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We consider the transmission through a nonlinear media in the framework of a two-level nonlinear Fano-
Anderson model. The model is realized in photonic crystal waveguide coupled with two off-channel defects
with the instantaneous Kerr-type nonlinearity. We reveal a resonance and argue that it is a result of excitement
of bound state in the continuum �BSC� by transmitted wave. The resonance induced by BSC is located at the
energy of BSC with a width proportional to the amplitude of incident wave. The BSC exists at any distance
between energy levels of the two-level nonlinear Fano-Anderson model that is fundamentally different from
the linear case.
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I. INTRODUCTION

Resonances are signatures of bound states which eventu-
ally decay into the continuum coupled to them. There are
many examples of resonances in different branches of phys-
ics, but basically they are classified as the symmetric Breit-
Wigner and the asymmetric Fano resonances in the linear
quantum systems. In this paper we consider a type of the
resonance in nonlinear system, which is trace of the bound
state in the continuum �BSC�. First, the BSC as discrete lo-
calized solutions of the single-particle Schrödinger equation
embedded in the continuum of positive-energy states was
predicted in 1929 by Neumann and Wigner.1 Their analysis
examined by Stillinger and Herrick2 was long time regarded
as mathematical curiosity because of certain spatially oscil-
lating central symmetric potentials. However in 1977
Herrick3 and Stillinger4 predicted BSCs in semiconductor
heterostructure superlattices observed by Capasso et al. as a
very narrow absorption peak.5 In the last time the phenom-
enon of BSC attracted large interest in application to differ-
ent systems,6–8 in particular in highly promising photonic
crystals.9–12

It is easy to understand the BSC phenomenon using the
Feshbach theory of resonances.13 If two resonances pass
each other as the function of a continuous physical param-
eter, then for a certain value of the parameter one resonance
will have an exactly vanishing width.14,15 The resonance
width vanishes as a result of that the coupling constant of the
resonance state with the continuum disappears because of
destructive interference.15 In a series of papers14–17 BSC was
considered analytically in the framework of the standard
two-level Fano-Anderson model �FAM� �Refs. 18 and 19�,
which describes the interaction of two impurity states �n� ,n
=1,2 with the continuum. Although the model is exclusively
simple, it can be applied to any physical system which jus-
tifies the two-level approximation. The Hamiltonian of the
total system is H=HB+HC+V, where HB given by a diagonal
matrix describes the impurity bound states and HC describes
the extended states of the continuum. V is responsible for the
interaction between the bound states and the extended ones.
The total Hilbert space is separated into the intrinsic part and
the continuum, and the continuum part can be eliminated

with the aid of projection operators.13,20,21 Then the
Lippmann-Schwinger �LS� equation after projection onto the
intrinsic part of the Hilbert space takes the following
form:20,21

�E − Hef f���� = iV̂�in, �1�

where

Hef f = HB − iV̂V̂+ = �E1 − i�1 i��1�2

i��1�2 E2 − i�2
� �2�

is the non-Hermitian effective Hamiltonian and V̂+

= ���1
��2¯� describes coupling of the impurity states with

the continuum. In the two-level approximation the LS equa-
tion becomes

�E − E1 + i�1�A1 + i��1�2A2 = ��1�in,

i��1�2A1 + �E − E2 + i�2�A2 = ��2�in, �3�

where E1,2= ��0 are the eigenenergies of the impurity, �in
is the amplitude of an incident wave, and

��� = A1�1� + A2�2� . �4�

Equations �3� formulate the Fano-Anderson model of the
wave transmission through two-level impurity embedded in
the one-channel continuum. With the accuracy of notations,
Eqs. �3� coincide with coupled-mode equations22,23 describ-
ing photonic waveguides with defects. In what follows we
take for simplicity �1=�2=� without lose of generality.

The solution of the LS equation is given by the inverse of
the matrix �E−Hef f�. However, there might be the special
case when the inverse does not exist. It is easy to see that it
happens at �0=0 and E=0. By the use of the complex ei-
genvalues z1,2=−i���−�2+�0

2 of Hef f, which give posi-
tions �via Re�z�	 and widths of the resonance states �via
Im�z�	,20 we obtain that at the point �0=0 one resonance
becomes an infinitely narrow width �Im�z1�=0	 while the
second one acquires the maximal width 2�.14–16 As a result
the transmission probability accompanies by collapse of the
Fano resonance24 for �0=0.
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At the point E=0, �0=0, there is the homogeneous solu-
tion of the LS equation �1� 1

�2
� 1

−1 �= ��BSC� for �in=0. If a
quantum particle were at this state, it never would decay into
the continuum because of the ideal interference at leads. The
particle remains localized at the impurity states and, there-
fore, is the BSC.25 As known from linear algebra, the neces-
sary and sufficient condition for the existence of the inhomo-
geneous solution of the LS equations �1� for �in�0 is that
the vector 
�BSC� is to be orthogonal to the incoming vector
�in� 1

1 �. It holds indeed. Then the general solution of Eq. �1�
at the BSC point can be given by5,17

��� = ���BSC� +
�in

�2
�1

1
� , �5�

where � is an arbitrary coefficient and the second term is the
particular transport solution of Eq. �1�. The orthogonality of

the BSC to incoming wave �inV̂ implies that the BSC is not
coupled to the continuum and cannot be excited by incoming
wave, and therefore there is no resonance at their discrete
energy Ec=0 for the linear transmission.

We argue that is not the case for the nonlinear Anderson
impurity. A nonlinearity violates the principle of superposi-
tion, i.e., Eq. �5�, and thereby the incoming wave couples
with the BSC. In the linear systems the BSC is rather a subtle
phenomenon because it occurs only at the isolated point �0
=0. We show below that in the nonlinear two-level FAM the
BSC exists in a whole range of �0.

II. TIGHT-BINDING MODEL OF THE NONLINEAR
DEFECTS COUPLED TO THE LINEAR CHAIN

We consider the photonic crystal in the form of a two-
dimensional square lattice array of parallel axis dielectric
cylinders �consisted of linear dielectric medium� in vacuum,
and defects and waveguides created by cylinder replacement.
The waveguide is formed from linear dielectric media, but
the off-channel features that it interacts with may be formed
from either linear or Kerr nonlinear dielectric media. Wave-
guide transmission resonances, associated with resonant scat-
tering from electromagnetic modes on the off-channel non-
linear features, were studied in many papers.26–30 We
consider a discrete model that describes a linear chain of
particles coupled to a couple of single-site defects with in-
stantaneous Kerr nonlinearity.

The theoretical approach based on a difference equation
formulation for fields in the two-dimensional waveguide
channels and off-channel nonlinear impurities coupled to the
waveguide was developed in Refs. 26, 27, and 31. The sim-
plest model is a discrete tight-binding model that describes a
linear chain of sites coupled to a single-site defect with in-
stantaneous Kerr nonlinearity.27,28 It was shown that this
model can be regarded as a nonlinear generalization of the
single-level Fano-Anderson model and it can generate
amplitude-dependent bistable resonant transmission or re-
flection. Similar effects were shown by McGurn31 also as for
an off-channel cavity comprised of the single-site defect as
for the off-channel cavity composed of many neighboring
sites having different Kerr dielectric properties. In the

present paper we consider a similar system which consists of
the linear waveguide coupled with two nonlinear off-channel
defects as shown in Figs. 1�a�–1�c�. We show that this model
can be regarded as a nonlinear generalization of the two-
level Fano-Anderson model. It can generate not only
amplitude-dependent bistable resonant transmission or re-
flection but also shows resonance induced by the BSC.

We present the waveguide as the simplest tight-binding
linear chain coupled at the site n=0 with two different non-
linear off-channel defects. Following Miroshnichenko et
al.,28 we write the Hamiltonian of the tight-binding model
for the case in Fig. 1�b� as follows:

H = − �
n

�n�n+1
� − u�0�a

� − u�0�b
� + �a��a�2 + �b��b�2 + H.c.,

�6�

where �a=�a0+�a��a�2 �a=1,2�. If the defects are identical,
�a=�b, the system of three sites shown in Fig. 1�c� by
dashed line has the following eigenstates:

�1� = � 1/2
1/�2

1/2
, �2� = � 1/�2

0

− 1/�2
,�− 1/2

1/�2

− 1/2
 �7�

with the corresponding eigenfrequencies −�2u ,0 ,�2u. The
second eigenstate has a node at the second site “0” at which
the system is connected to the chain waveguide. Therefore,
that state is not coupled with the waveguide forming the
BSC with discrete energy Ec=0 which occurs for �a=�b.

In order to calculate the transmission, we write �n
=�ineikn+re−ikn if n	0, and �n= t�ineikn if n
0, where �in
is the amplitude of incident wave. Then �r�2 /�in

2 and �t�2 /�in
2

are the reflection and the transmission probabilities, respec-

−3 −2 −1 0 1 2 3

a

b

(a) (b)

(c)

FIG. 1. �a� Photonic crystal consists of a square lattice of dielec-
tric rods with dielectric constant �0. A single row of rods is ex-
tracted to form one-dimensional directed waveguide. Two nonlinear
defect rods made from a Kerr media marked by filled circles are
inserted into the photonic crystal. �b� The tight-binding version of
the system in �a� with linear chain and two nonlinear defects. �c�
One of the defects is linear while the second one is nonlinear.
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tively. Resuming calculations in Ref. 28, we immediately
obtain the following formulas for the transmission amplitude
t:

t =
i�in

i + �k� 1

� − �1
+

1

� − �2
� , �8�

and for the amplitudes at the defects

�a =
ut

� − �a
, �b =

ut

� − �b
, �9�

where �k= u2

2 sin k .
Equations �9� can be rewritten as follows:

�� − �a + i�k��a + i�k�b = − iu�ineik,

�� − �b + i�k��b + i�k�a = − iu�ineik. �10�

Assume u�1, i.e., the eigenfrequencies of the defects are
much less in comparison to the width of the propagation
band of the chain �k=−2 cos k. Then we can approximate
k� /2 and reduce Eq. �10� to the coupled mode equations
�3� with �2=�k�u2 /2 provided that the direct coupling of
the defects is ignored. The index of the defects a ,b can be
taken as the index of the energy level n=1,2. As was con-
sidered in Refs. 12, 27, and 28, the single-site defects a and
b with instantaneous Kerr nonlinearity have the frequencies
�n=�n0+�n��n�2 �n=1,2�. Therefore, in notations of Eqs.
�3� we can introduce a nonlinearity in the two-level FAM by
a substitution

E1,2 = � �0 + �1,2�A1,2�2 �11�

instead of former eigenenergies E1,2 in the LS equations �3�.
That nonlinearity is not general but is typical for the photo-
nic crystal waveguide coupled with defects made from a
Kerr-like nonlinear material.23 It preserves the stationary so-
lution of the Schrödinger equation; however, it violates the
principle of linear superposition. Thus, we obtained an ex-
plicit analog of Eq. �11� if we take �n0= ��0.

III. TRANSMISSION IN FRAMEWORK OF NONLINEAR
TWO-LEVEL FANO-ANDERSON MODEL

As was established in the previous section the system of
two nonlinear off-channel defects can be described by the
nonlinear FAM provided that �i� the eigenfrequencies are
close to center of the propagation band and �ii� we can ne-
glect direct coupling of the defects. Assume that the con-
tinuum supports an arbitrary amplitude of the incident wave
�in. Similar to the scattering matrix in quantum mechanics,16

we define a matrix

�r t�

t r�
� = ��in 0

0 �in
� − iV̂+ �in

E − Hef f
V̂ . �12�

Let us take r�=r, t�= t where t , t� and r ,r� are the amplitudes
of right and left transmitted and left and right reflected
waves, respectively. From Eq. �12� it follows that �t�2+ �r�2

= ��in�2, where r=�in+ t. From Eqs. �3� we obtain

A1,2 =
���in�Ẽ � ��

Ẽ2 − �2 + 2i�Ẽ
,

t = ���A1 + A2� , �13�

where

Ẽ = E − 1
2�1X − 1

2�2Y, � = �0 − 1
2�1X + 1

2�2Y ,

X = �A1�2, Y = �A2�2. �14�

Substituting Eqs. �13� into Eqs. �14�, we obtain the following
nonlinear self-consistent equations:

X��Ẽ2 − �2�2 + 4�2Ẽ2	 = P�Ẽ − ��2,

Y��Ẽ2 − �2�2 + 4�2Ẽ2	 = P�Ẽ + ��2, �15�

which are the system of nonlinear algebraic equations be-
cause of Eqs. �14�. X ,Y are the populations of energy levels
of the two-level impurity. Or, in view of the tight-binding
model considered in the previous section, X ,Y are the inten-
sities of the transmitted wave at the off-channel defects. The
value P=���in�2 is proportional to the input wave power.

Let us first consider a more simple case �1�0, �2=0, i.e.,
one of the defects is linear �Fig. 1�c�	. This case preserves
the main feature of transmission in the two-level nonlinear
FAM as another resonance, but it reduces the self-consistent
equations �15� to the fifth-order polynomial of X. Remind the
reader that the case of single off-channel nonlinear defect
gives the third-order polynomial of X.28 Therefore, the pres-
ence of the second defect, even linear, is important and gives
rise to other branches as we show below. Examples of the
transmission probability T= �t�2 / ��in�2 as dependent on the
incident energy �frequency� and on the incident amplitude
are shown in Fig. 2. The left resonance undergoes the typical
amplitude-dependent bistable resonant transmission ob-
served early27,28,32 with the growth of P while the right reso-
nance does not change because of �2=0.

The most intriguing result is a resonance shown in Fig.
2�a� by the red line that is located at E=�0 for �2=0. How-
ever, for both off-channel nonlinear defects ��1�0, �2
�0�, it might be located anywhere at E�0 �see below Figs.
5�a�, 6�a�, and 6�b�	. As seen from these figures the form of
another resonance is rather unusual. Figure 3 shows the so-
lution X= �A1�2 of the self-consistent equations �15� for �2
=0. For the small enough input wave power �P=0.1 and P
=0.6�, there are two distinctive branches of the solution for
X. The first lower branch is responsible for the bistability of
the left resonance peak shown in Fig. 2�a�, which takes place
for the single-level FAM too.27,28 The second upper branch
for X in the form of “8” gives rise to another resonance. With
further growth of the input power P, branches are coalesced
resulting in a complicated behavior of the transmission as
shown in Fig. 2�b�.

We argue now that this resonance is related to the BSC.
As for the linear case we define the BSC as the solution of
the LS equations �3�, which exists for zero input wave �in

RESONANCE INDUCED BY A BOUND STATE IN THE… PHYSICAL REVIEW B 80, 115308 �2009�

115308-3



=0. It occurs if one of the complex eigenvalues of the matrix

Hef f −E equals zero. At this point Ẽ=0, �=0, and the solution
of Eq. �3� takes A1=−A2 for �in=0.

Then from Eq. �14� we immediately obtain that Xc=Yc
and

Xc =
2�0

�1 − �2
, Ec =

1

2
��1 + �2�Xc = �0

�1 + �2

�1 − �2
, �16�

where values Xc and Yc are the mean-squared amplitudes of
the BSC solution. At the BSC point, the eigenenergies �11�
become degenerated E1=E2 because of nonlinear contribu-
tions irrespective to the former distance 2�0. For the particu-
lar case �2=0 shown in Figs. 2–4, we obtain from Eq. �16�
that the energy of BSC Ec=�0. For the parameters given in
Fig. 2, one can see that the other resonance is just located at
this point. The value of population Xc=2�0 /�1 also coin-
cides with that shown in Fig. 3. As the input power P→0 the
second branch of the solution for X shrinks up to the isolated
point Xc at E=Ec noted in Fig. 3 as the point BSC.

Although the transmission through the two-level FAM
could be calculated only numerically, we present here ana-
lytical estimations for the width of the BSC induced reso-
nance. First, consider the case of �1�0, �2=0 shown in Fig.
2�a�. Then we can evaluate the width by zeros of the trans-
mission

T =
4�2Ẽ2

�Ẽ2 − �2�2 + 4�2Ẽ2
�17�

at the energies

Ec ��2P�1

�0
. �18�

This formula was obtained from Eqs. �13� for Ẽ=0, from
Eqs. �15�, and for P small enough. Therefore, we have an
estimate for the BSC induced resonance �BSC��P�1 /�0�1/2.
If we take the limit �1→0, then the width of the BSC reso-
nance tends to zero, while the population Xc goes to infinity
that makes the BSC resonance unobservable for the linear
limit. Figure 4 demonstrates that one of the resonance widths
given by the imaginary part of the complex eigenvalues of
the effective Hamiltonian equal to z1,2=−���−�2+�2 turns
to zero at E=Ec=�0 in full correspondence to the results of
the theory of BSC in the linear two-level FAM.16,17

The phenomenon that the BSC becomes observable for
the nonlinear case can be traced as follows. At the BSC point
the effective Hamiltonian �2� has the following eigenstates:
� 1

−1 � and � 1
1 � with corresponding eigenvalues z1,2=0 ,−2i�.17
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FIG. 2. �Color online� The transmission probability T= �t�2 / ��in�2 versus incident energy E for �0=1 and �=0.25. The nonlinear
parameters are �1=0.1 and �2=0. �a� Dashed line shows the transmission probability for the linear case, solid blue line corresponds to P
=0.6, and solid red line shows the resonance induced by BSC. �b� P=1.
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FIG. 3. �Color online� �a� The solution of Eq. �15� for the pa-
rameters given in Fig. 2 for P=0.1 �green line�, P=0.6 �red line�,
and P=1 �blue line�. �b� Blowup near the vicinity of the BSC point.
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FIG. 4. �Color online� The energy behavior of resonance widths
for the parameters of nonlinear FAM given in Fig. 2 for P=0.5 �red
line� and P=1 �blue line�.
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The first eigenstate which is BSC has a coupling constant
with the continuum i� /�2� equal to zero at the BSC point

�=0, Ẽ=0. In the linear case the equation �=�0=0 remains
irrespective to variation in energy to preserve zero coupling
constant of BSC with the continuum. However, for the non-
linear case when the energy differs from Ec the coupling
constant becomes nonzero. As a result the incoming wave
“sees” the BSC and populates it via the nonlinearity. That
conclusion fully correlates with the energy behavior of the
resonance width shown in Fig. 4.

Figures 5 and 6 show the case when both nonlinear coef-
ficients differ from zero. The energies of the BSC equal Ec
=1.86 for the case in Fig. 5 and Ec=3.857 for the case in Fig.
6, respectively. Obviously, the positions of BSC induced
resonance do not coincide with the positions of linear reso-
nances ��0. Next, the populations of each state, X and Y, of
the two-level Anderson impurity are different as shown in
Fig. 5�b�. As a result the BSC resonance is split. In order to
evaluate a value of the splitting, let us find points at which
the transmission probability �17� reaches a unit. Obviously, it

does at Ẽ= ��. Substituting these relations into Eqs. �15�,
we obtain E1,2= ��0+�1,2P /�2. These energies correspond
to the usual peaks of the linear transmission at the energies
��0 but shift because of nonlinearity. The second case of
T→1 shown in Figs. 4�a� and 4�d� is not so obvious and can

be established for the limit Ẽ→0, �→0. Then we can con-
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FIG. 5. �Color online� �a� The transmission probability as dependent on energy for �1=0.02, �2=0.006, �=0.25, �0=1, and P=0.4. Dash
line shows the linear case. �b� The numerical solution of the self-consistent equations �15� where blue line corresponds to X and green line
corresponds to Y. �c� The behavior of the resonance width. �d� Blowup of �b� near the BSC point.
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FIG. 6. �Color online� �a� The transmission probability as de-
pendent on energy for �1=0.017, �2=0.01, �=0.25, �0=1, P=0.1,
and Ec=3.857. �b� Blowup of the BSC induced resonance for the
different input power P=0.1 �solid line� and P=0.0025 �dash line�.
�c� The behavior of the resonance �z2−E�, where z2=−i�
+�−�2+�2 is the complex eigenvalue of the effective Hamiltonian.
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sider that �Ẽ2−�2�2�4�2Ẽ2 in Eqs. �15� to obtain

xẼ � f�Ẽ − ��/2,

yẼ � f�Ẽ + ��/2, �19�

where x=�X= �A1�, y=�Y = �A2�, and f =�P /�=�in /��. From
here it follows that x+y= f .

The first case Ẽ=� gives the following equation:

E − �0 = �2�x − f�2. �20�

Moreover, we have from Eqs. �19� for f �1

��1 + �2�x3 − 3�2fx2 − 2Ex + f�E − �0� � 0. �21�

Combination of Eqs. �20� and �21� gives us

X � Xc −
2�2

�Xc

�1 − �2
f . �22�

Similarly, for the second case Ẽ=� we obtain

E + �0 = �1�y − f�2, �23�

��1 + �2�y3 − 3�1fy2 − 2Ey + f�E + �0� � 0. �24�

Correspondingly, we obtain from Eqs. �23� and �24�

Y � Xc +
2�1

�Xc

�1 − �2
f . �25�

Substituting Eqs. �22� and �25� into Eqs. �20� and �23�, we
obtain that the value of splitting of the BSC resonance equals

�BSC �
4�1�2

�1 − �2
� 2�0

���1 − �2��1/2

�in. �26�

As one can see from Figs. 5 and 6 the splitting of the BSC
resonance is complemented by the splitting of the resonance
width. Estimation �26� is in good agreement with numerics.

Finally, we present the transmission for the nonlinear
FAM �3� with different coupling constants �1=0.25 and �2
=0.5 �Fig. 7�. Comparison to Figs. 2�a�, 5�a�, and 6�a� dem-
onstrates that the choice �1=�2 is quite general. Also, one

can see next from Fig. 8 that the tight-binding model �6�
displays the same features in the transmission calculated by
formula �8� as the two-level nonlinear FAM except that the
model of the off-channel defects displays resonance dips in-
stead of resonance peaks.28

IV. DISCUSSION

Nonlinearity reveals important conceptual aspect of the
bound states in the continuum. In the same way as nonlin-
earity makes the BSC observable in transmission, it should
also cause the BSC to be only quasibound rather than bound
as different from the linear model. One might therefore argue
that the states which were the bound states in the continuum
are actually not “BSCs” anymore in the nonlinear FAM. In
fact, the situation crucially depends on both nonlinear non-
zero coefficients �1 ,�2, and on a value of the input amplitude
�in. First, if the continuum is “empty,” i.e., there is no inci-
dent wave �in=0, the coupled mode equations �3� have the
homogeneous antisymmetric solution A1=−A2. Therefore,
the solution is localized only at inner states of the impurity
system. Thus, in that sense we can consider that the BSC
exists by the same arguments as in the linear case. For the
nonlinear FAM the BSC point is given by Eq. �16�.

Next, one can see that the BSC solution � 1
−1 � is orthogonal

to the right part of the LS equation �1� or Eqs. �3� for �1
=�2. If the model were linear we would write the general
solution of the LS equation in the form of arbitrary linear
superposition �5� �Ref. 25� in which the BSC participates
independently of the incident wave. However, for transmis-
sion through nonlinear media we cannot write the general
solution of the LS equations as a linear superposition of the
BSC and the particular solution in form �5�. The reason is
obvious. The effective Hamiltonian in the LS equation �1�
depends itself on this superposition. Therefore, the nonlinear-
ity of the FAM model provides a coupling between the trans-
mitted wave and the BSC. However, one can see that for
variation in energy or frequency of the incident wave the
populations of the impurity states go through the BSC point
as Fig. 3�d� shows. Simultaneously at this point the imagi-
nary part turns to zero as Fig. 4 shows. Thus, the BSC sur-
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FIG. 7. The transmission T= �t�2 / ��in�2 over frequency in the
framework of the two-level nonlinear FAM with different coupling
constants �1=0.25 and �2=0.5 for �0=1, �1=0.015, and �2

=0.005. The input amplitude �in=0.75.
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FIG. 8. The transmission T= �t�2 / ��in�2 of the tight-binding
model �6� over the frequency calculated by formula �8� for �0

=0.5 and u=0.3. The nonlinear parameters are �1=0.008 and �2

=0.003. The input amplitude �in=0.3.
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vives even under the effect of the input wave. However, that
holds only if �2=0.

For the case where nonlinearity coefficients are not equal
to zero, the BSC ceases to be bound even at the BSC energy
as Figs. 5 and 6 show. For an evolution of the populations X
and Y, we see from Fig. 5�d� that the BSC point is not
reached except the case P→0. The resonance width becomes
zero at those energies at which the transmission achieves a
unit at the BSC induced resonance curve in Figs. 5�a� and
6�a� but not at E=Ec. Figure 6�c� shows that positions of
resonances coincide there too. Then in view of linear theory,
one could define these points as the BSC ones.14,15,33 How-

ever, in the nonlinear case a crossing of resonances or zero
imaginary part of the complex eigenvalues of the effective
Hamiltonian cannot serve as a signature of the BSC. Only for
asymptotically small amplitude �in→0 the quasibound BSC
becomes real BSC.
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