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Theoretical studies of an increase in the number of
correlatively moving particles during the time evolu-
tion of a many-particle dynamic system were initiated
at “Brussels school” (I. Prigogine) [1]. Thanks to the
appearance of experimental multiquantum nuclear
magnetic resonance (NMR) spectroscopy methods, we
can now study the development of multispin correla-
tions in time (e.g., see [2–10]). So far, multiquantum
spectroscopy methods have been a useful tool for
studying clusters and local structures, when the inter-
pretation of multiquantum spectra is comparatively
simple. The main computational algorithms have also
been developed for small systems, and control of mul-
tiquantum coherences has been studied for using them
in quantum calculations [11, 12].

While theoretical data on small systems can be
obtained in numerical calculations, for large systems
(experimental data on up to 5000 correlated spins were
published [9]), which are (as distinct from small model
systems) of fundamental interest for statistical physics
and quantum calculations, quite different theoretical
approaches are necessary. In addition, the absence of a
correct theory for interpreting experimental results hin-
ders the application of these methods to studies of ordi-
nary solids.

The diversity of multiquantum spectroscopy meth-
ods [2–9] reduces to the irradiation of a spin system by
a sequence of radiofrequency pulses that transform its
spin-spin Hamiltonian into a nonsecular operator (with
respect to equilibrium magnetization). Under its action,
initial magnetization is transferred into various fairly
complex time correlation functions of the product of
various numbers 

 

K

 

 of spin operators (multispin correla-
tions). In other words, the equilibrium density matrix

 

ρ

 

eq

 

 transforms in a strong magnetic field into a nonequi-

librium density matrix, which can conveniently be rep-
resented as the sum of 

 

ρ

 

n

 

 off-diagonal elements with a
certain difference of 

 

n

 

 magnetic quantum numbers
called multiquantum coherences (

 

n

 

 is the coherence
order),

where 

 

|

 

Knp

 

〉

 

 is the basis operator in which 

 

ä

 

 one-spin
operators form the product that couples Zeeman states
that differ by 

 

n

 

 units. The index 

 

p

 

 numbers different
basis states with equal 

 

K

 

 and 

 

n

 

 values, and 

 

N

 

 is the total
number of spins in the system. The resulting coher-
ences are labeled by the phase shift 

 

ϕ

 

 proportional to
time. The phase shift that appears is proportional to 

 

n

 

ϕ

 

,
where 

 

n

 

 is an integer. It follows that, depending on 

 

n

 

, 

 

K

 

-
spin correlations are also distinguished by the number
of quanta (

 

n

 

 

 

≤

 

 

 

K

 

) [2–4]. Next, a new sequence of pulses
is applied to the system to change the sign of the non-
secular Hamiltonian mentioned above. This causes
“time reversal” [2, 13, 14]; as a consequence, the sys-
tem develops “backward.” The observation of the time
dependence of evolution and phase 

 

ϕ

 

 allows a one- or
two-dimensional Fourier spectrum to be constructed.

In usual multiquantum experiments, 

 

K

 

-spin correla-
tions are labeled by the phase shift about the 

 

Z

 

 axis, that
is, are classified according to the number of quanta in
the basis in which 

 

Z

 

 components of spin operators are
diagonal (

 

Z

 

 basis in what follows). It was, however,
shown in [8] that they could also be labeled by the
phase shift that appears in rotations about other axes,

ρ t( ) iHt{ }ρeq iHt–{ }expexp ρn t( ),
n

∑= =

ρn t( ) gKnp t( ) Knp| 〉,
p

∑
K n=
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for instance, the 

 

X

 

 axis. Such experiments provide addi-
tional information already in the case of a nonsecular
effective Hamiltonian. Importantly, measurements of
coherences in a basis different from the usual 

 

Z

 

 basis
allows spin dynamics to be studied under the action of
a Hamiltonian that does not change 

 

z

 

 projections. This
method was used in [10, 15] to observe multispin
dynamics in the 

 

X

 

 basis during free precession decay in
NMR of a solid caused by the secular part of dipole-
dipole interactions. In all bases, qualitatively the same
picture of the development of multispin correlations in
time was observed.

The most important characteristics of multiquantum
spectroscopy necessary for applied (e.g., structural)
studies and the understanding of the physics of irrevers-
ible processes are the time dependences of multiquan-
tum coherences, which, in turn, determine the distribu-
tion of the intensities of coherences of various orders in
the multiquantum spectrum. The overwhelming major-
ity of authors use the simplest statistical model sug-
gested in [2, 3] and the ensuing Gauss form of the dis-
tribution of coherences of various orders,

 

(1)

 

The 

 

N

 

(

 

τ

 

)/2

 

 variance in this model is determined by the
number of spins 

 

N

 

(

 

τ

 

)

 

 between which dynamic correla-
tion is established during preparation time 

 

τ

 

 because of
dipole-dipole interaction. This number called the num-
ber of correlated spins or effective cluster size increases
with preparation time 

 

τ

 

. Note that the experimental
dependences often cannot be described by depen-
dence (1) (e.g., see [6]). Therefore, it is at the least nec-
essary to use a value similar in meaning to 

 

N

 

(

 

τ

 

)

 

 but
based on first principles and independent of the model.

Such a value can be the second moment 

 

〈

 

n

 

2

 

(

 

τ

 

)

 

〉

 

 of
the distribution of various order coherence intensities in
multiquantum spectroscopy [16]. For a Gauss distribu-
tion, this moment coincides with the variance 

 

N

 

(

 

τ

 

)/2

 

 in
(1). For a distribution of another form, it also character-
izes the number of correlated spins (effective cluster
size). The equation that relates this moment to the cor-
relation function of the product of four spin operators
taken at various time moments was obtained by Khitrin
as early as 1997 [16]. The first attempt at calculating
this correlation function was made by us quite recently
[17] because of the extreme complexity of calculations.

Calculations of four-spin time correlation functions
substantially more complex compared with two-spin
functions that appear in usual NMR observations were
performed in [17] with improving the methods and
approaches that we developed and successfully used to
calculate two-spin time correlation functions.

In this work, the time dependence of the four-spin
time correlation function for 

 

〈

 

n

 

2

 

(

 

τ

 

)

 

〉

 

 was described
using time-dependent spin projection operators, for
which expansions into the complete system of
orthonormalized operators were constructed. Calcula-
tions were performed for three model examples corre-

gn τ( ) Sp ρn τ( )ρ n– τ( ){ } n2/N τ( )–( ).exp∼ ∼

 

sponding to different spin systems of solids. It was
shown that, in usual solids, an increase in coherences
depended on time exponentially. This is in agreement
with the experimental data [9, 15] on both spin systems
described by the Hamiltonian of the secular dipole-
dipole interaction part and systems described by a non-
secular effective Hamiltonian typical of multispin
NMR spectroscopy.

In nonmetallic diamagnetic solids, the mean reason
for broadening of the NMR absorption spectrum is the
secular part of internuclear dipole-dipole interaction
[18], which fully determines the dynamics of the
nuclear spin system,

 

(2)

 

where 

 

b

 

ij

 

 = 

 

γ

 

2

 

�

 

(1 – 3cos

 

2

 

θ

 

ij

 

)/2 , 

 

a

 

ij

 

 = –

 

b

 

ij

 

/2, 

 

 is the
vector between spins 

 

i

 

 and 

 

j

 

, 

 

θ

 

ij

 

 is the angle between the

 vector and a constant external magnetic field, and

 

S

 

α

 

i

 

 is the 

 

α

 

 component (

 

α

 

 = x, y, z) of the vector spin
operator at node i. Here and throughout, energy is
expressed in frequency units.

Hamiltonian (2) is basic for “spin alchemy.” It trans-
forms under the action of radiofrequency pulses into
other Hamiltonians of interest to researchers [19]. For
instance, in traditional multiquantum NMR spectros-
copy [2–4], the effective Hamiltonian

(3)

is prepared.
Compared with original works, we here use the

notation cij = bij/2 and perform cyclic permutation of
spin projections. Recently, the time dependences of
various order coherence intensities in a multiquantum
spectrum were measured in [10, 15] for a system with
usual dipole Hamiltonian (2). It was shown that the
behaviors of systems described by Hamiltonians (2)
and (3) qualitatively coincided.

The experimental intensity of multiquantum coher-
ences is determined by the time correlation function

(4)

Here, U(t) is the evolution operator with the Hamilto-
nian of internal interaction Hd from (2) (or the Hamilto-
nian of this interaction transformed by radiofrequency
pulses into some new nonsecular effective Hamiltonian

Hd bijSziSzj

i j≠
∑ aijS+iS j–

i j≠
∑+ Hzz H ff+= =

=  bijSziSzj

i j≠
∑ aij SxiSxj SyiSyj+( )

i j≠
∑+

=  Hdij
zz Hdij

xx Hdij
yy+ +{ },

i j≠
∑

rij
3 rij

rij

Heff cij SziSzj SyiSyj–( )
i j≠
∑ Hdij

zz /2 Hdij
yy+{ }

i j≠
∑= =

Γϕ t τ,( )

=  Sp U+ τ( )UϕU t( )SxU
+ t( )Uϕ

+U τ( )Sx }/Sp Sx
2{ }.{
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Heff (3)), Uϕ = exp(iϕSx) is the operator of rotation
through angle ϕ about the x axis, and Sx = ΣiSxi is the x
component of the total spin of the nuclear system. For
generality, we use the notation τ for the evolution with
time reversal. The condition t = τ corresponding to
experiments will be satisfied in the final equations.

n-Order coherence intensity is obtained from (4)
after the Fourier transform (integration in the nϕ vari-
able). It was, however, shown in [16] that this should
not necessarily be done for determining the second
moment of various order coherence intensity distribu-
tion in a multiquantum spectrum. Instead, the equation

(5)

can be used.
This equation is easy to generalize to t ≠ τ,

(6)

(7)

At t = τ, we obtain

〈〈n2(t, τ)〉〉 = 〈n2(t, t)〉 = 〈n2(t)〉. (8)

At t ≠ τ 〈n2(t, τ)〉 contains an imaginary part, which dis-
appears in (6) after symmetrization.

Direct calculations of four-spin time correlation
functions in (5) or (8) is a very complex and cumber-
some problem. In [17], the four-spin correlation func-
tion was expanded in powers of time with the isolation
and summation of the main sequences of contributions
(diagrams) in the approximation of large spatial dimen-
sionality lattices (d  ∞, where d is the space dimen-
sion). Below, we consider the dependence of 〈n2(t)〉 on
the properties of the Sx(t) amplitudes of the expansion
in the complete system of orthonormalized operators
[20–25],

(9)

Similar expansions were repeatedly used in non-
equilibrium statistical mechanics (e.g., see [20–25]) to
describe various time correlation functions.

The expansion in orthogonal operators given in the
beginning of this paper was in turn used in calculations
of multiquantum coherence amplitudes [2–9]. In this
expansion and in (9), different basis operators are, how-
ever, used. In the first equation, the universal basis is
formed by all possible products of operators of projec-
tions of various system spins. This is convenient for cal-
culations of small clusters. As the number of one-spin

n2 t( )〈 〉 d2Γϕ t t,( )/dϕ2
ϕ 0=–=

=  Sp Sx Sx t( ),[ ]2{ }/Sp Sx
2{ },–

Sx t( ) U t( )SxU
+ t( )=

n2 t τ,( )〈 〉〈 〉 n2 t τ,( )〈 〉 /2 n2 τ t,( )〈 〉 /2;+=

n2 t τ,( )〈 〉  = 2 Sp SxiSxf Sxj t( )Sxq τ( ){ }/Sp Sx
2{ }{

i j f q, , ,
∑

– Sp SxjSxi t( )Sxf Sxq τ( ){ }/Sp Sx
2{ } }.

Sx t( ) A j t( ) j| 〉.
j 0=

∞

∑=

operators ä increases, the number of basis operators
grows exponentially. To overcome mathematical diffi-
culties, uncontrollable approximations are usually
introduced. For instance, exact dynamic equations are
replaced with random walk equations in the Liouville
space. At the same time, Eq. (9) uses the basis con-
structed for a particular Hamiltonian and the initial
operator |0〉 = Sx rather than the universal basis. Each
next operator is obtained from the previous one after
calculation of the commutator with the Hamiltonian
according to the recurrent equation

Note that, along with the products of spin projection
operators, the |j〉 orthogonal operators also contain the
products of spin-spin coupling constants. This also sub-
stantially distinguishes the basis under consideration
from the universal |Knp〉 basis mentioned above.

The abandonment of basis universality allowed the
authors of [20–25] to make progress in studies of the
dynamics of many-particle systems, at least, for some
model Hamiltonians or in calculations of time correla-
tion functions simpler than those considered in this
work.

For definiteness, let us consider a spin system with
Hamiltonian (2). The Aj(t) amplitudes are then multi-
spin one-quantum time correlation functions. The larg-
est possible number of summations over lattice indices
(the number of different spins) in these functions
increases as j grows and equals j + 1. The system of dif-
ferential equations

(10)

was obtained for Aj(t) [20–25]. To avoid confusion, we
must mention some difference in the definition of Aj(t)
amplitudes between [20] and [21–24]. The difference is
the (i)j multiplier. We selected the variant used in [21–
24], when Aj(t) does not contain an imaginary part
because the (i)j multiplier is included in the definition
of the |j〉 operator. The {νk} parameters whose values
determine the solution to system (10) are written unam-
biguously in terms of the moments of the NMR absorp-
tion line [20]. In particular,

(11)

where M2, M4, and M6 are the second, fourth, and sixth
moments of the NMR absorption line.

1| 〉 i H 0| 〉,[ ], k 1+| 〉 i H k| 〉,[ ] vk 1–
2 k 1–| 〉+= =

for k 1≥( ),

vk
2 Sp k 1 k 1+ +〈 〉{ }/Sp k k〈 〉{ }.=

Ȧ0 t( ) v0
2A1 t( ),=

Ȧk t( ) Ak 1– t( ) vk
2Ak 1+ t( ) for k 1≥( )–=

v0
2 M2

9
4
--- bij

2 , v1
2

j

∑ M4 M2
2–( )/M2,= = =

v2
2 M2M6 M4

2–( )/ M4 M2
2–( )M2,=



RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B      Vol. 2      No. 5      2008

ON THE SECOND MOMENT OF THE MULTIQUANTUM NMR SPECTRUM OF A SOLID 679

Substituting (9) into (5) yields

(12)

For crystals with a large number of the nearest neigh-
bors Z, the main contribution containing the largest
possible number of summations over various lattice
indices can be written with j = j' in (12). Indeed, when
we pass from the operator |j〉 to |j + 1〉, the largest pos-
sible number of spin operators with various spin indices
constituting the orthogonal operator increases by one.
Double commutation with Sx does not change the num-
ber of operators and only changes their projections. For
instance, SÛi  Szi  Syi. The |j〉 and |j'〉 operators
should therefore contain equal numbers of spin opera-
tors for their scalar product to be nonzero. Note that, if
only the Hzz part of Hamiltonian (2) is used, the j = j'
contribution is the only nonzero contribution in (12)
[26].

At the same time, for total Hamiltonian (2) at large
|j〉, the orthogonal operator can also contain contribu-
tions with a smaller number of lattice indices, because,
as recommended in [20], the |j〉 operator is constructed
by the subtraction (summation) of the |j'〉 operators with
j' < j with quite definite coefficients. These corrections
are, however, on the order of ~(1/Z)p, where p > 0, and
are small at a large number of neighbors Z [27].

Next, we put

(13)

Here, F(j) is some function of j, and (13) is actually its
definition. According to [20],

and we eventually obtain

(14)

It follows from the aforesaid and (14) that calculations
of the second moment of a multiquantum spectrum are
a very complex many-particle problem. It requires deep
comprehension with invoking all the available, includ-
ing phenomenological, results.

The dependence of  on k determines the time
dependences of the {Aj(t)} time correlation functions
(e.g., see [23, 24]). For this reason, we will consider the
asymptotic (at large time t values) behavior of 〈n2(t)〉
from (14) for several models depending on the behavior

n2 t( )〈 〉

=  A j' t( )A j t( )Sp j'〈 | Sx Sx j| 〉,[ ],[ ]{ }/Sp Sx
2{ }.

j 1=

∞

∑
j' 1=

∞

∑

Sp 〈 j Sx Sx j| 〉,[ ],[ ]{ }/Sp Sx
2{ }

=  F j( )Sp j j〈 〉{ }/Sp Sx
2{ }.

Sp j j〈 〉{ }/Sp Sx
2{ } vk

2,
k 0=

j 1–

∏=

n2 t( )〈 〉 A j
2 t( )F j( ) vk

2.
k 0=

j 1–

∏
j 1=

∞

∑=

vk
2

of the  functions. This will in turn allow us to select
the model that correctly describes experimental results.

The F(j) functions of the integral argument can be
approximated by the sum of a first-degree polynomial
and an oscillating function,

(15)

Equation (15) is fairly general in character, and its {a,
b, c} coefficients can be found if the |j〉 operators are
known for the selected model.

Below, we consider three models with the depen-

dences  ~ const,  ~ k, and  ~ k2. The situation

with  ~ const starting with some k value will be
referred to as “parameter quenching.” This situation
was, in particular, considered in [22, 25], where the
{Aj(t)} amplitudes were written in the form of different
Bessel functions. Since the time asymptotics of Bessel
functions of one type depend on time almost identi-
cally, we can use much simpler results obtained in [22]
for our purposes. In addition, the corollaries to the
results obtained in [25] can be considered.

A scheme for parameter quenching suggested in
[22] was based on the assumption according to which

 = (1/2)µ2, and  = (1/4)µ2 if j ≥ 1 (µ = (2M2)1/2). We
then have Aj(t) = 2jµ–jJj(µt), and 〈n2(t)〉 takes the form

(16)

After the summation of the series [28], (16) becomes

(17)

At µt � 1, the substitution of the asymptotic equations
for the Bessel functions in (17) yields

(18)

Interestingly, the linear growth of 〈n2(t)〉 with time
(Eq. (18)) was observed experimentally [7] for fluoroa-
patite quasi-one-dimensional crystals.

An example of a linear dependence of {vk} parame-
ters on k is provided by the Gauss form of A0(t) time
correlation functions (and, therefore, the Gauss form of
the NMR absorption spectrum),

(19)

We then have

(20)

The NMR absorption spectra with a Gauss shape
appear in modeling dipole-dipole interactions by inter-

vk
2

F j( ) aj c 1–( ) j bj c–( ).+ +=

vk
2

vk
2

vk
2

vk
2

v0
2

v j
2

n2 t( )〈 〉 2 J j
2 µt( )F j( ).

j 1=

∞

∑=

n2 t( )〈 〉 c a µt( )2 J0
2 µt( ) J1

2 µt( )+[ ]+=

– a b+( )µtJ0 µt( )J1 µt( ) cJ0 2µt( ).–

n2 t( )〈 〉 c 2aµt/π a b+( )/π( ) 2µt( )cos+ +≅

– c/ πµt 2µt π/4–( ).cos

A0 t( ) M2t2/2–( )exp .=

vk
2 k 1+( )M2.=



680

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B      Vol. 2      No. 5      2008

ZOBOV, LUNDIN

action with an infinite radius (the van der Waals model).
For this model, explicit equations for the |j〉 operators
and Aj(t) functions were found in [26],

(21)

Substituting the required F(j) values in general form (15)
into (14) and performing the summation yields

(22)

A comparison with the exact equation obtained in [26]
gives a = 2, c = 1/2, and b = –1. It follows that, for this
model,

(23)

that is, the time dependence of an increase in the second
moment of a multiquantum spectrum is quadratic. Note
that a linear dependence of the {vk} parameters on k
can be obtained for real lattices when dipole-dipole
interaction (2) contains zz interaction only [30].

The quadratic dependence of the  parameters on k

(24)

appears when the A0(t) time correlation function is
selected in the form

(25)

In (25), the time is dimensionless, t  t(M2/2)1/2.
According to [24], we then have

(26)

Substituting F(j) in form (15) into (14) and performing
summation, we obtain

(27)

Equation (27) describes the exponential growth of the
second moment of a multiquantum spectrum with time.
Note that strengthening of the time dependence as
space dimension increased was observed experimen-
tally [5, 7]. A power law was suggested. We will show
that the experimental results reported in recent works
[9, 15] are well described by an exponential depen-
dence. This functional dependence also follows from
microscopic theory [17]. Lastly, calculations per-
formed in [28, 30] using exact equations for eight
moments of correlation function spectra lead to a qua-

dratic dependence of  on k in three-dimensional lat-
tices.

Time correlation functions of form (25) were used
to describe the general properties of some dynamic sys-
tems [24]. As far as we know, this time correlation func-
tion was for the first time used to describe paramagnetic

A j t( ) t j j!( ) M2t2/2–( ).exp=

n2 t( )〈 〉 = c aM2t2 c– M2t2b–( ) 2M2t2–( ).exp+ +

n2 t( )〈 〉 1/2 2M2t2+=

+ M2t2 1/2–( ) 2M2t2–( );exp

vk
2

vk
2 k 1+( ) k 2+( )v0

2=

A0 t( ) 1/ch2t.=

A j t( ) 1/ch2t( ) tht( ) j/ j!.=

n2 t( )〈 〉

=  e 2ash2t c ch2t( ) 2–– 2bsh2t ch2t( ) 3– .–+

vk
2

spin systems by Blume and Hubbard [31]. They
obtained this function by solving an approximate equa-
tion they used for an autocorrelation function of the

type Sp{SxiSxi(t)}/Sp{ } in an isotropic Heisenberg
paramagnetic. For nuclear spin systems coupled by sec-
ular dipole-dipole interaction, such a function (1/sht)
was suggested in [32] as a trial function for describing
the A0(t) nonoscillating component of free precession
decay in NMR spectra. This free precession decay com-
ponent is determined by the contribution of “far envi-
ronment” spins [33].

The analysis performed above shows that a correct
microscopic description primarily requires taking into
account multispin processes similar to those that occur
among a large number of far environment spins and
form NMR spectrum wings [34–37]. According to [29],

the  ~ k2 dependence corresponds to the exponential
shape of the wings found in these works.

An increase in the number of correlatively moving
spins with time was studied by multiquantum NMR
spectroscopy in many experimental works. The behav-
ior of the largest number of correlated spins observed
thus far, 5000, was studied for adamantane in recent
works [9], where evolution with Hamiltonian (3) was
observed. Lastly, the time dependence of the number of
correlated spins in ë‡F2 crystals, the generally recog-
nized model object for spin dynamics studies [33, 34],
was studied in one of the most recent works [15]. Mea-
surements were performed up to N = 96. The intensity
distributions in the multiquantum spectra were close to
normal (Eq. (1)) in both works. The second distribution
moments were therefore determined by selecting the
Gauss function with the same width at half-height.
More exactly, the K = N(t) = 〈n2(t)〉 value called the
number of correlated spins was found. The time depen-
dences of this value are shown in Fig. 1 and 2 in semi-
logarithmic coordinates. As follows from our experi-
mental data processing, the results for these quite dif-
ferently organized crystals are well described by the
dependence

(28)

For adamantane, the parameters in (28) (see Fig. 1)
found by the method of least squares were

(29)

To obtain the dimensionless value in (29), we used the
theoretical second moment of the NMR absorption
spectrum of adamantane calculated in [5], (M2)1/2 =
4.19 kHz. In [9], no experimental å2 value was given,
but, as follows from the free precession decay data, it
was close to theoretical.

The N(t) time dependence described by (28) is
shown in Fig. 1, where decimal rather than Napierian

Sxi
2

vk
2

N t( ) Ae aet{ }.exp=

Ae
A( ) = 3.24, ae = 0.0083 1/µs( ) 0.3 M2( )1/2.=
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logarithms are plotted along the vertical axis. That is,
Eq. (28) is transformed as

Triangles in Fig. 1 correspond to the experimental
results obtained by Suter in 2004 [9], and solid circles,
to his results of 2006 [9]. The figure shows that the
results of 2004 (triangles) begin to deviate from the
exponential function earlier than solid circles (data of
2006). It can therefore be expected that deviations from
the exponential dependence of the rate of growth of the
number of correlated spins are of instrumental origin.
For instance, the cycle time of the apparatus used in
2006 was 55 µs against 60 µs in 2004 [9].

To describe dependence “curving” in Fig. 1, it is rea-
sonable to assume that, by virtue of some circum-
stances of instrumental origin (nonuniformity of exter-
nal fields, inaccuracy of phase measurements, and
relaxation because of correction terms to the effective
Hamiltonian, which is the stronger the longer the cycle
time), each multiquantum spectrum component with
number M decreases according to the Gauss multiplier
~exp(–fM2). The condition for the spectrum width at
half-height then takes the form

(30)

It follows that deviations from the ideal dependence can
be described by the equation

(31)

N t( )log 0.0036t 0.51.+=

M2/N t( )– f M2–( )exp 1/2.=

N1/2 t( ) N t( )/ 1 fN t( )+( ),=

or

(32)

The corresponding curve at f = 1.2 × 10–4 is shown in
Fig. 1 (dashed line).

For ë‡F2, data processing with the use of the
method of least squares yields

(33)

in Eq. (28).

The authors of [16] did not specify crystal orienta-
tion with respect to the external magnetic field. We can-
not therefore compare the exponent in (33) with the
second moment value for fluorite.

The time dependence of the number of correlated
spins given by (28) likely means that each new spin of
the correlated cluster becomes a warranted and inde-
pendent producer of correlations. As a result, there is
some physical analogy with chain reactions (branching
processes). An explosive increase in the number of cor-
relations, which can be expected for such a time depen-
dence, is likely suppressed by various relaxation pro-
cesses (including those mentioned above), which will
possibly be discussed elsewhere. At the same time,
almost all authors (see above) model the growth of the
number of correlations by random walk in the Liouville
space to describe the time dependence of N. This results
in power N(t) dependences. As a rule, such modeling is
motivated by purely qualitative considerations pre-
sented most clearly by Fel’dman at the All-Moscow

N1/2 t( )log N t( ) 1 fN t( )+( )log .–log=

Ae 3.32, ae 0.0112 1/µs( )= =
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Fig. 1. Increase in the number of correlated spins with time
in adamantane; triangles are the experimental data from [9,
2004], and solid circles, the experimental data from [9,
2006]. The solid line corresponds to calculations by (28),
and the dashed line, to the approximation (32) taking into
account relaxation.
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Fig. 2. Increase in the number of correlated spins with time
in fluorite; squares are the experimental data from [15], and
the solid line corresponds to calculations by (28).
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Seminar on Magnetic Resonance in 2006. Let us ana-
lyze them.1

Let us consider a sphere filled by spins. We can esti-
mate the time when the spin in the center of the sphere
begins to feel a spin on its surface. This time qualita-
tively corresponds to the time of cluster formation of all
spins inside the sphere. If spins are coupled by dipole-
dipole interaction, it is reasonable to assume that this
time equals time t determined by the condition

where ωd is the characteristic “dipole frequency,” ωd ~
1/R3. The number of spins N inside the sphere can be
estimated as

where d is the space dimension. Therefore, clearly,

In particular, at d = 3, we find that the number of corre-
lated spins increases linearly with time. The diffusion
model proper of excitation transfer from the center of
the sphere to the surface then gives

which qualitatively coincides with the preceding result.
However, any diffusion-character description gives

the rate of the growth of the number of correlations
determined by a diffusion jump and weakly depending
on correlations already formed. For this reason, pro-
cesses of the growth of the number of correlations are
linear (additive) in diffusion models, whereas, in real-
ity, they are nonlinear (multiplicative) as follows from
our analysis.

Note that the experimental substantiation of the
independence of the dynamics of separate correlated
cluster spins is contained in [9, 16], where it is shown
that the decoherence (correlation weakening) rate
depends on the number of spins in the cluster K as
K1/2. Indeed, the observed dependence of the rate of
coherence loss was explained in [38], where it was
assumed that each spin in the cluster relaxes indepen-
dently of the other spins, and the relaxation function
of each spin in the cluster is Gaussian. The function of
relaxation of the cluster of K spins should then also be
Gaussian, and its exponent should be proportional to
Kt2. A decrease by Â times is determined by the condi-
tion Kt2 ~ 1, or t ~ 1/K1/2.

For large ä values, the particular form of the relax-
ation dependence is unimportant. Only the parity of the
corresponding time function is of importance. Every-
thing else is “taken care of” by the central limiting the-
orem.

1 E.B. Fel’dman. Private communication. Institute of Radio Engi-
neering and Electronics, Russian Academy of Sciences, 2006.

ωdt 1,≈

N Rd,∼

N td /3.∼

N td / 3/2( ),∼
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