1 – n/2) = n/2) obtained
earlier using the method of irreducible Green’s func-
tions in [5]. It was shown in [22] that this renormaliza-
tion is responsible for a decrease by more than an order
of magnitude in the superconducting transition temper-
ature of the superconducting phase with the 

symmetry of the order parameter.

Performing analogous calculations (with an obvious
reversal of arrows and symbols denoting projections of
spin moments and with the replacement of lines with
light arrows by lines with dark arrows), we obtain the
following relation that will be used below:

(27)

Let us now calculate anomalous component
P0↑, ↓0(k) of the strength operator. In the approximation
used here, the interactions in the t–J model for this
component make contributions defined by the follow-
ing four diagrams:

(28)

Ak
3( ) q( ) 1 n

2
---–⎝ ⎠

⎛ ⎞ 2tktq

U
-----------=

– 1 n
2
---–⎝ ⎠

⎛ ⎞ Jk q–
n
2
---

2tq
2

U
------- J0–⎝ ⎠

⎛ ⎞ .–

δF q( ) F↓ q( ) F↑ q( ), Fσ q( )– G0σ σ0, q( ),= =

q q iωl,( ), ωl≡ 2l 1+( )πT .=

Σ12 k( ) Σ0↑ ↓0, k( )≡ Σ0↑ ↓0,
t–J( ) k( ) Σ0↑ ↓0,

3( ) k( )+=

=  
T
N
---- Ak q( )δF q( ),

q ωm,
∑

Ak q( ) tq
n
2
---Jk–q+=

+ 1 n
2
---–⎝ ⎠

⎛ ⎞ 2tktq

U
----------- n

2
---

2tq
2

U
------- J0–⎝ ⎠

⎛ ⎞ .–

d
x

2
y

2–

Σ0↑ ↓0, k( ) Σ0↓ ↑0, k( ).–=

0↑ 0↑
0↑

↓0

↓0
,

↓0

↓0

0↑0↑ ↑0
, .

,
↑0

0↓

↓0

↓0
0↑ ↓0

↑↓

↑↓
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Comparing the corresponding analytic expressions, we
obtain

(29)

where (q, q – k) is defined by a combination of
anomalous Green’s functions with Fourier transforms of
the Green’s function of transverse (D⊥(q – k)) and longi-
tudinal (D||(q – k)) spin components, as well as Green’s
functions describing charge fluctuations (C(q – k)),

(30)

for σ = ↑. The Fourier transform of the Bose Green’s
function is defined in the conventional manner,

In the last expression, ∆ (τ) = (τ) – 〈Nf 〉, (τ) =

(τ) + (τ), where τ is the Matsubara time.
The following four diagrams define anomalous

component (k) of the strength operator, which is
associated with three-center interactions:

(31)

P0↑ ↓0,
t–J( ) k( ) T

N
---- tq Jq  –  k +  ( )Λ ↑ 

a
 

( )
 q ;  q k – ( ) , 

q

 ∑  –=  

k

 

k

 

i

 

ω

 

m

 

,( )

 

,

 

q

 

q

 

i

 

ω

 

l

 

,( )

 

,

 

≡ ≡

Λ↑
a( )

Λσ
a( ) q; q k–( ) Fσ q( )D⊥ q k–( ) Fσ q( )–=

× D|| q k–( ) 1
4
---C q k–( )– ,

Tτ X̃ f
↑↓ τ( ) X̃g

↓↑ τ '( )〈 〉–

=  
T
N
---- i q R f Rg–( ) ωs τ τ '–( )–[ ]{ }D⊥ q iωs,( ),exp

q ωs,
∑

ωs 2πsT ,=

TτS̃ f
z τ( )S̃g

z τ '( )〈 〉–

=  
T
N
---- i q R f Rg–( ) ωs τ τ '–( )–[ ]{ }D|| q iωs,( ),exp

q ωs,
∑

ωs 2πsT ,=
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Their total analytic contribution is defined as

(32)

Combining expressions (29) and (32), we obtain the
complete form of the anomalous component of the
strength operator,

(33)

where

(34)

It can be seen that kernel Bk(q) of the strength operator
also contains the coefficient of Jk – q renormalized by
three-center interactions; however, in contrast to renor-
malization for Σ0↑, ↓0(k), the renormalization for
P0↑, ↓0(k, iωm) is different:

(35)

This means that if the contributions from the strength
operator are taken into account, the description of the
superconducting phase with the  symmetry of the

order parameter in the t–J* model cannot be reduced to
the description based on the t–J model, but with renor-

malized J   = (n/2)J.
Another feature is associated with the dependence

of P0↑, ↓0(k, iωm) on the Matsubara frequency (anoma-
lous component Σ0↑, ↓0(k) of the self-energy operator
depends only on the quasi-momentum). As a result, the
superconducting phase in the approximation consid-
ered here is described by an infinite system of self-con-
sistent integral equations.

4. SYSTEM OF SELF-CONSISTENT EQUATIONS 
FOR THE SUPERCONDUCTING PHASE

The derivation of self-consistent equations can be
simplified using the symmetric combination of anoma-
lous components of the strength operator:

The analytic expression for P0↓, ↑0(k) can be derived from

Eq. (33) by replacing (q; q – k) by (q; q – k). The
validity of this statement can be verified using the dia-
gram representation. It is advantageous to use P(k) due
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to the fact that P(k), as well as Σ0↑, ↓0(k), can be
expressed in terms of difference δF(q) between anom-
alous Green’s functions. In this case, a symmetric com-
bination of transverse and longitudinal spin Green’s
functions is formed [24, 25]:

(36)

Using the expressions for the anomalous compo-
nents of the self-energy and strength operators, repre-
sentation (16), and relation (27), we obtain a system of
self-consistent equations in Σ12(k) and P(k, iωm):

(37)

Introducing the spin–charge susceptibility

(38)

we take into account the spherical symmetry of spin
correlation functions [24, 25].

If we set P(q, iωl) = 0 in the first equation of the sys-
tem and disregard the contributions to the normal com-
ponents of the strength operators, which are functions
of the Matsubara frequencies, we can carry out summa-
tion over ωl . In this case, we arrive at the well-known
equation defining the solutions for Σ12(k) in the super-
conducting phase in the mean-field approximation both
for the s- and d-type symmetry of the superconducting
order parameter. In fact, it can be seen from the second
equation of system (37) that this case takes place only
for   0. For finite values of , the self-consis-
tent solution of the system is observed only for P(q,
iωl) ≠ 0, and the superconducting phase is described by
an infinitely large number of integral equations defining
Σ12(k) and P(k, iωm). If we replace dynamic susceptibil-
ity  by the static susceptibility, the equation for Tc for
the s phase for U = ∞, which follows from system (37),
has exactly the same form as in [26, 27]. It should be
noted that the equation for Tc in these publications was
derived from analysis of the scattering amplitude in the
Cooper channel calculated in the paramagnetic phase
taking into account scattering from spin fluctuations.
This means that the inclusion of anomalous compo-
nents of the strength operator in the one-loop approxi-
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mation corresponds to the inclusion of spin-fluctuation
scattering processes. The validity of this statement for
the d-type symmetry of the order parameter can be
demonstrated by introducing the anomalous Dyson
self-energy operator, which is reducible in the Larkin
sense (the self-energy operator irreducible in the Dyson
sense is reducible in the Larkin sense [20]):

(39)

In this case, the system of self-consistent equations for
∆(k, iωm) can be written in the form

(40)

The first term of the kernel of this integral equation cor-
responds to the mean field approximation. The second
term defines the spin-fluctuation mechanism of Cooper
pairing. Such a representation of the equations for the
superconducting order parameter was introduced in
[28] using the Hubbard diagram technique. Supercon-
ducting phases were described in [24] using the method
of irreducible Green’s functions in the t–J model taking
into account the spin-fluctuation mechanism of pairing.
It was also shown that the effect of spin fluctuations is
reflected analytically in the emergence of a term con-
taining the dynamic susceptibility in the integral kernel
of the equation for the order parameter [24, 25]. In this
connection, we must mention a series of publications
based on the phenomenological approach to the spin-
fluctuation mechanism of superconducting pairing in
spin-fermion models (see, for example, [29, 30] and the
literature cited therein). In these publications, only one
term proportional to dynamic susceptibility is phenom-
enologically introduced into the kernel of the integral
equation in the description of the superconducting
phase. The multiplicative coefficients, which generally
appear in the theory and are associated with the features
of the model, are lost when this approach is used.

In our case, Eq. (40) was derived on the basis of the
microscopic approach for the t–J* model taking into
account three-center interactions. It is significant that
these interactions (e.g., for the d-type symmetry) renor-
malize the term corresponding to the mean-field
approximation [5] in accordance with a certain sce-
nario, while the multiplicative factor appearing in front
of the susceptibility renormalizes it in accordance with
a different scenario.

In the subsequent analysis, we will confine our-
selves to the superconducting phase with the 

symmetry of the order parameter.
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5. ALGORITHM FOR CALCULATING 
SUPERCONDUCTING TRANSITION 

TEMPERATURE

To solve the self-consistent equations, we must find
function (q, iωm). Following [24], we will use the
model approach, in which spin-charge susceptibility

(q, iωm) can be represented by the product

(41)

as in [24], we assume that charge fluctuations can be
neglected. The form of the model function can be deter-
mined by comparing with the susceptibility obtained in
the generalized approximation of chaotic phases [10],

(42)

taking into account long-range hoppings (notation used
here is the same as in [10]). Figure 1 shows the depen-
dence of the susceptibility on the wavevector calculated
using this formula for the following model parameters:
t ' = 0.2|t |, t" = 0.3|t |, J = 0.4|t |, n = 0.75, T = 0.03|t |, and
ωm = 2πT. It can be seen that a clearly manifested peak
corresponding to experimental data is observed in the
vicinity of point q = Q = (π, π). Bearing this circum-
stance in mind, we will henceforth approximate the
quasi-momentum dependence by the δ function:

(43)

With such an approach, the dependence on the Matsub-
ara frequency is correctly described by the function
used in [24]. As a result, we obtain the following repre-
sentation for susceptibility:

(44)

The Matsubara susceptibility written in this form satis-
fies the sum rule:

(45)

Parameter Ω was chosen from the condition of the best
coincidence of the peak height in the vicinity q = Q at
different Matsubara frequencies, i.e., from the equation

(46)
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⎛ ⎞ 1

1 iωm/Ω( )2–
-------------------------------tanh χ iωl( ).=

It was found as a result of calculations that the best
agreement is reached for Ω = 2|t |.

We will solve system (37) taking into account elec-
tron hoppings between the sites lying within three coor-
dination spheres. In this case, the Fourier transforms tq
and Jq can be written in the form (t1 ≡ t, t2 ≡ t ', t3 ≡ t")

(47)

where γn(q) are invariants for the square mesh,

For the -type symmetry of the order parameter,

contributions come only from J1 and J3. Considering

that J3 = 2 /U and J3 is smaller than J1, we can confine
the solution of the self-consistent equations only to the
terms from the main invariant,

(48)

In this case, the system of self-consistent equations can
be reduced to the following equations for amplitudes ∆
and P(iωl):

tq 4tnγ n q( ), Jq
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Fig. 1. Dependence of the transverse susceptibility compo-
nent on quasi-momentum in the generalized random-phase
approximation (GRPA).
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(49)

where

(50)

At T = Tc, parameters ∆ and P(iωl) vanish, but their
ratio remains finite. Introducing function ϕ(iωl) =
P(iωl)/∆ and setting T = Tc, we arrive at the system of
nonhomogeneous equations

(51)

which are used for determining ϕ(iωl). Superscript “c”
on the Matsubara frequencies indicates that the temper-
ature appearing in their definition is equal to the super-
conducting transition temperature.

The closing equation can be written in the form of
the sum rule following directly from system (49):

(52)

Equations (51) and (52) were used in numerical calcu-
lations for determining the concentration dependence
of superconducting transition temperature.

6. NORMAL COMPONENTS OF SELF-ENERGY
AND STRENGTH OPERATORS. 

SUPERCONDUCTING TRANSITION 
TEMPERATURE

The effect of normal components Σ11(k) ≡ Σ0↑, 0↑(k) =
Σ0↓, 0↓(k) and P11 ≡ P0↑, 0↑ = P0↓, 0↓(k) (k ≡ (k, iωm)) of
the self-energy and strength operators on the conditions
of realization of the superconducting phase will be con-
sidered in the same one-loop approximation. Separat-
ing the correction corresponding to the Hubbard I
approximation in explicit form (P11 = 1 – n/2 + δP11(k)),

we find that correction δ (k) associated with inter-
actions in the t–J model is defined by four diagrams,

=  
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(53)

and can be represented analytically, taking into account
the independence of normal Green’s functions (in zero
magnetic field) of the projection of spin angular
momentum, in the form

(54)

where

(55)

Here, as before, the spherical symmetry of spin corre-
lation functions is taken into account. Normal compo-
nent G0σ, 0σ(q) of the Green function, in which spin
indices are omitted, is denoted by G(q).

The contribution to the normal component of the
strength operator, which is associated with three-center
interactions, is defined by the following four diagrams:

(56)

This contribution can be represented analytically in the
form

(57)

Summing expressions (54) and (57), we derive the fol-
lowing analytic expression for the total correction:

(58)

As in the case of the anomalous component, three-cen-
ter interactions renormalize the coefficient of Jk – q
appearing in the expression for Bk(q) in accordance
with rule (35). The normal component of the strength
operator in this approximation is a complex-valued
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quantity. To find this component in explicit form, we
must use representation (16) obtained for Green’s func-
tions. This leads to a system of integral equations,
which was solved numerically. Since representation
(16) also contains the normal components of the self-
energy operator, we will briefly consider the calculation
of these components.

The contribution to the normal component Σ11 of the
self-energy operator due to interactions in the t–J
model is defined by the following two diagrams:

(59)

The corresponding analytic expression has the form

(60)

The effect of three-center interactions on the correction
to the normal component of the self-energy operator is
defined by four diagrams:

(61)

In analytic form, we can write

(62)

Using these expressions we obtain the total normal
component of the self-energy operator:

(63)

Substituting expression (44) for the model susceptibil-
ity, we obtain a simplified system of equations for cal-
culating the normal components of the strength and

0↓

0↑ 0↑ 0↑ 0↑ 0↑
, .

0↓ 0↓
+ +

0↓

Σ11
tJ( ) k( ) T

N
---- tq Jk  –   q +  ( ) G q i ω m ,( ) 

q

 

ω

 

l

 

,

 ∑  –=  

×

 

i

 

ω

 

l

 

δ( )

 

,

 

δ

 

+0.exp

0↑

0↓

0↑ 0↑ 0↑ 0↑ 0↑
, ,

, .
0↑

0↑

0↑0↑
0↑0↑0↑

0↑

0↓

0↓

0↓

0↓ 0↓

Σ11
3( ) k( ) T

N
---- 1 n–( )

J0

2
-----

tq
2

U
----–⎝ ⎠

⎛ ⎞
⎩
⎨
⎧

q ωl,
∑=

+ 1 n
2
---–⎝ ⎠

⎛ ⎞ Jk   –  q 
2

 
t

 
k

 
t

 
q

 U -----------–  ⎝ ⎠
⎛ ⎞

⎭
⎬
⎫

 G q i ω l ,( ) i ω l δ( ) .exp

Σ11 k( ) T
N
---- tq

n
2
---Jk  –  q 2 n – ( ) 

t
 

k
 

t
 

q
 U --------+ +  

⎩
⎨
⎧

 

q

 
ω

 

l

 
,

 ∑  –=

+ 1

 

n

 

–

 

( )

 

t

 

q

 

2

 

U

 

----

 

J

 

0

2
-----–⎝ ⎠

⎛ ⎞
⎭
⎬
⎫

G q iωl,( ) iωlδ( ).exp

 

self-energy operators (the terms leading to renormal-
ization of chemical potential are omitted):

(64)

In the numerical solution of these equations, we also
used the equation for chemical potential, which was
written taking into account the renormalizations associ-
ated with contributions 
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Here, in the summation over Matsubara frequencies,
we used the self-consistently determined dependence
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By way of example, Fig. 2 shows the results of

numerical calculations for the imaginary and real parts
of the strength operator for the following set of vari-
ables: 

 

t

 

' = –0.1

 

|

 

t

 

|

 

, 

 

t

 

" = –0.1

 

|

 

t

 

|

 

, 

 

J

 

 = 0.4

 

|

 

t

 

|

 

, 

 

n

 

 = 0.8, and 

 

T

 

 =
0.01

 

|

 

t

 

|

 

. The features of the dependence of 
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remain qualitatively the same upon variation of the
model parameters. It can be seen that 
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 is a strongly
varying function of the Matsubara frequency in the
range 
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, the imaginary part of
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 rapidly decreases to zero, while the real part tends
to the value corresponding to the Hubbard I approxima-
tion (i.e., 
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  1 – 
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/2). Consequently, in the range
of frequencies commensurate with the absolute value of
the hopping integral, we must take into account the dif-
ference between 

 
P

 

11

 
 and the simplest Hubbard I

approximation.
After self-consistent calculation of the normal and

anomalous components of the self-energy and strength
operators, we calculated the concentration dependences
of the superconducting transition temperature using
Eq. (52). Figure 3 shows the dependences of 

 

T

 

c

 

 on elec-
tron concentration 

 

n

 

, which were obtained using two
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approximations for the following values of parameters:
t ' = –0.1|t1|, t ' ' = –0.1|t1|, and J1 = 0.4|t1|. The dashed
curve shows the dependence corresponding to the mean
field approximation, while the solid curve is obtained
taking into account the components of dynamic pro-
cesses of spin-fluctuation scattering. The parameters
were chosen in such a way that the value of concentra-
tion at the peak of the curve corresponded to the opti-
mal doping level. It can be seen from the figure that the
inclusion of strength operator components noticeably
modifies the shape of the concentration dependence.
For instance, the point corresponding to the peak on
concentration dependence Tc(n) is displaced to the
range of higher electron concentrations and is in the
best conformity with experimental data. Thus, the con-
ditions for the formation of the superconducting phase
with the d-type symmetry of the order parameter
noticeably change when spin-fluctuation scattering is
taken into account. It should be noted that in a certain
range of parameters, the mean field approximation
gives a qualitatively satisfactory agreement with exper-
imental data. At the same time, the inclusion of spin-
fluctuation scattering processes radically changed the
range in which the superconducting phase under inves-
tigation was formed. In particular, not only the dis-
placement of the concentration dependence took place,
but the superconducting transition temperature became
noticeably lower. We do not consider here such depen-

dences because of the lack of practical interest and lim-
ited volume of this article. It should be noted, however,
that such results emphasize one again the limitations of
the mean field approximation and the important role of
spin-fluctuation scattering processes, which are
reflected in the approach used here in the normal and
anomalous components of the self-energy and strength
operators.

7. CONCLUSIONS

The results of calculations presented in this article
demonstrate that the superconducting phase of strongly
correlated electrons (Hubbard fermions) can be
described by a system of self-consistent equations con-
taining a new element, viz., the anomalous component

(k, iωm) of the strength operator. The inclusion
of this quantity not only modifies the formal structure
of the self-consistent equations, but also considerably
affects the concentration dependence of the supercon-
ducting transition temperature to the phase with the

-type symmetry of the order parameter. In this

connection, we formulate the following conclusions.
(1) In this study, we have analyzed only the d-type

symmetry of the superconducting phase. The solution
for a superconducting phase with the s-type symmetry
can also be obtained from the system of self-consistent
equations presented here. In particular, the equation for
the superconducting transition temperature following
from this system coincides with the corresponding
equations derived earlier in [26, 27], where the scatter-
ing amplitude in the Cooper channel was analyzed. In
these publications, a significant role of spin-fluctuation
scattering in the computation of Tc was noted. The coin-
cidence of the equations for Tc derived from analysis of
the scattering amplitude in the paramagnetic phase and

P0σ σ0,

d
x

2
y

2–

Fig. 2. Dependences of the real and imaginary parts of nor-
mal components of the strength operator on the Matsubara
frequency and wavevector.
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Fig. 3. Dependence of superconducting transition tempera-
ture Tc on electron concentration n.
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on the basis of equations in the superconducting phase
confirms the regulation concerning the inclusion of
physically equivalent processes described by different
analytic constructions. An analogous coincidence is
also observed for the d-type symmetry of the order
parameter.

(2) The inclusion of three-center interactions and
long-range hoppings is due to the following factors.
First, three-center interactions considerably affect the
superconducting transition temperature even in the
mean field approximation [22]. In [23], these interac-
tions were taken into account. On the other hand, the
inclusion of long hoppings affects both the form of the
equation for Tc [31], and the value of charge carrier con-
centration, for which the highest superconducting tran-
sition temperature is observed. The above analysis of
the role of spin-fluctuation scattering shows that the
simultaneous inclusion of three-center interactions and
electron hoppings between the sites lying within three
coordination spheres is important for interpreting
experimental data. It should be emphasized that three-
center interaction renormalize the coupling constant in
the expressions for components of the self-energy and
strength operator in different manners. This circum-
stance becomes important for the following reason. If
we disregard the corrections to the strength operator,
the role of three-center interactions for the d phase is
reduced to the substitution of the effective parameter
for the exchange parameter. However, since the renor-
malization in the strength operator is different, the con-
sistent inclusion of three center interactions cannot be
reduced to a renormalization of the coupling constant.

(3) The form of self-consistent equations is modi-
fied due to only anomalous components of the strength
operator, while the normal components of this operator
were also found to be significant for calculating specific
values of superconducting transition temperature.
Thus, spin-fluctuation processes in the theory of the
superconducting phase in the one-loop approximation
are reflected in anomalous and normal components of
the strength operator. In this case, the problem of com-
putation of magnetic susceptibility becomes of consid-
erable importance. In this study, peculiar features of
this function were determined from a comparison with
the susceptibility calculated earlier [10] in the general-
ized random-phase approximation (GRPA).
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