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The solution of the problem of all-optical (nonmagnetic) confinement of ultracold electron–ion neutral
plasma based on selective action on plasma ions with quantum transition J = 1 → J = 0 of so-called
rectified radiation forces in a strong nonmonochromatic light field is suggested. The presented scheme
of the three-dimensional dissipative optical trap for plasma allows one to obtain long-lived ultracold
plasma with controlled characteristics. The lifetime of the ultracold plasma in such a trap may exceed
considerably (by orders of magnitude) the time of free plasma expansion and the lifetime in the (earlier
proposed) optical molasses for the ultracold plasma.
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1. Introduction

The methods of laser cooling and trapping of atoms and ions
[1] have intensively been studied for more than three decades and
are widely used in different fields of physics. A qualitatively new
interesting object where these methods can certainly be applied
is so-called ultracold neutral plasma (UP) [2]. UP is a classical
electron–ion plasma with ultralow values (as compared to typi-
cal laboratory plasmas) of electron Te and ion Ti temperatures:
Te < 100 K, Ti � 0.1 K. In spite of quite low density of UP, its
ionic component may be strongly non-ideal (“liquid-like” or even
“crystal-like”). Besides unusual physical properties of UP, the pos-
sibility of its practical application for the solution of the actual
problem of generating low-temperature electron and ion beams is
discussed in scientific literature [3].

The main (realized experimentally) method of creating UP is
a near-threshold ionization of cooled atoms in a magneto-optical
trap [2]. This method allows one to obtain only short-lived UP with
a lifetime of ∼ 100 μs, determined by the time of free plasma ex-
pansion.

The practical solution of the UP confinement problem would al-
low one to create a qualitatively new situation, namely, to obtain
long-lived (quasi-stationary) UP with controlled characteristics [4].
And in the case of UP, containing ions with a quantum transition
resonant to laser radiation it is possible to suggest the solutions of
these problems based on selective action on plasma ions by the
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forces of resonant light pressure, which is not conventional for
plasma physics [5,6]. Considered in the work [5] is the model of
viscous one-dimensional (1D) UP confinement in optical molasses
generated by the monochromatic standing light wave, and in work
[6] – the model of UP confinement in 1D dissipative optical super-
lattice induced by the bichromatic standing light wave.

The main drawback of the schemes of the optical UP confine-
ment considered in [5,6] is that they transform into complete
schemes of three-dimensional (3D) UP confinement only when
combined with the action of a uniform magnetic field suppress-
ing plasma diffusion in the direction orthogonal to the direction
of the light wave propagation. Here, the necessary value B of the
magnetic field induction is rather high: B � 5 × 103 G [5].

The scheme of all-optical (nonmagnetic) 3D confinement of UP:
the model of 3D dissipative optical trap (DOT) for UP, containing
ions with quantum transition Jb = 1 → Ja = 0 (where Jb and Ja

are the total angular momenta in the ground and exited states,
respectively) has been proposed and studied in this work. For ex-
ample, the ions 171Yb+ and 199Hg+ have such quantum transitions.
Moreover, it is these transitions that are used for laser cooling of
the ions mentioned in many spectroscopic experiments (see, for
example, works [7] and references in them).

In DOT considered the laser radiation has two main functions:
(a) induces efficient damping of both chaotic and directed (macro-
scopic) motion of plasma ions as in the optical molasses for UP
[5], (b) creates the deep 3D potential well for ions. As a result, the
ions are cooled and confined in DOT due to the selective action
of resonant light pressure forces, and the electrons are cooled and
confined due to Coulomb interaction with ions. Moreover, due to
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the slow electron–ion energy exchange the electron temperature
Te in such a system can easily be controlled and maintained, for
example, by microwave heating of electrons [5,6,8].

In this DOT scheme it is assumed that the light-induced poten-
tial field force (generating 3D potential well with the depth �U )
and velocity-linear force of viscous friction act upon plasma ions
simultaneously.

The idea itself of the DOT described seems to be quite simple,
but it is necessary to overcome serious obstacles to implement it.
Really, the peculiarity of UP is a relatively high value of electron
temperature (Te > 1 K) and pressure pe considerably exceeding
ion temperature Ti (Ti < 0.1 K) and pressure.1 Therefore, as in
the case of 1D models of the UP confinement [5,6], high electron
temperature rather than low ion temperature is taken into consid-
eration in long-term 3D all-optical UP localization conditions:

�U

Te
= η � 1, � > 0,

cs

�
= λr � L, (1)

where � is a light-induced friction coefficient, Te is in energy units,
cs = √

Te/m – velocity of the ion sound, m – ion mass, L – char-
acteristic spatial size of DOT. Thus, radiation forces must be quite
strong.

Another additional (highly desirable) condition is the absence of
vortex component of the radiation force, since vortex forces may
result in instability of the ion motion [9]. The most impressive
example is the impossibility of all-optical particle localization by
spontaneous light pressure forces in weak resonant fields, which
results from the famous optical Earnshaw theorem [10].

It will be shown that all the difficulties mentioned can suc-
cessfully be overcome using so-called rectified radiation forces
(RRFs), which were discovered and studied in works [9,11], and
first demonstrated by experiment in [12]. Later, the idea of RRF
was significantly developed in many studies (see, for example,
works [13] with references).

RRF may arise in a strong nonmonochromatic light fields. This
radiation force has a value of the order of magnitude of the in-
duced light-pressure force [1] and retains its sign on macroscopic
spatial scales greatly exceeding the light wavelength λ. Moreover,
this RRF is not saturated with increasing radiation intensity. There-
fore, such RRF allows the formation of deep potential wells for
the resonant particles [14]. Another remarkable property of RRFs
(useful for realizing DOT for UP) is the possibility of controlling
the spatial structure of these forces [9]. In the DOT under consid-
eration, use is made of the 3D scheme for rectifying a gradient
radiation force based on employing strong partially coherent opti-
cal fields [15].

2. Action of light on plasma ions. Radiation forces

Consider electron–ion UP in the light field:

E(r, t)e−iω0t + c.c.

with a carrier frequency ω0 tuned to resonance with the | Jb = 1,

Mb = 0,±1〉 → | Ja = 0, Ma = 0〉 quantum transition of the plasma
ion, where Jα is the total angular momentum and Mα denotes
its projections in the ground (α = b) and exited (α = a) states.
The field is a superposition of coherent quasi-resonant components
(with three different frequencies) polarized in mutually perpendic-
ular directions and a partially coherent (fluctuating) resonant field
E′ with a bandwidth ∼ Γ :

E(r, t) =
∑

j=x,y,z

E j1e j exp[−i� jt] + E′(r, t) (2)

1 This peculiarity of electron–ion UP results from the necessary condition for the
UP stability against decay due to three-body electron–ion recombination (see, for
example [5,8]).
where e j denotes the unit basis vectors of a Cartesian coordinate
system and � j is detuning from the resonant frequency ω0.

In accordance with the original conception of the effect of the
radiation force rectification [9,11] (see also [15]) assume the fol-
lowing hierarchy of the characteristic frequencies:

� j, |� j − �l| � |V j1|,

Γ � |U j |, |V j1|2
� j

, γ , ks; (3)

|V j1|2
� j

� |U j |2
Γ

, (4)

γ

∣∣∣∣ V j1

� j

∣∣∣∣
2

� |U j |2
Γ

, (5)

where l and j 	= l denote indices x, y, or z, V j1 = dE∗
j1/h̄, U j =

d(e jE′ ∗)/h̄ are the Rabi frequencies, d = ‖d‖/√3, ‖d‖ is the re-
duced dipole transition matrix element, k = ω0/c is the wave num-
ber, s = √

Ti/m is the thermal velocity of ions, Ti is in the energy
units, γ = γ ′/3, γ ′ – the rate of spontaneous decay of the excited
state.

It should be taken into account that in the rarefied (non-
recombining) UP (which is of interest for us) having particle den-
sity n � 108 cm−3 and heavy ions (with a mass of m ∼ 100 amu)
the ion plasma frequency ωi = √

4πe2n/m is always consider-
ably lower than the decay rate of the excited state of plasma
ion: ωi � γ . Consequently, a variation in the translational state of
plasma ion (conditioned by the Coulomb interaction) is adiabatic
(slow) with respect to light-induced changes of its internal state
and does not influence the process of forming the radiation force
itself.

Due to a high frequency of the optical radiation at the assumed
values of its intensity (I < 1 kW/cm2), its direct (not connected
with the resonant light pressure) ponderomotive action (Miller
force [16]) on the charged particles is negligible.

Therefore, the light-induced force F acting upon the resonant
ions can be defined by conventional equation [1]

F = h̄
∑

j=x,y,z

(
ρ j∇

�

V ∗
j + c.c.

)
, (6)

where
�

V j = V j1(r)exp(i� jt) + U j(r, t),

ρ j denotes the projections of the induced dipole moment (in
d units). They are determined from the Bloch optical equations
which (in the approximation of the preset motion [1]) are inte-
grated along the unperturbed ion trajectory, r = v · t . For the prob-
lem under consideration it is convenient to write these equations
in the Cartesian representation (compare with [1,15,17,18]), i.e., in
the representation of basic wave functions (intra-ionic motion) for
the exited |a〉 and ground states |bi〉 (where i = x, y, z), in which
the matrix elements of the dipole moment

�

d are directed along
the unit vectors of the Cartesian coordinate system:

〈bi|�d|a〉 = eid.

In this case the Bloch equations take the following symmetric and
compact form:

i

(
d

dt
+ γ1

)
ρi =

∑
j

qi j
�

V j, (7)

i
d

dt
qi j + iγ δi j

∑
l=x,y,z

qll

= iγ δi j + (
ρi

�

V ∗
j − �

V jρ
∗
j

) + δi j

∑
l=x,y,z

(
ρl

�

V ∗
l − c.c.

)
(8)
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Fig. 1. Wave vectors of the light field components polarized along ei and deter-
mining Rabi frequencies Ui1(r), Ui3(r) and V i1(r) in Eqs. (9), the ordered index
combinations (triplets) (i jl) are: (xyz), (zxy) and (yzx), δi and δ′

i are small angular
detunings.

where the indices i, j = x, y, z, qii denotes population differences
between the |bi〉 and |a〉 states, qij (for i 	= j) characterizes the
coherence between |bi〉 and |bj〉 states, γ1 = 3γ /2.

Let DOT be formed by special superposition of the flat-topped
light beams with rectangular profiles [19], where the Rabi frequen-
cies Ui and V i1 are the following:

Ui(r, t) =
4∑

α=1

Uiα(r)exp
(
i
[
ϕiα(t)

])
,

V i1(r) = V i

2

(
exp

(
i[qir + η1]

) + exp
(
i
[
q′

ir
]))

,

Ui1(r) = U

2

(
exp

(
i[ki1r]) + a exp

(
i
[
k′

i1r
]))

,

Ui2(r) = U∗
i1(r),

Ui3 =
√

a′U
2

(
exp

(
i[ki3r + ζ ]) + exp

(
i
[
k′

i3r
]))

,

Ui4 = U∗
i3, (9)

where the index i = x, y, z, η1 and ζ are the fixed phase shifts, the
parameters a,a′ < 1, U and V i are real amplitudes, which for the
considered case of intersecting flat-topped beams do not depend
on r in the DOT area, ϕiα(t) are independently fluctuating phases
(with delta-correlated zero-mean derivatives), which determine the
correlators of E′ components by the relations〈
exp i

[
ϕ jα(t) − ϕlβ(t + τ )

]〉 = δ jlδαβ exp
(−Γ |τ |)

in a model of radiation with phase diffusion [20,21], angular brack-
ets 〈. . .〉 denote averaging over the noise. Thus, the partially coher-
ent field E′ has a Lorentzian spectral profile with the bandwidth Γ .
It is worth noting that representation (9) for Ui(r, t) is valid only
if the coherence length lc = cτc = c/Γ is much greater than the
characteristic trap size L: lc � L (see [21]).

One specifies the configuration of the light field determining
wave vectors in Eq. (9) as follows (see Fig. 1):

ki1 = k(e j cosβ + el sinβ), k′
i1 = k(−e j cosβ + el sin β),

qi = qi(e j cosβi + el sin βi), q′
i = qi(−e j cosβi + el sin βi),

ki3 = k
(
e j cosβ ′

i + el sin β ′
i

)
,

k′
i3 = k

(−e j cosβ ′
i + el sin β ′

i

)
, (10)

where β is an angle determining main (dominant) directions of
the propagation of the light beams polarized along ei , βi = β + δi ,
β ′

i = β+δ′
i , δi and δ′

i are small angular detunings (|δi |, |δ′
i | � 1), the

ordered index combinations (i jl) are: (xyz), (zxy), (yzx). Angular
detunings δi and δ′
i are determined so that the following relations

hold:

�qi = qi − q′
i = ki3 − k′

i3,

�qi − (
ki1 − k′

i1

) = 2kαiξi cosβ · e j = 2π

L
sgn(ξiαi) cos β · e j, (11)

where αi = �i/ω0, ξi = (1 − δ2
i /2αi − δi tgβ/αi), |ξi | = πc/|�i |L,

L � λ = 2π/k is a macroscopic spatial scale of the problem (in
fact, as one will see – the DOT size). Given the values �i and L and
not very small values of β(tg β � √|αiξi | ), δi and δ′

i are described
by simple formulae:

δi � (1 − ξi)αi

tg β
, δ′

i � −αiξi

tgβ
.

It is necessary to pay attention that each component E ′
iei of the

field E′ is a sum of two pairs of counter-propagating laser fields
(vectors ki2 = −ki1, k′

i2 = −k′
i1, ki4 = −ki3, k′

i4 = −k′
i3, determin-

ing Ui2(r) and Ui4(r), are not given in Fig. 1).
To obtain explicit expressions for the radiation forces, we av-

erage successively (taking into account inequalities (3)–(5)) optical
Bloch equations (7), (8) – at first, over the “high-frequency” os-
cillations with the frequencies � j (as is usually done in the RRFs
theory (see [9,11])), then over fluctuations of the field E′ .2 As a
result, Eqs. (7), (8) are reduced to[

d

dt
+ 2Ri(r) + γ

]
qi +

∑
j 	=i

[
R j(r) + γ

]
q j = γ ,

F = −
∑

i=x,y,z

qi
h̄∇|V i1(r)|2

�i
, (12)

where qi are averaged population differences of the quantum ion
states (i = x, y, z), and for the averaged force F the previous no-
tation is used, Ri(r) denotes the rates of the transitions between
low-lying and exited ion states induced by the field E′:

Ri(r) = R
(
1 + a1 Pi(r)

)
, R = U 2

Γ

(
1 + a2 + a′),

Pi(r) = 1

1 + b

[
cos(�kir) + b cos(�qir + ζ )

]
, b = a′

2a
,

a1 = (2a +a′)/(1+a2 +a′), �ki = ki1 −k′
i1. When writing Eqs. (12)

it was taken into account that in the considered configuration of
the fields the correlators

0∫
−∞

dτ
[〈∇Ui(r, t)U∗

i (r, t + τ )
〉 − c.c.

]
(13)

are equal to zero which provides accurate mutual compensation
(in the considered approximation) of the light pressure forces Fs ,
conditioned by the fluctuating field only (compare with [15]).

It should be noted that neglecting the force Fs may be justified
at other field configurations E′ , if condition (4) is well satisfied,
since in this case |Fs| � |F|. One can see from Eqs. (12) that ra-
diation force (in the conditions under consideration) is a gradient
force which is proportional to the sum of the population differ-
ences multiplied by intensity gradients of the coherent field E1
components. The 3D effect of this gradient force rectification oc-
curs if the partially coherent field E′ includes components capable
of interfering with each other. In other words, when the values of

2 Averaging procedure is analogous to the case of V-type atoms, described in [15].
It is based on the fact that Eqs. (7) are a system of multiplicative stochastic equa-
tions [22] and employs the smallness of the parameter ε, which is proportional to
the autocorrelation time τc ∼ Γ −1: |U j | · τc , |V j |2τc/� j , ksτc , γ τc � ε � 1 due to
the inequalities (3).
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the parameters a and a′ in Eqs. (9) are not equal to zero. Then, the
field E′ induces spatial modulation of the population differences
(due to the modulation of the transition rates Ri = Ri(r)), and the
coherent field E1 induces the effective potentials (conditioned by
light-induced Stark shifts of the energy levels), which determine
ion motion depending on its internal state: |bj〉 or |a〉. As a result,
F is a sum of two components:

F = FR + Fg, FR = 〈F〉s, (14)

where 〈. . .〉s denotes averaging over the microscopic spatial oscil-
lations with the period of the order of the light wavelength λ,
FR is the RRF (which varies on macroscopic spatial scales ∼ L � λ),
the force Fg oscillates in space with the period of the order λ,
〈Fg〉s ≡ 0.

To obtain an explicit expression for radiation forces, assume
that the parameter a2

1 is small (a2
1 � 1), and the ions are slow:

ks

γ
,

ks

R
� ε1 � 1. (15)

In the linear approximation3 over the ion velocity v and the
parameter a1, the following expression is obtained from Eqs. (12)
for qi at t � γ −1, R−1:

qi � 1

(4χ + 3)
− a1

(4χ + 3)2

[
2(2χ + 1)Pi(r) − Pl(r) − P j(r)

]
+ a1

(4χ + 3)3 R

[
2
(
6χ2 + 8χ + 3

)
Ṗ i(r)

− (
4χ2 + 8χ + 3

)(
Ṗ l(r) + Ṗ j(r)

)]
, (16)

where l 	= j 	= i, Ṗ i(r) = v∇ Pi(r), χ = R/γ . Substitution of Eq. (16)
into Eqs. (12), (14) allows one to obtain a common expression for
FR and Fg . For clearness and simplification of the final expressions,
additional assumptions should be made. Let ζ = η1 = π , the de-
tunings �i > 0, ξi < 0 (i = x, y, z) and Stark shifts of the energy
levels induced by the waves with mutually orthogonal polarization
directions are equal:

|V i |2
�i

= γ

√
I

Is
g, g =

(
V x

�x

)2

,
I

Is
= V 2

x

γ 2
, (17)

where I = Ix is the intensity of light beams forming Ex1 = (exE1)

a strong coherent field component, Is = h̄ω0k2γ /6π is the inten-
sity of radiation saturating the quantum transition.

As a result we have:

Fg ≈ −∇U g , U g = 1

4χ + 3

∑
i=x,y,z

h̄|V i1(r)|2
�i

,

FR = F0R + F1R , F0R = −∇U R , F1R = −m
∑

i=x,y,z

vi�(ri)ei,

U R = −U0

[ ∑
i=x,y,z

cos

(
2π

L
ri cosβ

)]
,

U0 = h̄γ
kL

2π

√
I

Is
g

2χ + 1

(4χ + 3)2

a1

[1 + b] ,

�(ri) = 2a1(6χ2 + 8χ + 3)γ

(4χ + 3)3 R(1 + b)
cos2 β · ωR

√
I

Is
g

×
[

b − cos

(
2πri

L
cos β

)]
, (18)

3 In this approximation we neglect small additives to RRF, having the order of

magnitude a3
1 and ε2

1a1.
where ri = (rei), vi = (vei), F1R is the light-induced viscous fric-
tion force, F0R is the rectified gradient force [9,11] (potential field
force), ωR = h̄k2/m.

Thus, one can see from Eqs. (18), that the main conditions
of DOT formation are satisfied (see the introduction): the light
field creates a deep macroscopic 3D potential well for the ions
(described by the potential U R(r)) with the depth proportional
to the larger parameter kL � 1 (U R ∼ kLU g � U g ); besides, the
light-induced friction force F1 influences the ions. Moreover, given
b = a′/2a > 1, which is always to be considered further as the con-
dition entry, friction coefficients �(ri) > 0 (see condition (1)). One
should pay attention to the fact that the depth �U of the 3D po-
tential well, as well as the friction coefficient � can be increased
up to the necessary values by means of increasing intensity (∝ I)
of the strong field components in order to satisfy main conditions
(1). It is worth noting that under the condition Ti � U g , which
is always satisfied here at a2

1 � 1, the light-induced kinetics of
plasma ions is determined exactly by RRF because of the small
depth of the macroscopic potential wells.

In order to describe the state of the UP ion component cor-
rectly, one should take into account another important process: ion
heating due to quantum fluctuations of the radiation force (com-
pare with [5]). The mean ion heating rate Λ for the considered
symmetric configuration of optical fields and given condition (4)
(|V i |2/�i � R) is Λ = 3mD R , where D R is a so-called induced
diffusion coefficient in the velocity space [1] (averaged over mi-
croscopic spatial oscillations). The order of the value of D R is well
known [1] and is determined by the multiplying gradient force
square (F2

g/m2 ∝ h̄2k2 cos2 β · V 4
i /�2

i m2 = h̄2k2 cos2 β · γ 2 I g/Ism2)

by the correlation time τg of gradient force fluctuations. In the
considered case of Λ-type ions, τg is determined by the rate R of
incoherent mixing of the ionic states: τg ∼ 1/R . Thus

Λ = C
h̄2k2 cos2 β

m
γ 2 g

I

Is R
, (19)

where C is a proportionality factor, depending on the saturation
parameter χ = R/γ . Standard (but rather complicated) calcula-
tions within the framework of a well-developed Wigner density-
matrix formalism [1] lead to the following result:

C = 3(8χ3 + 16χ2 + 11χ + 3)

(4χ + 3)3
.

3. UP model in dissipative optical trap

From Eqs. (18) it follows that the cubic cell with the edges (the
lengths being 2L1 = L/ cosβ ∼ L at β ∼ 1) parallel to the axes of
Cartesian coordinate system and with the center in the point r = 0
there is DOT for UP, if the main conditions are satisfied (1). The
facets of this cell coincide with the boundaries of the 3D poten-
tial cubic well (described by the potential U R(r)): ∂U R/∂ri = 0,
∂2U R/∂r2

i < 0 at ri = ±L1, i = x, y, z. The cell center corresponds
to the potential well bottom: U R(0) = −3U0 = min U R(r). Regard-
ing the optical field configuration peculiarities (see Eqs. (9), (10)
and Fig. 1) it is easy to find out that in order to implement such
a DOT, intersecting (in the region |ri | < L1, i = x, y, z) flat-topped
light beams with the rectangular profile of the characteristic size
D1 × D2 (where D1 > 2L1(cos β + sinβ), D2 > 2L1) are necessary.

Further analysis will be based on the same assumptions as
those used in [5] when creating the optical molasses model for
UP.

Consider that UP has non-ideal (liquid-like) ionic component
and a weak non-ideal electron component (i.e. apart from condi-
tion (15)) the following conditions are satisfied

pe � pi, Γi > 1 � Γe, (20)
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where pe , pi are the pressures and Γα = e2/r0Tα are Coulomb
non-ideality parameters of the electron (α = e) and ion (α = i)
components UP, r0 = (3/4πn0)

1/3 is the Wigner–Seitz radius, n0 is
a characteristic charged particle density n(r, t) value. Besides, the
following hierarchy of the characteristic spatial scales is assumed:

2π

k
= λ � r0 � λe � L, (21)

where λe = √
Te/4πe2n0 is the Debye radius. The inequality on the

right of (21) (the condition of the Debye radius smallness in com-
parison with DOT dimensions) is equivalent to the quasi-neutrality
condition [23,24] of UP and, actually, is a necessary condition for
the confinement of electron–ion UP by means of optical forces, se-
lectively acting upon ions only.

To describe macroscopic motion and UP state in DOT (in the
conditions under consideration) the two-fluid hydrodynamic ap-
proach will be used, representing UP as a quasi-neutral mixture
of two (electron and ion) charged fluids. The electron and ion
UP components interact by means of self-consistent ambipolar
field EA (providing quasi-neutrality [23]) and collisions with the
frequency

νei � (4
√

2π/3)e4n ln Λ/m1/2
e T 3/2

e ,

where ln Λ is the Coulomb logarithm, me is the electron mass. Of
considerable significance is the process of collisional energy trans-
fer from electrons to ions with the rate Q ei , determined at Te � Ti
by expression [23] (see also [25])

Q ei � Te/τε, τ−1
ε = 3νeime/m.

This process leads to electron cooling and ion heating. To pre-
vent excessive electron cooling (which may result in violating con-
ditions (20) and in developing the process of three-body electron–
ion recombination) we assume that the electron temperature is
maintained by heating them with the help of microwave elec-
tromagnetic radiation with the frequency ωh � νei and the in-
tensity Ih . The rate Λe [26] of the electron heating is given by
Λe � (4πe2/mecω2

h)Ihνei .
We are interested in the slowest (quasistationary) stage of the

UP evolution in the trap, developing during the characteristic times

t ∼ τ > �−1(L/λr)
2 � �−1, ν−1

ei , τε, (22)

where τ denotes the UP decay time due to its diffusion through
the DOT boundaries. If inequalities (21), and also condition (20) are
well satisfied, then the equations of the two-fluid hydrodynamic
model (being macroscopic equations of momentum and energy
conservation for each of the UP components) are considerably sim-
plified.4 They yield a rather obvious force balance equation

−∇pe =
∑

i=x,y,z

m�(ri)nuiei + n∇U R , ui = (eiu), (23)

quasi-stationary equation of the electron energy balance, averaged
over the DOT volume Ω

3
me

m
Te〈νein〉Ω � 4πe2

mecω2
h

〈νeinIh〉Ω,

〈. . .〉Ω = 1

(2L1)3

∫
Ω

(. . .)dΩ, (24)

and the equation of the local balance for the rates of ion heating
and cooling processes.

4 The reduction stages of these equations do not considerably differ from 1D case
for two-fluid UP model and are well described in [5,6]. The order of accuracy of
the reduced equations is determined by small parameters of the problem: (λr/L)2,
τε/τ , |pi |/pe ∼ Γe � 1.
Q ei + Λ = �
�(r)Ti, Ti = Λ

�
�(r)

+ 3me

m

νei
�
�(r)

Te,

�
�(r) =

∑
i

�(ri), (25)

where u is the macroscopic (directed) rate of ambipolar5 (joint)
motion [23,24] of the electron and ion fluids;

�
�(ri), U R(r) and

Λ are determined from Eqs. (18), (19) and it is assumed that
electrons are isothermal, ∂Te/∂ri � 0, due to high electron heat
transfer rate (the isothermality condition is given in [5] and is well
satisfied in a wide range of plasma parameters owing to the small-
ness of electron and ion mass ratio (me/m) � 1). Note that if the
intensity Ih is uniform and time-independent (Ih = const), then,
as it follows from Eq. (24), Te also does not depend on time and
is determined by the choice of the microwave field parameters:
Te � 4πe2mIh/3m2

e cω2
h . Further, exactly this case will be implied.

Considering the electron temperature uniformity, the equation
of the state of the electron UP component: pe � nTe , and combin-
ing Eq. (23) with the continuity equation

∂n

∂t
+ div(nu) = 0, (26)

we obtain the following 3D Smoluchowski equation (SE) [27], de-
scribing ambipolar UP diffusion in the trap:

∂n

∂t
=

∑
i=x,y,z

∂

∂ri

(
D A(ri)

∂n

∂ri
+ ∂U R

m�(ri)∂ri
n

)
, (27)

where D A(ri) = Te/m�(ri) denotes ambipolar diffusion coefficients.
Eqs. (24), (25), (27) fully determine the main macroscopic UP pa-
rameters in DOT Te , Ti(r), and, also, the density n = n(r, t) and the
lifetime τ of the UP in DOT, if the proper boundary conditions for
SE (27) are given.

4. Diffusion decay of the UP in DOT

If DOT boundary Σ coincides with physical surfaces (the walls
of a transparent cubic dielectric container into which UP is con-
fined), then, the process of electron and ion neutralization on these
surfaces is considered with the help of the effective boundary con-
dition for Eq. (27)

nΣ = 0, (28)

which is usually used in plasma physics when considering prob-
lems of plasma decay due to diffusion on the container walls [23,
24] (see also Appendix B in [28]). This approach seems to be rather
good even in the absence of the container, confining DOT, since
the particles reaching DOT boundaries will irreversibly escape from
the interior region of trap with a very large probability. Really, in
the region adjacent to the boundary Σ from outside, the plasma
ions are influenced by RRF F0R , pushing the ions away (from the
boundary Σ ) into the region in which the optical fields are absent
due to the finite transverse sizes of real laser beams. Long-lived
(quasi-stationary) UP states correspond to the lowest (the slowest)
diffusion mode, i.e. to the solution of SE (27) of the following type
(compare with the problem on the UP decay in the limited 1D op-
tical superlattice [6]):

n(r, t) = n0

∏
i=x,y,z

exp

(
− t

τi

)
Ψ (ri)exp

[
− U (ri)

Te

]
, (29)

where Ψ (r) is the eigenfunction, corresponding to the lowest
eigenvalue λ1 = 1/τ1 of Sturm–Liouville boundary problem (SLP)

5 It is assumed that external electric current is absent in UP.



2296 I.V. Krasnov / Physics Letters A 373 (2009) 2291–2297
(
�

H + Φ

τ1

)
Ψ (r) = 0, Ψ (±L1) = 0,

�

H = ∂

∂r

(
D AΦ

∂

∂r

)
, Φ = exp

[
− U (r)

Te

]
, (30)

τi = τ1 = 3τ (∀i = x, y, z), τ denotes the UP decay time, U (r) =
−U0 cos(2πr cos β/L), and n0 corresponds to the UP particle den-
sity in the centre of DOT, if the eigenfunction Ψ is normalized by
the condition Ψ (0) = 1. Note, that quasi-stationary density distri-
bution (QSD) represented in (29) is formed during the time t < τ ,
moreover, only the density value n0 in the trap centre depends on
the initial conditions of the UP preparation.

Solution of the SLP (30) can be presented as the following Neu-
mann series [6]:

Ψ = 1 +
∞∑

n=1

(−1)n 1

τn
1

�

EnΨ0,

�

Eϕ(r) =
r∫

0

Φ−1(r2)
dr2

D A(r2)

r2∫
0

Φ(r1)ϕ(r1)dr1, (31)

where Ψ0 ≡ 1, Ψ (−r) = Ψ (+r) and τ1 is determined from the
boundary condition Ψ (L1) = 0. In expansion (31), it suffices to take
into account several first terms. When condition (1) of deep UP lo-
calization is satisfied, η � 1, the error in the solution for QSD at
such truncation of the series (31) is exponentially small (as in a
similar problem considered in [6]): ∼ exp[−C ′η], where the con-
stant C ′ ∼ 1. As a result, the following expression for the lifetime
of τ UP in DOT is obtained:

τ ≈ �(L1)mL2
1

3π�U
exp

[
�U

Te

]
, (32)

where �U = 2U0. One can see that the lifetime of quasi-stationary
UP is exponentially large with respect to the large parameter
η = �U/Te: ∝ expη. Besides, at η � 1 QSD is Boltzmann-like:
n ≈ n0 exp[−t/τ ]exp[−U R(r)/Te], almost everywhere except for
narrow regions (with a width of ∼ L1/

√
η ) near the boundaries

Σ of the trap.
From (32) it also follows that the lifetime of UP in DOT is deter-

mined by the dimension of the trap L, a single plasma parameter
(electron temperature Te), and also, by light field and ion quantum
transition parameters. Dependence of τ on the ion mass is absent
(since � ∝ m−1). The UP lifetime in DOT τ can be increased by
increasing the dimensions L of the trap and the intensity of the
strong field I . Fig. 2 illustrates a specific example of τ determina-
tion for DOT with the dimension L � 5 cm at the UP electron tem-
perature of Te = 1.8 K. It is visible that τ may exceed the time τ f

of free expansion of UP (τ f ∼ L/cs ∼ 5 × 10−3 s at m ≈ 200 amu)
more than by three orders of magnitude (at a relative intensity of
the strong field I/Is ∼ 100)!

5. Conclusion

Thus, we have theoretically demonstrated the possibility of long
3D all-optical confinement of UP containing resonant ions with the
quantum transition J = 1 → J = 0. We have found the optical field
configuration and parameters at which all the necessary conditions
of long-term UP confinement are satisfied, namely, the require-
ments to the spatial structure of the radiation forces combined
with satisfying conditions (1). The suggested scheme of DOT for
UP combines the features of the optical molasses and trap based
on the influence of potential field force and allows not only UP
confinement but also the temperature control of its ion and elec-
tron component by means of choosing the electromagnetic field
Fig. 2. Dependence of diffusion decay time τ (in seconds) of quasi-stationary UP
states in the optical trap on the relative intensity of the strong coherent field I/Is

at a fixed value of g = 0.05 and Te = 1.8 K, k ≈ 3.2 × 105 cm−1, γ ≈ 108 s−1,
a2

1 = 0.2, b = 1.5, L � 5 cm, χ = 0.5, β ≈ 0.15, η � 5.

parameters. Electron and ion temperatures in such a DOT can be
rather low in comparison with the usual laboratory plasmas. Ex-
tending the example given in Section 4 one obtains (on the basis
of Eqs. (24), (25)) the following estimations of Ti , Γi and other UP
and DOT characteristics at n0 ≈ 104 cm−3, I/Is ≈ 100, g = 0.05,
m ≈ 200 amu: Ti ∼ 5 × 10−3 K, Γi ∼ 15, Γe ∼ 0.03, λr � 0.02 cm,
λe ≈ 5 × 10−2 cm, ωi ≈ 104 s−1, the characteristic time of three-
body electron–ion recombination τr ≈ 50 s, a microwave power
(necessary to maintain the electron temperature (Te = 1.8 K))
Ph � L2 Ih � 16 μW (at ωh � 3 × 1010 s−1), relative intensity of
the partially coherent optical field I ′/Is ∼ 5 at Γ ≈ 12γ . Unfor-
tunately, the non-ideality parameter values Γi are far from the
maximum values which, in principle, could be obtained by the
laser cooling method [8]. This is an inevitable retribution for the
increase of the confinement time τ in the DOT scheme considered
since the increase of the optical field intensity I results in the in-
crease of ion heating due to quantum fluctuations of the radiation
force.

Finally, it should be emphasized that our main purpose has
been to demonstrate principally new possibilities of all-optical
confinement and the UP state control with the help of the rectified
radiation forces acting upon plasma ions in non-monochromatic
light fields. Thus, we restricted ourselves to the choice of such con-
ditions (in particular, assuming a2

1 � 1), which allowed obtaining
approximate analytical solution of the problem. The parameter op-
timization of the suggested scheme of the dissipative optical trap,
aimed at achieving the result desired, for example, at lower field
intensities is a special challenging problem.
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