РОССИЙСКАЯ ФЕДЕРАЦИЯ

⁽¹⁹⁾ RU⁽¹¹⁾ 2 339 598⁽¹³⁾ C2

(51) MПK *C04B 35/64* (2006.01) *C04B 35/45* (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21), (22) Заявка: 2006142972/03, 04.12.2006 (72) Автор(ы): Петров Михаил Иванович (RU), (24) Дата начала отсчета срока действия патента: Балаев Дмитрий Александрович (RU), 04.12.2006 Белозерова Ирина Леонидовна (RU), Гохфельд Денис Михайлович (RU), (43) Дата публикации заявки: 20.06.2008 Попков Сергей Иванович (RU), Σ Мартьянов Олег Николаевич (RU), (45) Опубликовано: 27.11.2008 Бюл. № 33 Шайхутдинов Кирилл Александрович (RU) C (56) Список документов, цитированных в отчете о (73) Патентообладатель(и): поиске: WELLHOFER F. et al. Superconductor Институт физики им. Л.В. Киренского Science & Technology. 1990. Vol.3. P.611-615. N Сибирского отделения РАН (RU) RU 2258685 C2, 20.08.2005. US 5081074 A, 14.01.1992. EP 0404966 B1, 30.11.1994. JP ω 1286954 A, 17.11.1989. ω Адрес для переписки: ဖ 660036, г.Красноярск, Академгородок, Институт G физики СО РАН, патентный отдел (0 $\boldsymbol{\infty}$

(54) СПОСОБ ПОЛУЧЕНИЯ ПЛОТНОЙ ТЕКСТУРИРОВАННОЙ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ НА ОСНОВЕ ВИСМУТА

(57) Реферат:

2339

~

C Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x, основе висмута на использована ∞ которая может быть в и транспорте. Техническим электротехнике ത результатом изобретения является получение плотного материала с высокой степенью текстуры S

простым и нетрудоемким способом. Пористую керамику плотностью от 1.8 г/см³ до 2.4 г/см³ пропитывают этиловым спиртом и подвергают одноосному сжатию давлением 400-500 МПа при комнатной температуре. Затем просушивают и отжигают при температуре 820-850°С в течение 30-100 часов. 5 ил.

C

N

RUSSIAN FEDERATION

⁽¹⁹⁾ **RU**⁽¹¹⁾ **2 339 598**⁽¹³⁾ **C2**

N

(51) Int. Cl. *C04B 35/64* (2006.01) *C04B 35/45* (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY, PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

 (21), (22) Application: 2006142972/03, 04.12.2006 (24) Effective date for property rights: 04.12.2006 (43) Application published: 20.06.2008 (45) Date of publication: 27.11.2008 Bull. 33 Mail address: 660036, g.Krasnojarsk, Akademgorodok, Institut fiziki SO RAN, patentnyj otdel 	 (72) Inventor(s): Petrov Mikhail Ivanovich (RU), Balaev Dmitrij Aleksandrovich (RU), Belozerova Irina Leonidovna (RU), Gokhfel'd Denis Mikhajlovich (RU), Popkov Sergej Ivanovich (RU), Mart'janov Oleg Nikolaevich (RU), Shajkhutdinov Kirill Aleksandrovich (RU) (73) Proprietor(s): Institut fiziki im. L.V. Kirenskogo Sibirskogo otdelenija RAN (RU) 		
(54) METHOD OF PRODUCING HARD GRAIN-ORI SUPERCONDUCTIVE CERAMICS ON BISMUTH B	ENTED HIGH-TEMPERATURE	ະ ເບ ເບ	
(57) Abstract: FIELD: construction industry. SUBSTANCE: method of obtaining hard grain- oriented high-temperature superconductive ceramics on bismuth basis 1.9Ca2Cu3O _x , which can be used in electric engineering and transport industry. Porous ceramics with density of 1.8 g/cm ³	exposed to uniaxial compression with pressure of 400-500 MPa at indoor temperature. After that porous ceramics is dried and burnt off at the temperature of 820-850°C for 30-100 hours. EFFECT: producing hard material with high degree of grain orientation by means of simple and non labour-intensive method.	598	
to 2.4 g/cm ^{3} is treated with ethyl alcohol and	3 ex, 5 dwg	ဂ	

```
39598
```

0 C

Изобретение относится к области технологии изготовления изделий из сверхпроводящей керамики и может быть использовано в электроэнергетике, транспорте.

Известен способ получения текстурированной высокотемпературной сверхпроводящей (ВТСП) керамики на основе (Bi,Pb)₂Sr₂Ca₂Cu₃O_x [N.Chen, A.C.Biondo, S.E.Dorris,

- 5 K.C.Gorella, M.T.Lanagan, C.A.Youngdahl, R.B.Poeppel, Sinter-forged (Bi,Pb)₂Sr₂Ca₂Cu₃O_x superconductors, Superconductor Science & Technology. 1993. Vol.6. P.674-677], использующий сложный технологический процесс, который условно можно разбить на два этапа. На первом этапе приготавливается порошок исходного химического состава (Bi_{1.8}Pb_{0.4})₂Sr₂Ca_{2.2}Cu₃O_x, затем он прессуется (подвергается одноосному сжатию при
- 10 давлении 70 МПа) в виде брусков. На втором этапе бруски помещаются в серебряную фольгу и дополнительно подвергаются одноосному сжатию и отжигу при высокой температуре 830-860°С с заданной скоростью сжатия (0.001-0.005 мм/мин) в течение длительного времени (сотни часов). Описанный процесс имеет устоявшееся название - так называемый метод «синтеза в кузнице» ("sinter-forged method").
- 15 Недостатком данного метода приготовления текстурированных материалов является трудоемкость технологического процесса.

Наиболее близким техническим решением является метод для получения текстурированных ВТСП керамик на основе $Bi_{1.2}Pb_{0.8}Sr_2Ca_2Cu_3O_x$ и $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_x$ [F.Wellhofer, C.E.Gough, D.A.O'Connor, T.W.Button, N.McN. Alford, Superconductor Science &

- 20 Technology. 1990. Vol.3. P.611-615]. На первом этапе приготавливается поликристаллический материал - основа будущей текстурированной керамики в виде ленты. На втором этапе полученные ленты прессуют заново, затем отжигают при T=850°C в течение 50 часов и повторяют указанный цикл прессование - отжиг несколько раз. Недостатком данного метода приготовления текстурированных материалов является
- ²⁵ длительность процесса ввиду необходимости проведения неоднократного повторения указанного цикла прессование - отжиг и низкая степень текстуры после проведения первых циклов.

Техническим результатом изобретения является получение плотного материала на основе висмутового ВТСП с высокой степенью текстуры нетрудоемким способом.

³⁰ Технический результат достигается тем, что в способе получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута, включающем приготовление керамики, ее прессование и отжиг, новым является то, что используют пористую керамику плотностью от 1.8 г/см³ до 2.4 г/см³ состава

Рb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x, содержащую микропоры, разделяющие пластинчатые кристаллиты ³⁵ толщиной ~1 мкм, которую пропитывают этиловым спиртом, подвергают одноосному сжатию при давлении 400-500 МПа при комнатной температуре, затем высушивают и отжигают при T=820-850°C в течение 30-100 часов.

Заявляемый способ отличается от прототипа перечисленными выше признаками, которые не были проявлены в других известных технических решениях, что и обеспечивает

40 заявляемому техническому результату соответствие критериям «новизна» и «изобретательский уровень».

45

На фиг.1 представлены микрофотографии текстурированного образца Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x, полученные сканирующей электронной микроскопией. Снимки сделаны с участка на сломе в направлении оси прессования текстурированного образца (а) и с поверхности плоскости таблетки (б, в).

На фиг.2 представлены дебаеграмма текстурированного Bi_{1.8}Pb_{0.3}Sr₂Ca₂Cu₃O_x. На фиг.3 приведена температурная зависимость удельного электросопротивления ρ(T) текстурированного BTCП Bi_{1.8}Pb_{0.3}Sr₂Ca₂Cu₂O_x.

⁵⁰ На фиг.4 приведены результаты измерений петель гистерезиса намагниченности М(Н) образцов текстурированного ВТСП.

На фиг.5 приведены результаты измерений петель гистерезиса намагниченности М(H) образца текстурированного ВТСП (направление магнитного поля Н параллельно с-оси кристаллитов) и для сравнения М(H) образца висмутового ВТСП поликристалла.

Пример №1

В данном способе в качестве основы будущего текстурированного материала служит не плотный поликристалл, как в описанных аналоге и прототипе, а пористая керамика Pb_{0.3} Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x, полученная способом, разработанным ранее [М.И.Петров,

- 5 Д.А.Бадаев, К.А.Шайхутдинов, С.И.Попков, Т.Н.Тетюева, С.Г.Овчинников. Способ получения пористой высокотемпературной сверхпроводящей керамики на основе висмута // Патент РФ, RU 2261233]. Пористая керамика Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x приготовлялась в два этапа: на первом этапе синтезируют промежуточный продукт номинального состава Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca_yCu₃O_x, где 1.0≤y≤1.5, при температуре 800-820°С в течение 12-24 часов,
- 10 а на втором этапе добавляют в полученный промежуточный продукт карбонат кальция СаСО₃ до получения стехиометрической формулы Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x с последующим совместным помолом, прессуют и окончательно отжигают его при температуре 830-850°C в течение 200-300 часов. Пористая керамика содержит микропоры, размерами 5-20 мкм, разделяющие отдельные кристаллиты, которые имеют форму пластин толщиной ~1 мкм с
- ¹⁵ линейными размерами от ~5 мкм до ~30 мкм. Пористые образцы плотностью от 1.8 до 2.4 г/см³ были взяты в виде таблеток диаметром 20-30 мм и толщиной 7-12 мм. Жидкость (в данном случае этиловый спирт) легко проникает в поры, т.к. при такой плотности практически все поры открытые. Таблетка подвергалась прессованию в направлении оси симметрии таблетки при давлении до 500 МПа при комнатной температуре. Присутствие
- ²⁰ пор дает возможность разворота пластинчатых кристаллитов так, чтобы их плоскости становились параллельными плоскости таблетки, при этом уменьшается вероятность слома кристаллитов. Присутствие жидкости с учетом ее практической несжимаемости создает для кристаллитов условия, аналогичные гидростатическому давлению, что способствует равномерному компактированию кристаллитов по всей глубине таблетки. Для
- ²⁵ выпаривания остатков спирта прессованные таблетки помещают в сушильный шкаф при T= 70°C на 5 часов. После прессования таблетки значительно уменьшаются в размере относительно исходного: толщина - 2-3 мм, диаметр - 20-30 мм (диаметр определяется размером пресс-формы). Затем образцы проходили отжиг при температуре 830°C в течение 30 часов. Отжиг при высокой температуре T=830°C обеспечивает рост
- ³⁰ кристаллитов и обеспечивает их спайность и, как следствие, хороший электрический контакт между ними. Плотность полученных образцов составила р=5,29±0,01 г/см³ (89% от теоретической, теоретическая плотность составляет 5.95 г/см³). В результате только одного цикла прессование-отжиг получаются таблетки ВТСП с высокой степенью текстуры и большим диамагнитным откликом.
 - На фиг.1 представлены микрофотографии текстурированного образца Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x, полученные сканирующей электронной микроскопией. Снимки сделаны с участка на сломе в направлении оси прессования текстурированного образца (а) и с поверхности плоскости таблетки (б, в). Видно, что в разных направлениях
- 40 образец демонстрирует качественно различную микроструктуру. В направлении оси прессования (фиг.1а) пластинки расположены в основном перпендикулярно оси прессования, т.е. параллельно плоскости таблетки, пластинки кристаллитов имеют толщину ~1 µm, т.е. ту же толщину, что и пластинки в исходном пористом ВТСП. Кристаллографическая ось-с кристаллитов направлена перпендикулярно плоскости
- 45 пластин кристаллитов. На фиг.1а отчетливо видны границы между кристаллитами. Микрофотографии поверхности плоскости таблетки (фиг.1б, в) также подтверждают то, что пластинки кристаллитов лежат в плоскости таблетки, т.е. а-b плоскости кристаллитов ориентированы параллельно плоскости таблетки. Анализ микрофотографий, сделанных с поверхности таблетки с разным увеличением (фиг.1б, в), показывает, что нет четких
- границ, разделяющих отдельный кристаллит со всех сторон. Есть отдельные участки
 границ между кристаллитами, но они в большинстве не охватывают отдельный кристаллит.
 Это особенно видно при сравнении изображений межкристаллитных границ в направлении
 оси прессования (фиг.1а) и в плоскости таблетки (фиг.16, с). Неоднородности, видимые

на микрофотографиях поверхности таблетки, являются областями спайности кристаллитов. Таким образом, по данным электронной микроскопии полученный материал обладает текстурой, в которой пластинчатые кристаллиты ориентированы a-b плоскостями в плоскостях, параллельных поверхности таблетки.

- 5 На фиг.2 представлены дебаеграмма текстурированного Bi_{1.8}Pb_{0.3}Sr₂Ca₂Cu₃O_x. Рефлексы соответствуют в основном структуре Bi2223. Из анализа данных на фиг.2 доля низкотемпературной фазы Bi2212 составляет менее 5%. Известно, что в поликристаллической керамике отношение интенсивностей рефлексов ∑(00I) к ∑(hkl) увеличивается с увеличением предпочтительной ориентации с-оси. Это соотношение
- 10 может быть использовано для определения степени текстуры. Для количественного анализа выбраны рефлексы Bi 2223 (002), (004), (008), (0010), (0014), (0016), (0020), и (115), (119), (1115), (1117) и (1119). Степень текстуры Р определена следующим образом [Xi Zhengping, Zhou Lian. The formation and enhancement of texture in a Bisystem superconductor, Superconductor Science & Technology. 1994. Vol.7. P.908-912]:

15 $P=\Sigma I(00I)/[\Sigma I(hkI)],$

где I(hkl) - интенсивность (hkl) рефлексов, ∑I(hkl) указывает суммирование интенсивности всех выбранных пиков и ∑I(00I) сумма интенсивностей рефлексов (00I)типов. Оказалось, что для полученной текстурированной керамики степень текстуры Р= 0.97±0.01, что свидетельствует о высокой степени текстуры в данном материале.

- ²⁰ На фиг.3 приведена температурная зависимость удельного электросопротивления ρ(T) текстурированного ВТСП Ві_{1.8}Pb_{0.3}Sr₂Ca₂Cu₃O_x. Транспортный ток задавался в направлении плоскостей а-b кристаллитов. Температура начала перехода в сверхпроводящее состояние составляет ~113 К. Температура, при которой сопротивление образца становится равным нулю, составляет 106 К. Зависимость ρ(T) выше Т_с имеет
- 25 металлический ход. Полученные результаты свидетельствуют о том, что полученный материал обладает хорошими сверхпроводящими характеристиками, подобно плотным текстурированным образцам.
- На фиг.4 приведены результаты измерений петель гистерезиса намагниченности М(H) образцов текстурированного ВТСП. Образец для измерений был выпилен из таблетки в форме куба размерами 2×2×2 мм³. Одна из граней куба совпадала с плоскостью таблетки. Т.е. а-b плоскости пластинчатых кристаллитов расположены параллельно двум противоположным граням куба и, соответственно, перпендикулярны четырем другим граням. Измерения проводились при 2-х вариантах ориентации магнитного поля H по
- отношению к преимущественному направлению кристаллитов в образце: Н||с и Н||а-b. Из фиг.4 видно, что диамагнитный отклик в направлении Н||с больше, чем в направлении Н||а-b. Т.е. полученный текстурированный материал обладает анизотропией магнитных свойств. Из величины диамагнитного отклика и характерного размера кристаллитов в различных направлениях можно оценить величину внутригранульного критического
- 40 тока J_C^{a-b} и J_C^c. Для оценки внутригранульного критического тока была использована теория [В.В.Вальков, Б.П.Хрусталев. Намагничивание гранулированных ВТСП в сильных магнитных полях. - ЖЭТФ, 1995. Т.107 (4), С.1221-1231], которая опирается на классическую модель Бина, но в отличие от модели Бина учитывает гранулярную структуру поликристаллического образца. Согласно результатам цитированной работы, для оценки
- ⁴⁵ плотности критического тока поликристаллических образцов можно воспользоваться простой формулой J_C≈2.7×10⁶×∆M(0)/d, где J_C плотность критического тока кристаллитов в плоскости, перпендикулярной направлению поля в А/см²; ∆M(0) ширина петли намагниченности в нулевом поле в эме/г; d средний размер кристаллитов в направлении, параллельном вектору внешнего поля, в микрометрах. По данным
- ⁵⁰ электронной микроскопии (фиг.1а) толщина кристаллитов в направлении с-оси составляет d~1 μm, тогда внутригранульная плотность тока в ab-плоскости составляет J_C^{ab}~135×10⁶ А/см². Для того чтобы получить значение критического тока по с-оси необходимо знать

характерный размер кристаллитов в ab-плоскости. Как отмечалось выше, в плоскости, параллельной ab-плоскостям кристаллитов, отдельные кристаллиты не разделены четкими границами со всех сторон, см. фиг.1б, в. Четкие границы ограничивают обычно кластер, включающий в себя несколько спаянных кристаллитов. Средний размер такого

- 5 кластера d~50÷100 мкм. Используя такое значение d, получим для внутригранульного критического тока вдоль с-оси J_C^c~0.55÷1.1×10⁶ А/см². Параметр анизотропии, определяемый как J_C^{a-b}/J_C^c, будет достигать значения ~125÷250. Полученные величины критического тока и значение параметра анизотропии типичны для висмутовых ВТСП. Это подтверждает, что полученный материал обладает высокой степенью текстуры.
- ¹⁰ На фиг.5 приведена зависимость намагниченности от магнитного поля М(Н) образца из висмутового ВТСП поликристалла, в котором кристаллиты расположены хаотически, т.е. текстура отсутствует и для сравнения зависимость М(Н) текстурированного ВТСП в направлении Н⊥а-b (Н||с-оси). Видно, что диамагнитный отклик текстурированного ВТСП
- в направлении Н⊥а-b в 2.6 раза больше, чем для поликристалла. Высокие значения диамагнитного отклика и, как следствие, силы левитации важны для применений ВТСП в транспорте.

Пример №2

Текстурированный ВТСП был приготовлен аналогичным способом в один цикл

- 20 прессование-отжиг, как описано в примере №1. Пористая керамика Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x плотностью 2.4 г/см³ была взята в виде таблетки диаметром 30 мм и толщиной 12 мм. Она пропитывалась этиловым спиртом, подвергалась прессованию в направлении оси симметрии таблетки при давлении 400 МПа при комнатной температуре. После выпаривания остатков спирта в сушильном шкафу при T=70°C в течение 5 часов проводился отжиг при температуре T=850°C в течение 100 часов.
 - Плотность полученных образцов составила _ρ=5,28±0,01 г/см³. Результаты исследования микроструктуры, магнитных и резистивных свойств полученных образцов оказались схожими с результатами, приведенными для примера №1 на фиг.1-5 Пример №3
- 30 В данном способе текстурированный ВТСП был приготовлен аналогичным способом в один цикл прессование-отжиг, как описано в примерах №1, №2. В качестве основы будущего текстурированного материала служит пористая керамика Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x плотностью 1.8 г/см³, взятая в виде таблетки диаметром 20 мм и толщиной 8 мм. Она пропитывалась этиловым спиртом, подвергалась прессованию в направлении оси
- ³⁵ симметрии таблетки при давлении 500 МПа при комнатной температуре. После выпаривания остатков спирта в сушильном шкафу при T=70°C в течение 5 часов проводился отжиг при температуре T=820°C в течение 50 часов. Плотность полученных образцов составила р=5,30±0,01 г/см³. Результаты исследования микроструктуры, магнитных и резистивных свойств оказались идентичны результатам, приведенным для
 - [⊄] примеров №1, №2 на фиг.1-5. Основываясь на результатах, полученных для примеров №1, №2, №3, можно сделать следующие выводы:
 - (1) варьирование давления прессования при комнатной температуре от 400 до 500 МПа,
 - (2) варьирование температуры отжига в пределах от 820°С до 850°С,
- 45 (3) увеличение времени отжига от 30 до 100 часов, практически не изменяет объемную плотность полученных текстурированных образцов, не оказывает заметного влияния на микроструктуру, а также сверхпроводящий переход и магнитные свойства текстурированных образцов.
- ⁵⁰ Таким образом, разработан технологически простой метод получения текстурированных ВТСП на основе висмута, позволяющий получать материалы с высокой степенью текстуры и большими значениями диамагнитного отклика. Использование заявляемого изобретения позволит

- применять текстурированные ВТСП материалы в качестве активных элементов

ограничителей тока короткого замыкания на основе ВТСП, работающих при температуре жидкого азота,

- использовать текстурированные ВТСП материалы в сверхпроводящих подвесах, сверхпроводящих подшипниках и сверхпроводящих накопителях энергии.

5

15

Формула изобретения

Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута, включающий приготовление керамики, ее прессование и отжиг, отличающийся тем, что используют пористую керамику плотностью от 1,8 до 2,4

¹⁰ Г/СМ³ состава Pb_{0.3}Bi_{1.8}Sr_{1.9}Ca₂Cu₃O_x, содержащую микропоры, разделяющие пластинчатые кристаллиты толщиной ~1 мкм, которую пропитывают этиловым спиртом, подвергают одноосному сжатию при давлении 400-500 МПа при комнатной температуре, затем высушивают и отжигают при T=820-850°C в течение 30-100 ч.

20			
25			
30			
35			
40			
45			
50			

Страница: 8

RU 2339598C2

Фиг.2

Страница: 10

