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We show that spin precession in a semiconductor quantum wire, caused by the Rashba and the Dresselhaus
interactions �both of arbitrary strengths�, can be suppressed by dint of an in-plane magnetic field. Using a
condition of the translational invariance in the longitudinal coordinate, we found another type of symmetry,
which arises at a particular set of intensity and orientation of the magnetic field and explains this suppression.
Based on our findings, we propose a transport experiment to measure the strengths of the Rashba and the
Dresselhaus interactions.
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Spin-polarized transport in semiconductor nanostructures
is the main topic in spintronics due to great interests to both
basic research and device application.1,2 Spin-orbit interac-
tions present in semiconductor structures provide a promis-
ing way to spin manipulation in bulk semiconductors,3 two-
dimensional �2D� electron gases,4 and quantum dots.5

However, these interactions cause decay of spin polarization6

since the spin-orbit coupling breaks the total spin symmetry.
The effect of spin relaxation produced by the interplay be-
tween the Dresselhaus7 and Rashba8 spin-orbit interactions
�RDIs� has been studied in a few publications �cf. Refs.
9–14�. It was found by Schliemann et al.10 that at zero mag-
netic field in 2D semiconductor nanostructures for equal
strengths of the RDI there is an additional symmetry.14 As a
consequence, the orbital motion is decoupled from the spin
evolution. If this resonant condition is not active, the spin
dynamics is influenced by the different spin relaxation
mechanisms related to orbital scattering processes. In this
Brief Report we discuss another spin symmetry that arises at
certain conditions at nonzero magnetic field in the plane and
arbitrary strengths of the spin-orbit terms in a quantum wire.
In virtue of this symmetry the spin precession is suppressed
at arbitrary polarization of the injected electrons. By setting
these conditions “on” and “off,” the flow of a certain spin
polarization through the device is either allowed or de-
stroyed, thus, defining a transistorlike action for the spin.

We consider the conduction band of a 2D semiconductor
quantum well within the effective mass approximation. The
wire geometry is defined by a transversal potential V�y�:
H0= �px

2+ py
2� /2m�+V�y�=Hy + px

2 /2m�. The Dresselhaus in-
teraction has, in general, a cubic dependence on the momen-
tum of the carriers. For a narrow �0,0,1� quantum well, it
reduces to the 2D linear momentum dependent term HD
=��px�x− py�y� /� �� is the interaction strength�. In the
asymmetric quantum wells the Bychkov-Rashba interaction
has the form HR=��py�x− px�y� /�, where � is the corre-
sponding strength. Our system Hamiltonian reads as

H = H0 + HD + HR + HZ, �1�

where we include the effect of the in-plane magnetic field by
means of the Zeeman interaction HZ=g��BB�cos ��x
+sin ��y� /2=�z�cos ��x+sin ��y� /2. Here, � represents the
in-plane orientation of the magnetic field with the intensity
B, g� is the effective gyromagnetic factor, and �B is the Bohr
magneton.

Note that none of the interactions break the translational
invariance in the longitudinal coordinate. Therefore, the
eigenstates are chosen to have a well-defined longitudinal
momentum �k,

�nks�r�� = eikx�	nks↑�y�
	nks↓�y�

�¬ eikx	nks�y� , �2�

where n, k, and s stand for transversal, longitudinal, and spin
quantum numbers. As a result, Hamiltonian �1� is trans-
formed to the effective one for the transversal coordinate for
a given value of k,

Heff = Hy +
py

�
���x − ��y� + ���k +

�z

2
cos ���x

− ��k −
�z

2
sin ���y� . �3�

Two different spin-dependent terms can be distinguished
within this Hamiltonian: one involves the transversal compo-
nent of the momentum and the other contains the effective
Zeeman-type term including contributions from the RDI. If
both terms are parallel in the spin space, a symmetry arises
and the spin is totally decoupled from the orbital motion. In
order to set this symmetry, it is required to fulfill the follow-
ing condition:
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2�k0

�z
�1 − ��

�
�2� = sin � +

�

�
cos � . �4�

Once Eq. �4� is fulfilled, the spin operator Sxy =��x−��y
commutes with the resulting Hamiltonian,

Heff = Hy + � py

�
+

1

�
��k0 + �z cos �/2�����x − ��y� ,

�5�

i.e., �Heff ,Sxy�=0. Consequently, the spin symmetry is set up
for transversal eigenstates having longitudinal momentum k
=k0. According to Eq. �4�, this can be done by tuning a
proper intensity �	�z� and an orientation of the applied in-
plane magnetic field for given strengths � and �. It is note-
worthy that this property is valid for any transversal potential
defining the wire geometry since the symmetry arises from
the relation between the RDI and the Zeeman interaction in
conjunction with the longitudinal translational invariance. In
addition, there is an extra degree of freedom since the RDI
strengths �for example, �� can be modified as well in order to
fulfill condition �4�.

In virtue of the spin symmetry, the spinorial part of the
eigenstates can be expressed as

	s =
1

2

� 1

se−i
 �, 
 = arctan��/�� , �6�

where thereafter s= �1. These eigenspinors correspond to
the in-plane orientation of the spin, where the particular ori-
entation is determined by the ratio between the strengths of
both spin-orbit mechanisms. Note that in Hamiltonian �5� the
spin-dependent term, linear in the transversal momentum py,
can be eliminated by redefining the origin of the transversal
momentum for each spin state. The only effect of this term
on the energy spectrum is a constant shift that may be ne-
glected by changing the energy’s origin.

At condition �4� hold fixed, the spectrum of the system is
composed of that corresponding to the spin-independent or-
bital motion H0 ��nk

0 �, the constant shift, and a contribution
arising from a combination of the RDI strengths and the
Zeeman interaction,

�nk0s = �nk0

0 −
m�

2�2r2 +
s

�
��k0 +

�z

2
cos ��r . �7�

Here we introduced the absolute magnitude of the RDI
strength vector r=
�2+�2. The above contribution repre-
sents a constant spin splitting for the eigenstates and its value
depends on the longitudinal momentum, the RDI strengths,
the particular orientation, and the intensity of the applied
magnetic field. At the preserved symmetry the eigenstates
�Eq. �2�� take the form

�nk0s�r�� = e−isy/�RDIeik0x�n
0�y�	s, �8�

where �n
0�y� are the eigenstates of Hy. We have also defined

the length �RDI=�2 / �m�r� giving the characteristic scale for
the RDI strengths.

At given Fermi energy EF eigenstates �Eq. �2�� have a few
real longitudinal momenta k. Some of them have k0

�propagating right�, while the others have k�0 �propagating
left�. One of those k could satisfy condition �4� by the ad-
justed magnetic field and, consequently, the corresponding
spinor does not depend on coordinates. However, even a
small mixing between the selected state and those that propa-
gate in the same direction but have different k leads to the
spin precession in the process of the propagation. To sup-
press unwanted k values one can adjust the Fermi energy to
have only four real longitudinal momenta. The same effect
can be reached by altering the potential V�y� since the influ-
ence of the lateral confinement on the RDI strengths is
negligible.15 Next, the tuning of the intensity and the orien-
tation of the magnetic field enables us to have two eigen-
states �with s=� in Eq. �7��, propagating in the same direc-
tion, with the same energy and k0. From Eqs. �4� and �7� one
obtains that such a possibility can be realized if the compo-
nents of the magnetic field are proportional to the compo-
nents of the RDI vector,

�z

2
cos �0 = − k0�,

�z

2
sin �0 = k0� . �9�

As a result, there is no spin precession for any superposition
of these eigenstates. Note that, in contrast to the spin-field
transistor proposed in Ref. 10 whose effect is based on a
particular input spin polarization, in our case the spin preces-
sion is absent for an arbitrary input spin polarization. Also,
the magnetic field leads to a nonequivalence of the electron
transport from the left to the right and vice versa: Eq. �9� is
fulfilled for −k0 at the condition �0→�0+�.

To illuminate the found effect in the electron transport we
perform numerical calculations of the S matrix in the tight-
binding model �cf. Ref. 16�. To proceed we use a square
lattice n=nxx̂+nyŷ �x̂ and ŷ are vectors of a length a0 in x and
y directions, respectively, a0 is the lattice constant, and nx
and ny are integers�. For the sake of illustration, we choose
for the wire potential a hard wall one: V�y�=0 for 0�y
�W and V�y�=� otherwise.

Let us consider the system with a geometry shown in Fig.
1. It consists of a finite scattering area with two lateral con-
tacts. Each contact is a narrow stripe with the width W
=20a0 and, for simplicity, no spin-orbit couplings and no the
magnetic field. The contacts are gated to have two active
channels �spin up and down� with a conductance e2 /h in
each. Thus, the RDI and the in-plane magnetic field present
only in the scattering area of the length L and the width W.
The experiment may consist of injecting a current I through
the left contact �source� to the wire and measuring the volt-
age drop VR generated in the right contact �drain�. According
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FIG. 1. Sketch of the 2D wire device.
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to the Landauer-Buttiker formalism for linear response �cf.
Ref. 17�, the ratio VR / I can be expressed by dint of the
S-matrix elements Sm�2n�1

, where n�1 �m�2� denote the
channels in the source �the drain�. In our approach the spin
resolved conductance between the source and the drain is
determined as G�1�2

=e2 /h�dE�−f��E−EF���nmSm�2n�1
2,

where f =1 / �1+exp��E−EF� /kBT��. The conductance is cal-
culated with the energy dependent S matrix by direct solving
the Schrödinger equation in a discretized space according to
the method suggested in Ref. 18. Similar techniques has been
used recently to study spin polarized transport in quantum
wires due to the Rashba interaction.19

Note that the interfaces �the polarizers� between areas
with and without the RDI introduce some uncontrollable ex-
citations of all modes inside the scattering area. In particular,
these excitations produce a superposition �with coefficients
a1 and a2� of two eigenfunctions 	1,2�y�exp�ik1,2x� with dif-
ferent longitudinal momenta and, therefore, rotate the spin
during a transport along the x axis. Indeed, one has the fol-
lowing expectation values: �Sx�=Re �, �Sy�=Im �, where �
= �a1

�	1↑
� +a2

�	2↑
� ��a1	1↓+a2	2↓�exp�i�k2−k1�x�. Evidently, for

equal longitudinal momenta, the expectation values are inde-
pendent of the x coordinate. The results �see Fig. 2, top�
manifest a single common minimum of the spin-flip conduc-
tance �	10−3e2 /h� for one value of the magnetic field orien-
tation but for different sample lengths at a given intensity of
the magnetic field and at zero temperature. At this value Eq.
�9� holds, indeed. For another angles there is the mixing of
wave functions with different k which leads to the electron
spin rotation in the sample. Figure 3 illuminates the depen-
dence of longitudinal momenta k��� on the magnetic field
orientation. At a particular value of the angle �0 two wave
numbers coincide. However, the change in the magnetic field
intensity �the value of �z� leads to avoided crossing of two
curves k���.

In order to assess possible limitations of the model, let us

discuss a few mechanisms that may obscure the found effect
for the ballistic transport. In real experiments the injected
beam consists of electrons with different energies due to, for
example, a nonzero temperature. The temperature induces a
small mixture of spin-flip components and results in the in-
crease in the spin-flip conductance �see Fig. 2, bottom�.
However, it does not affect the angle value at which the
minima occur simultaneously in the two samples at tempera-
ture T=1 K.

The Zeeman interaction induces the orbital degrees of
freedom in the vertical direction. Note, however, that in 2D
systems, the orbital effect of the applied in-plane magnetic
field is frozen due to the strong confinement in the vertical
direction produced by the electrostatic potential of quantum
well. Indeed, the magnetic parabola associated with the ap-
plied field introduces a negligible correction to the quantum
well’s potential. For example, for a typical well thickness
�e.g., z�10 nm� the applied magnetic field creates a mag-
netic potential Vz=m��c

2z2 /2�0.0088me /m��B�2 meV. The
effective vertical potential Vz introduces a correction of
	0.0005�GaAs�–0.002�InAs� eV at the magnetic field in-
tensities up to 2 T, while the built-in electrostatic quantum
well’s potential has a characteristic energy scale of 0.2–0.4
eV. To reduce the effect of the magnetic parabola we require
that z��B ��B=
�c /eB is the magnetic length�.

The width W should be evidently larger than the thickness

FIG. 4. The logarithm of the spin-flip conductance �in units of
e2 /h� as a function of the intensity B and orientation � of the mag-
netic field for the sample length L=31W and temperature T=0 K
�the darker the line is, the lesser the conductance is�. The input
polarization is along x axis �top� and y axis �bottom�. The minimum
due to Eq. �9� is pointed by � mark. The parameters are the same as
for Fig. 2.
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FIG. 2. �Color online� The logarithm of the spin-flip conduc-
tance �in units of e2 /h� as a function of the magnetic field orienta-
tion � �the intensity B=1.8 T� for different sample lengths: L
=31W �solid line� and L=17W �dashed line�. Temperatures are T
=0 K �top� and T=1 K �bottom�. The incoming electrons are po-
larized along z axis. The set of parameters is typical for InAs: EF

=10 meV, W=45 nm, �=20 meV nm, �=10 meV nm, g�=
−14.9, and m�=0.023me. The arrow indicates the unique position of
the angle �0 for non-spin-flip conductance, independent of the
sample length.
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FIG. 3. �Color online� The longitudinal momentum k as a func-
tion of the orientation of the magnetic field �the angle �� which
intensity is subject to Eq. �9� �solid line� and is slightly different
�dashed line�. At the value �0=5.176 �vertical line� both positive k’s
coincide. The parameters are the same as for Fig. 2.
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but should be smaller than the �RDI �to diminish backscatter-
ing from the wire interfaces�: W��RDI. The Fermi energy
and the transversal potential V�y� should be taken to support
only four propagating modes �two right moving and two left
moving�. Assuming that Eq. �9� is fulfilled, one obtains a
useful estimation for the intensity B�2
3�r / �g��BW� with
the aid of the hard wall potential. The combination of the
above two conditions gives W� ��2
3��2� / �m�g��BB��1/2.

Measurement of the RDI strengths is a subject of inten-
sive experimental efforts.4,20 We recall that Eq. �9� enables us
to determine the strengths of the Rashba and Dresselhaus
interactions. We propose to use a wire with a length deter-
mined by the condition kL / �2��	5. According to our analy-
sis �see Fig. 4�, such a system produces a few well resolved
spin-flip conductance minima. This condition helps us also to
diminish the effect of evanescent modes. The measurement
of the spin-flip conductance provides a set of spin-flip
minima at different intensities and different orientations of
the magnetic field at a fixed input polarization. Taking an-
other polarization and repeating the same measurement, one
obtains a different pattern for the location of the minima. As
an example, we calculate the spin-flip conductance for two
input polarizations—along x and y axes �see Fig. 4�. One
obtains the required minimum which is subject to Eq. �9� at
the same angle and the same intensity in different setups

since the effect is independent of the polarization. One might
repeat measurements for different sample lengths since the
minimum position is independent of the length too. To di-
minish the effect of multiple reflection from the polarizers
we suggest to use the same polarization direction in both
polarizers.

In conclusion, we found the condition �Eq. �4�� to de-
couple the spin and the orbital motion of electrons in a quan-
tum wire with the in-plane magnetic field and arbitrary
Rashba and Dresselhaus strengths. In virtue of the preserved
longitudinal translational invariance and Eq. �4� there is the
spin symmetry in an arbitrary transversal potential defining
the wire geometry. At specific condition �9� the magnetic
field cancels the RDI for the electron momentum k0. As a
result, during the electron transport through the wire the spin
precession is absent for any chosen polarization. We propose
to measure the Rashba and the Dresselhaus interaction
strengths by finding the minimum of the spin-flip conduc-
tance, which should occur at condition �9�.
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