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A comprehensive linear stability analysis of convection in the thermogravitational column is first performed
for multicomponent fluids. Two types of perturbations are investigated: Longitudinal waves propagating in
vertical direction of the column and transversal waves propagating perpendicular to the vertical axis and
temperature gradient. The stability problems are reduced to those without cross-diffusion effect by a special
transformation. The calculations are performed for binary and ternary mixtures by the Galerkin method. It is
found that in binary fluids, the onset of longitudinal instability can be monotonic or oscillatory depending on
the separation ratio, which characterizes the Soret effect. The difference between stability characteristics of
binary and ternary fluids is associated with different diffusion times of components in a ternary system. It is
shown that the mechanism of transversal instability is related to the unstable density stratification in the column
�in total or due to individual components�. The unstable stratification can only be realized in fluids with
negative Soret effect. The analogue of exchange of stabilities principle for a plane column with a multicom-
ponent fluid is proved. The obtained results indicate that the thermogravitational column can be used for
measuring diffusion and thermal diffusion coefficients in ternary and higher mixtures with one or several
components having negative Soret effect.
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I. INTRODUCTION

Convection in multicomponent mixtures can show a large
variety of dynamical behaviors and flow patterns due to a
complex interplay between heat and mass transfer processes.
In a multicomponent system, the diffusive mass transport of
a given component is induced not only by its concentration
gradient, but also by the concentration gradients of the other
components �cross diffusion� and the temperature gradient
�thermal diffusion or the Soret effect�. In binary fluids, the
Soret effect can be positive or negative depending on the
direction of the lighter component segregation �to the hot or
cold region, respectively�. The mixtures appearing in nature
and industrial applications are essentially multicomponent.
Multicomponent convection and relative transport phenom-
ena play an important role in many natural and industrial
processes: Oceanic flows, component distribution in hydro-
carbon reservoirs, crystal growth, solidification of metallic
alloys, etc. �1�.

The prediction of heat and mass transfer processes in mul-
ticomponent fluids greatly relies on the knowledge of diffu-
sion and thermal diffusion coefficients. Among different
methods of their experimental measurement �2–4�, the ther-
mogravitational column �TGC� is a well-established tech-
nique for binary fluid mixtures. In TGC, the fluid is placed
between two vertical walls with different temperatures. The
horizontal Soret separation is combined with vertical convec-
tive current driven by buoyancy. It leads to an enhanced
component separation between the ends of the column. Tran-
sient measurements of this separation provide the value of
diffusion coefficient, while the thermal diffusion coefficient
can be calculated from the steady-state measurements. Ther-

mogravitational column was originally invented by Clusius
and Dickel �5�. Furry, Jones, and Onsager �6� developed the
column theory for binary mixtures. The impact of composi-
tional dependence of density on the separation process was
analyzed in the later works of Nikolaev and Tubin �7� and
Navarro et al. �8�. Labrosse �9� performed a detailed analysis
of steady-state regimes in the column for binary liquid with
non-Boussinesq effects �in particular, with variable Soret co-
efficient�. Recently, Haugen and Firoozabadi �10,11� have
extended the TGC theory to multicomponent mixtures for
steady-state and transient measurements. Ryzhkov and
Shevtsova �12� proposed an effective formalism for describ-
ing thermal diffusion and convection in systems with many
components and applied it to the column theory. In recent
years, the first experimental measurements for ternary fluids
have been performed by Bou-Ali et al. �13� and Leahy-Dios
et al. �14�.

For the successful operation of the column, the stability of
vertical convective flow, which drives the separation, is re-
quired. The first experimental investigation of stability was
performed by Onsager and Watson �15� for a binary gas mix-
ture. Their results were confirmed by a later theoretical work
�16� on the basis of linear stability analysis. A recent study
�17� provides an extension of this work to binary liquid mix-
tures. Long-wave instability of multicomponent convection
in the column at the initial stage of the separation process
was recently investigated by Ryzhkov and Shevtsova �18�.

It should be noted that in binary fluids with positive Soret
effect, the lighter and heavier components are accumulated at
the top and bottom ends of the column, respectively. It pro-
vides a gravitationally stable configuration. For negative
Soret effect, the situation is opposite and the column is ap-
parently unstable. However, in the experiments with ethanol-
water mixtures �19�, it was found that the column can be
stable when the Soret effect is negative in some range of the
applied temperature differences. Linear stability analysis and*iryzhkov@ulb.ac.be
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full numerical simulations �20� showed that the flow is in
fact unstable, but this instability develops very slowly allow-
ing one to observe the separation for some time.

In this paper, we study the stability of stationary convec-
tion in the thermogravitational column with a multicompo-
nent fluid. A particular attention is focused on binary and
ternary mixtures. The extension of stability analysis to ter-
nary and higher fluids is an important and vital step in the
development of the column theory. Presently, the modern
methods of experimental measurement �including TGC� are
being extended to fluids with more than two components
�13,14,21�. It should be noted that in the present study, we
pay a particular attention to the stability behavior of fluids
with negative Soret effect. The additional motivation of this
work is the application of a formalism for describing the
influence of thermal diffusion on convection in systems with
many components �12�.

The paper is organized as follows. Section II describes the
basic steady flow and separation in the thermogravitational
column. The stability problem is formulated in Sec. III, while
the main results for binary, ternary, and multicomponent flu-
ids are presented and discussed in Sec. IV.

II. STATIONARY CONVECTION IN THE
THERMOGRAVITATIONAL COLUMN

Let us first describe the basic steady flow in the column.
The stationary solution for this flow was derived in �12� for
the general case of a multicomponent system. Here we only
present the problem statement and provide the final formulas
to be used in the stability calculations.

Consider a mixture with n components, where component
n is chosen as a solvent and the composition is given by C
= �C1 , . . . ,Cn−1�T �the superscript denotes a column vector�.
It is assumed that the density is a linear function of tempera-
ture and composition,

� = �0�1 − �T�T − T0� − �
i=1

n−1

�i�Ci − Ci0��
= �0�1 − �T�T − T0� − I · B · �C − C0�� . �1�

Here �0 is the mean fluid density, �T and �i are the thermal
and solutal expansion coefficients, respectively, B
=diag��1 , . . . ,�n−1	 is the diagonal matrix, and I= �1, . . . ,1�
is �n−1�-dimensional vector. The equations of multicompo-
nent convection in the Boussinesq approximation have the
form

�tU + �U · ��U = − �0
−1 � P + ��2U − g��T�T − T0�

+ I · B · �C − C0�� ,

�tT + �U · ��T = ��2T ,

�tC + �U · ��C = D�2C + DT�2T ,

� · U = 0. �2�

Here U is the velocity vector, P is the pressure, � is
the kinematic viscosity, � is the thermal diffusivity, D is

the matrix of �n−1�2 diffusion coefficients, DT
= �DT1 , . . . ,DTn−1�T is the vector of thermal diffusion coeffi-
cients, and g= �0,0 ,−g� is the gravitational acceleration.

Let us consider a plane thermogravitational column of
height 2H, thickness 2L, and transversal width 2S �Fig. 1�.
The lateral walls X= �L are maintained at constant but dif-
ferent temperatures T0��T. It is supposed that there is no
vertical temperature gradient. In the column, the horizontal
temperature gradient induces horizontal gradients of compo-
sition due to the Soret effect and also results in convective
flow driven by buoyancy force. The aspect ratios of the col-
umn are H /L
102 and S /L
10, so the flow can be as-
sumed to be two dimensional �in XZ plane� and strictly ver-
tical �except at the top and bottom ends of the slot�. Zero
horizontal velocity and continuity imply that the vertical ve-
locity component varies in the horizontal direction only. The
horizontal separation of components combined with vertical
convective currents leads to an enhanced separation between
the top and bottom ends. In the steady-state regime, the ver-
tical concentration gradients are assumed to be constant.

According to this configuration, the basic steady state is
sought in the form

U = „0,0,W�X�…, T = T0 + T�X�, C = C0 + C�X� + AZ ,

�3�

where A= �A1 , . . . ,An−1�T is a constant vector. Let us intro-
duce the dimensionless coordinate vector x, velocity u, pres-
sure p, temperature �, and concentrations c= �c1 , . . . ,cn−1�T

by the formulas

X = Lx, U =
g�T�TL2

�
u, P = �0gL�T�Tp ,

T − T0 = �T�, C − C0 = �T�TB−1c . �4�

Taking the time scale as L2 /�, we can rewrite equations �2�
in dimensionless form

�tu + Gr�u · ��u = − �p + �2u + �� + I · c�e ,

�t� + Gr�u · ��� = Pr−1 �2� ,

FIG. 1. Geometry of the column.
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�tc + Gr�u · ��c = S��2c − ��2�� ,

� · u = 0, �5�

where e= �0,0 ,1�. The system includes the Grashof number
Gr=g�T�TL3 /�2, the Prandtl number Pr=� /�, and the
square matrix of �n−1�2 dimensionless parameters

S = �−1BDB−1, �S	ij =
�i

� j

1

Scij
, i, j = 1, . . . ,n − 1,

where Scij =� /Dij are the Schmidt numbers. The dimension-
less separation ratios

� = ��1, . . . ,�n−1�T = − �T
−1BD−1DT

characterize the separation of components due to the Soret
effect. Suppose that the thermal expansion is normal ��T
	0�, which is the case for most fluids. Then it can be shown
that in the case of positive �i, component i is driven by
thermal diffusion to the hot or cold region depending on
whether it is lighter ��i	0� or heavier ��i
0� than the sol-
vent, respectively. If �i is negative, then the lighter �heavier�
component i is driven to the cold �hot� region. Depending on
the sign of �i, we will speak about positive or negative Soret
effect of a particular component.

To characterize a multicomponent system as a whole with
respect to the Soret effect, the net separation ratio is intro-
duced by the formula

� = �
i=1

n−1

�i. �6�

It can be shown that this parameter does not depend on the
choice of solvent �while the values of �i depend on this
choice� and is uniquely defined for a given multicomponent
system. A detailed description of separation ratios and their
properties can be found in �12�, where these parameters were
first introduced for multicomponent fluids.

The flow in the thermogravitational column should satisfy
a number of conditions. On the lateral walls, the no-slip con-
dition, the temperature difference, and the absence of diffu-
sive fluxes are imposed:

x = � 1, u = 0, � = � 1,
�c

�x
− �

��

�x
= 0. �7�

In dimensionless variables, the general form of the basic
state �3� is written as

u = „0,0,w�x�…, � = ��x�, c = c�x� + Gr−1 SRz , �8�

where

R = �R1, . . . ,Rn−1�T =
gL4

�
BD−1A

is the vector of solutal Rayleigh numbers defined through the
vertical concentration gradients

The sum

R = R1 + ¯ + Rn−1

is termed the net solutal Rayleigh number.
The additional conditions on the basic state are zero flow

rate through any horizontal cross section and conservation of
mass for each component,

�
−1

1

wdx = 0, �
−1

1

cdx = 0. �9�

The net vertical flux through any cross section should also be
zero �see �12� for further details�,

�
−1

1

cudx −
2

Gr2S
2R = 0. �10�

The second term in this equation represents the contribution
of diffusion in vertical direction of the column. It can be
neglected when the Grashof number is large enough and dif-
fusive properties of the medium are weak. Let us first pro-
vide the solution of the problem when the vertical diffusion
is negligible �the opposite case will be considered later�. The
representation of solution depends on the net separation ratio
� defined by �6�.

A. Case �	0

The velocity, temperature and composition are given by

ws =
� + 1

�3

sin � cosh � sinh �x cos �x − sinh � cos � sin �x cosh �x

sin 2� + sinh 2�
, �s = x ,

cs = ��1 + �−1��2 sin � cosh � sin �x cosh �x + 2 sinh � cos � sinh �x cos �x

��sin 2� + sinh 2��
− x� + x� +

1

Gr
SRz ,

where �= �R /4�1/4. The subscript s indicates the stationary state. The net solutal Rayleigh number R	0 is related to the net
separation ratio by the equation
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� =
G���

F��� − G���
, � = �R/4�1/4, �11�

where

F��� = 1 +
1

�

cos 2� − cosh 2�

sin 2� + sinh 2�
,

G��� = 1 +
5

4�

cos 2� − cosh 2�

sin 2� + sinh 2�
+

sin 2� sinh 2�

�sin 2� + sinh 2��2 .

�12�

Equation �11� has a unique solution. The solutal Rayleigh
numbers are found from

R =
R

�
� . �13�

B. Case �
0, �Å−1

In this case, the solution has the form

ws =
� + 1

3

sinh  sin x − sin  sinh x

sin  cosh  + sinh  cos 
, �s = x ,

cs = ��1 + �−1�� sin  sinh x + sinh  sin x

�sin  cosh  + sinh  cos �
− x� + x�

+
1

Gr
SRz ,

where = �−R�1/4. The net solutal Rayleigh number R
0 is
related to � by the equation

� =
G��

F�� − G��
,  = �− R�1/4, �14�

where

F�� = 1 −
2 sin  sinh 

�sin  cosh  + sinh  cos �
,

G�� = 1 −
5 sin  sinh 

2�sin  cosh  + sinh  cos �

+
sin2  + sinh2 

2�sin  cosh  + sinh  cos �2 . �15�

The solution of Eq. �14� is unique for �	−1 and nonunique
when �
−1. The solutal Rayleigh numbers are determined
from �13�.

C. Case �=0

Here we also have R=0 and the solution is given by

ws =
x − x3

6
, �s = x ,

cs = −
21x5 − 70x3 + 25x

80
� +

1

Gr
SRz, R =

63

2
� .

D. Case �=−1

In this case, the solution is written as

ws = 0, �s = x, cs = �x, R = 0.

There is no convective flow since the contributions of tem-
perature and composition to the density profile in the cross
section compensate each other.

Statement 1. The sign of net solutal Rayleigh number R
always coincides with the sign of net separation ratio � �12�.
The corresponding parameters of individual components, Ri
and �i, also have the same signs �it follows from �13��.

To analyze the effect of thermal diffusion on convection
in the basic state, we introduce the dimensionless density
variation by using �1� and �4�,

�̄ = �� − �0�/�0�T�T = − � − I · c . �16�

In what follows, the partial dimensionless densities �i=−ci,
i=1, . . . ,n−1 will also be used. The profiles of dimension-
less velocity and density at z=0 are presented in Fig. 2 for

(a) (b)

FIG. 2. The profiles of dimensionless velocity and density for different values of the net separation ratio �.
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different values of the net separation ratio. When �=0, the
net effect of concentration variations on the fluid density is
zero and thermal expansion results in the linear density pro-
file, which drives convective motion. For positive �, the
density variations are decreased in the center of the column
and increased at the walls. As a result, convective motion
develops closer to the boundaries. In this case, the net effect
of thermal diffusion is to bring the lighter and heavier com-
ponents to the hot and cold walls, respectively �provided that
�T	0�. Due to convective current, the lighter �heavier� spe-
cies are accumulated at the Top �bottom� part of the column.
It provides a potentially stable vertical stratification. When �
is negative, the lighter �heavier� components segregate to the
cold �hot� wall. Here the vertical stratification is potentially
unstable since convection drives the lighter �heavier� species
to the bottom �top� part of the column.

E. Role of vertical diffusion

When vertical diffusion is taken into account �the second
term in Eq. �10��, formulas �11�, �13�, and �14� are no longer
valid. The solutal Rayleigh numbers are found from the non-
linear system of equations

R =
R

� + 1

F

G
�E +

R2

Gr2�� + 1�2G
S2�−1

� , �17�

where E is the unity matrix. The functions F and G are given
by �12� and �15� for positive and negative �, respectively. It
was shown in �12� that for −1
�
2, the vertical diffusion
can be neglected when

Gr ScM 	 3765, where ScM

= �max
i,j
� �i

� j
�
k=1

n−1
1

ScikSckj
��−1/2

. �18�

As an example, let us consider a ternary mixture with
�1=−0.1, �2=0.4, Sc11=100, Sc22=500, Sc12=Sc21=� �i.e.,
cross diffusion is neglected�. In this case, criteria �18� pro-
vides Gr	37.65. Figure 3 presents the dependence of two
solutal Rayleigh numbers on the Grashof number. One can
see that vertical diffusion is important only for small Grashof
numbers, i.e., when convection in vertical direction is weak.
In real TGC experiments, the spacing of the column L is
chosen in such a way that vertical convection is rather strong
and vertical separation does not depend on �T �22�.

III. STABILITY PROBLEM

To investigate the stability of the basic flow, we represent
the velocity, pressure, temperature, and concentration fields
as a sum of the basic state ws ,�s ,cs and small perturbations.
Equations �5� are linearized around the basic state. It should
be noted that in the present configuration, the Squire’s trans-
formation �23� is not valid, so the most unstable disturbances
can be, in general, three dimensional.

In this work, we investigate two types of normal pertur-
bations �see Fig. 1� Longitudinal waves u= �−�z ,0 ,�x�, �,
c, in XZ plane, which have the form

��,�,c� = „��x�,��x�,��x�…exp�− �t + ikz� , �19�

where � is the stream function, and transversal waves u
= �0,v ,w�, �, c in YZ plane given by

�v,w,�,c� = „v�x�,w�x�,��x�,��x�…exp�− �t + ily� .

�20�

In what follows, the complex growth rates will be written as
�=�r+ i�� and �=�r+ i��.

A. Longitudinal waves

For this type of perturbations �Eq. �19��, we use two-
dimensional equations �5� in the stream function formula-
tion. It is convenient to introduce a new variable �=�−��.
The stability problem is written in the form

�2� + ik Gr�ws�� − ws��� + �1 + ���� + I · �� = − ��� ,

�21�

Pr−1 �� + ik Gr��s�� − ws�� = − �� , �22�

S��� − R��� + ik Gr�cs�� − ws�� + ���� = − ��� + ��� .

�23�

Here �=�xx−k2 and the prime stands for �x. The boundary
conditions follow from �7�:

x = � 1, � = �� = 0, � = 0, �� = 0. �24�

The stability equations are solved by the Galerkin method.
The solution is sought in the form of expansions

� = �
j=0

J

aj� j, � = �
m=0

M

bm�m, � = �
q=0

Q

�
i=1

n−1

cqi�qi,

where the basic functions are the eigenfunctions of the fol-
lowing problems:

FIG. 3. The dependence of solutal Rayleigh numbers on the
Grashof number for ternary fluid with �1=−0.1, �2=0.4, Sc11

=100, Sc22=500.
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�2� j = − � j�� j, x = � 1, � j = � j� = 0, �25�

Pr−1 ��m = − �m�m, x = � 1, �m = 0, �26�

S��qi = − �qi�qi, x = � 1, �qi� = 0. �27�

Problems �25�–�27� are derived from the corresponding
equations �21�–�23� with boundary conditions �24�. The
present choice of basic functions is based on considering the
disturbances of stream function, temperature, and composi-
tion in an isothermal fluid layer �Gr=0� independently of
each other. The basis used in this work is an extension of the
basis for a single-component fluid �24� to multicomponent
mixtures.

Problem �25� has even and odd solutions. The even eigen-
functions are

� j =
1

�Ij
� cosh kx

cosh k
−

cos �� j − k2x

cos �� j − k2 �, j = 0,2,4, . . . ,

Ij =
� j

k2 − � j
�k2 + k tanh k − k2 tanh2 k − � j� ,

where the eigenvalues � j are the roots of the equation
�� j −k2 tan �� j −k2+k tanh k=0. The odd eigenfunctions
have the form

� j =
1

�Ij
� sinh kx

sinh k
−

sin �� j − k2x

sin �� j − k2 �, j = 1,3,5, . . . ,

Ij =
� j

k2 − � j
�k2 + k coth k − k2 coth2 k − � j� ,

while the corresponding eigenvalues satisfy the equation
�� j −k2 cot �� j −k2+k coth k=0.

Problem �26� has the following solutions:

�m = Pr−1��2/4�m + 1�2 + k2� ,

�m = �cos��/2�m + 1�x� , m = 0,2,4, . . . ,

sin��/2�m + 1�x� , m = 1,3,5, . . . .
� �28�

For a mixture with n components, system �27� has n−1 se-
ries of eigenfunctions and eigenvalues,

�qi = �i��2q2/4 + k2� ,

�qi = �i��2/2, q = 0,

sin��/2qx� , q = 1,3,5, . . . ,

cos��/2qx� , q = 2,4,6, . . . ,
� �29�

where �i and �i are the eigenvalues and the corresponding
eigenvectors of the matrix S, i=1, . . . ,n−1.

In the numerical calculations, the number of basic func-
tions was taken as J=M =15, Q=20 for determining the
structure of neutral curves on the plane �k, Gr�, and J=M
=25, Q=30 for minimizing these curves over k. So, the total
number of functions J+M + �n−1�Q was 50–70 for binary
fluids and 70–100 for ternary fluids.

B. Transversal waves

Substituting representation �20� into the three-
dimensional linearized equations, we find v=0. The stability
problem reduces to

�w + � + I · � = − �w , �30�

Pr−1 �� = − �� , �31�

S��� − ��� − Rw� = − �� , �32�

x = � 1, w = 0, � = 0, �� − ��� = 0, �33�

where �=�xx− l2. Equation �31� together with the boundary
condition �=0 at x= �1 can be solved separately from the
other equations. Its eigenvalues and eigenfunctions are given
by �28�. Since all eigenvalues �m are positive, the transversal
temperature perturbations and the corresponding perturba-
tions of velocity and composition decay monotonically. The
latter are obtained by setting �=�m, �=�m and solving Eqs.
�30� and �32� subject to boundary conditions �33�. So, non-
decaying transversal perturbations are possible only when �
=0. In this case, the stability problem reduces to

�w + I · � = − �w , �34�

S��� − Rw� = − �� , �35�

x = � 1, w = 0, �� = 0. �36�

Here the solutal Rayleigh numbers R=R�� ,S ,Gr� are
found from �17� and depend on the physical properties of the
fluid and the Grashof number.

The stability problem is solved by the Galerkin method.
The solution is represented in the form of expansions

w = �
m=0

M

bmwm, � = �
q=0

Q

�
i=1

n−1

cqi�qi. �37�

The basic functions are given by �28� and �29�, where one
should replace � and � by w and �, respectively. The analy-
sis showed that the number of basic functions M =Q=20 is
sufficient for accurate determination of neutral curves.

C. On the cross-diffusion effect

The described stability problem contains a large number
of control parameters. In particular, the dimensionless diffu-
sion matrix S is formed by �n−1�2 Schmidt numbers for a
mixture with n components. To reduce the number of control
parameters in problems of multicomponent convection with
the Soret effect, a special transformation of composition and
separation ratios was suggested in �25�,

c = PQ−1c, � = PQ−1��. �38�

Here P is the matrix, which columns are formed by the
eigenvectors �i of the matrix S, i=1, . . . ,n−1, and

Q = diag�I · �1, . . . ,I · �n−1	

is a diagonal matrix, where I= �1, . . . ,1� is �n−1�-
dimensional vector. Transformation �38� reduces governing
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equations �5� as well as imposed conditions �7�, �9�, and �10�
to those with a diagonal matrix S�= P−1SP, separation ratios
��, and composition c�. It can be easily checked that the
same is true for the stability problems �21�–�24� and �34�–
�36�. So, one can say that in the present configuration, the
original multicomponent system is equivalent to another sys-
tem without cross diffusion but with different separation ra-
tios and composition.

Statement 2. The net separation ratio �=�1+ ¯ +�n−1
and the sum of dimensionless concentrations c1+ ¯ +cn−1
are invariant under transformation �38� �25�.

In the stability calculations below, we assume that the
matrix S is diagonal �or transformed to this form by �38��.

IV. RESULTS AND DISCUSSION

A. Instability in binary fluids

Let us start with the stability results for binary systems.
These results are required for understanding a more compli-
cated behavior of ternary fluids. The calculations for binary
mixtures presented below provide the extension of the pre-
vious findings �16,17,20� to a wider range of control param-
eters. In this work, we focus our attention on liquids and fix
the Prandtl number at Pr=10.

Figure 4 presents a typical structure of neutral curves for
longitudinal perturbations in a binary fluid with �=0.5, Sc
=500. Here we have two instability modes, monotonic and
oscillatory. In the presented case, the latter is a more danger-
ous one. The calculations show that with decreasing the
separation ratio �, the oscillatory curve is shifted upwards
and monotonic mode becomes more dangerous. It should be
noted that the structure of neutral curves for ternary fluids is
similar to that of Fig. 4.

The dependence of critical Grashof number, wave num-
bers k, l, and frequency on the separation ratio � is pre-
sented in Fig. 5. We consider the range �	−1 only since the
basic state is nonunique for �
−1 �see Sec. II B�. The solid
lines correspond to longitudinal perturbations. Calculations

show that the monotonic mode remains almost unchanged
with the variation of Prandtl and Schmidt numbers, so this
type of instability does not depend on the thermal and diffu-
sive properties of the fluid. The analysis of perturbation
structure reveals that the instability develops in the form of
vortices on the boarder line between two counterflows, see
Figs. 2 and 8 �the latter refers to ternary fluids, where the
structure of perturbations is similar to binary case�. The in-
crease of the separation ratio � has a stabilizing effect on the
monotonic mode. Note that for positive �, the lighter
�heavier� component accumulates at top �bottom� part of the
column providing a potentially stable vertical stratification.
When � is increased, this stratification becomes stronger and
stabilizes the monotonic mode. For negative �, the vertical
stratification is potentially unstable, so the monotonic stabil-
ity boundary is decreasing. With increasing the separation
ratio, the oscillatory mode becomes more dangerous and
leads to a strong destabilization of the flow. This mode es-
sentially depends on the diffusive properties of the medium:
Strong diffusion �i.e., small Schmidt number� favors the de-
cay of compositional perturbations and stabilizes the flow.
However, for large Schmidt numbers, diffusion is rather
weak and the flow is less stable. The calculations show that
the oscillatory instability is associated with the growth of
two perturbations with opposite phase velocities �� /k. It
should be noted that for both monotonic and oscillatory
modes, the critical wave number decreases with increasing
the critical Grashof number.

The dashed lines in Fig. 5 correspond to the transversal
perturbations. We found that for negative separation ratios,
the flow is unstable at any value of the Grashof number with
the critical wave number l=0. The long-wave instability is
caused by the accumulation of the heavier component at the
top part of the column �in this case, the vertical density gra-
dient is gravitationally unstable�. This instability mechanism
is expected for negative �, but cannot be revealed by con-
sidering only two-dimensional perturbations in XZ plane.

It should be noted that in this paper, we use Boussinesq
approximation and assume that the density is a linear func-
tion of temperature and composition. The influence of non-
Boussinesq effects, and, in particular, the impact of variable
separation ratio ��T ,C� on the steady-state regimes in the
column with binary fluid were investigated in �9�. Despite a
more complex dependence of the system behavior on the
control parameters, two categories of steady flows were dis-
tinguished, according to whether the vertical stratification is
potentially stable or unstable. Thus, one can expect that the
general stability characteristics discussed in this section are
relevant to non-Boussinesq fluids also.

B. Ternary fluids: Longitudinal perturbations

In this section, we proceed to the stability of ternary fluids
in the thermogravitational column. The following assump-
tions can be made without loss of generality.

�1� The heaviest component is chosen as a solvent, so the
solutal expansion coefficients �i are positive. In addition, we
assume that the thermal expansion �T	0 �the case of nega-
tive �T can be treated similarly�. Under these assumptions,

FIG. 4. Neutral curves for longitudinal perturbations in a binary
fluid with �=0.5, Sc=500.
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component i is driven to the hot �cold� region when the sepa-
ration ratio �i is positive �negative�, i=1,2.

�2� The dimensionless diffusion matrix is assumed to be
diagonal: S=diag�Sc11,Sc22	 �otherwise, it can be diagonal-
ized by transformation �38��. In addition, we suppose that the
ratio s=Sc11 /Sc22 satisfies the inequality 0
s�1 �other-
wise, one can change the numbering of components�. This
parameter can be also written as the ratio of diffusion times
of components: s=�1 /�2, where �i=L2 /Dii.

In what follows, a ternary fluid will be characterized by
the parameters �, �1, s, Sc22. It should be noted that if the
dependence of some characteristic �e.g., critical Grashof
number� on these parameters is known, one can easily ac-
count for the cross-diffusion effect by making the change
according to �38�,

s →
�2

�1
, Sc22 →

1

�2
,

�1 →
�1 + � Sc12

−1 − Sc11
−1

�2 − �1
��Sc12��2 − Sc11

−1�
�

+ 1��1 − � ,

where

�1,2 = 1
2 �Sc11

−1 + Sc22
−1 � ��Sc11

−1 − Sc22
−1�2 + 4 Sc12

−1 Sc21
−1�

are the eigenvalues of matrix S and �=�1 /�2.
Let us first consider a ternary mixture with the same dif-

fusive properties of two components, i.e., s=1. Calculations
show that the stability diagram for such mixture coincides
with that for binary fluid �see Fig. 5�, where �=�1+�2 is
now the net separation ratio. The important fact is that the
stability boundaries do not depend on the individual values
of �1 and �2. When the ratio of Schmidt numbers �or diffu-
sion times� s�1, ternary effects come into play. However,
the monotonic mode is still determined by the value of net
separation ratio � only. A typical structure of critical pertur-
bations for monotonic instability is shown in Fig. 8. One can
clearly see the pairs of counter-rotating vortices, which de-

(a) (b)

(c)

FIG. 5. The dependence of critical Grashof number �a�, wave numbers �b�, and frequency �c� on the separation ratio � for binary fluid.
Solid and dashed lines correspond to longitudinal and transversal perturbations, respectively.
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velop on the boarder line between two counterflows �Fig.
2�a��. The perturbations of temperature and composition are
localized in the central part of the slot. Note that the first
component has a smaller Schmidt number �i.e., a smaller
diffusion time� than the second one, so its perturbation is
more diffused.

Contrary to the monotonic mode, the oscillatory mode for
s�1 essentially depends on thermal diffusion properties of
individual components. Figure 6 presents the dependence of
critical Grashof number, wave numbers, and frequency on
the separation ratio �1 at fixed �=0.3 for different ratios of
Schmidt numbers. When the ratio of diffusion times s=1, the
critical parameters coincide with those for binary mixture
with �=0.3 �see Fig. 5� and do not change with �1. With
decreasing s, their variation with �1 becomes evident and
significantly affects the stability of the system. To explain
this behavior, we refer to the vertical density stratification
induced by the concentration gradients of components. To
calculate these gradients, we first note that the critical
Grashof numbers for oscillatory instability are large enough
to neglect vertical diffusion �see Sec. II E�. So, the solutal

Rayleigh numbers are determined from �13�, where one can
safely use the approximate relation R /�
63 /2 for −1
�

2 �12�. Then from �8� and �16�, we find

��1

�z
= −

�c1

�z
= −

63

2 Gr Sc22

�1

s
,

��2

�z
= −

�c2

�z
=

63

2 Gr Sc22
��1 − �� , �39�

��̄

�z
= −

�c1

�z
−

�c2

�z
=

63

2 Gr Sc22
��1�s − 1�

s
− �� . �40�

The vertical density gradients are plotted in Fig. 7 for s
=0.2. When �1 increases starting from zero, both partial den-
sity gradients are gravitationally stable ���i /�z
0� and the
absolute value of the net density gradient ��̄ /�z is increasing.
It has a stabilizing effect on the oscillatory mode �shown by
solid lines in Fig. 6�. At �1=0.27, the stability boundary
reaches maximum and then starts to decrease. Note that for

(a) (b)

(c)

FIG. 6. The dependence of critical Grashof number �a�, wave numbers �b�, and frequency �c� on the separation ratio �1 for ternary fluid
with �=0.3, s=Sc11 /Sc22, Sc22=500. Solid and dashed lines correspond to longitudinal and transversal perturbations, respectively.
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�1	0.3, the partial density gradient of the second compo-
nent becomes unstable. The diffusion time of this component
is 5 times larger than that of the first one �s=0.2�. In this
case, the fingering mechanism of double-diffusive instability
�1� is evoked making the system more unstable. The change
of instability mechanism is also indicated by a sharp increase
of critical frequency. With increasing the difference between
diffusion times of components �s→0�, this effect becomes
even stronger. The calculations show that the oscillatory in-
stability develops in the form of two waves with opposite
phase velocities �� /k. A typical structure of critical pertur-

bations is presented in Fig. 9 �the perturbation corresponding
to positive phase velocity is shown�. Here the thermal and
compositional fingers are localized near the right-hand wall,
while for the perturbation with negative phase velocity �not
shown� they are located near the left-hand wall. So, the criti-
cal perturbations of temperature and composition are repre-
sented by the superposition of two waves, which propagate
near the lateral walls in opposite directions. Note that the
fingers of the first component are more diffused than those of
the second one since it has a smaller diffusion time �i.e.,
stronger diffusion properties�. The net vertical density gradi-
ent �40� becomes gravitationally unstable for �1
�1�, where

�1� =
s�

s − 1
. �41�

The net density gradient increases when �1 is changing in
negative direction starting from �1� �for s=0.2, we have �1�
=−0.075�. It has a destabilizing effect on the oscillatory
mode. Note that higher critical Grashof numbers correspond
to lower wave numbers k and vice versa.

For �1
�1�, the transversal perturbations become more
dangerous and lead to a sharp decrease of stability boundary
�dashed lines on Fig. 6�a��. This instability is associated with
unstable density stratification in vertical direction. The neu-
tral curve for transversal perturbations are presented in Fig.
10. They show that the instability is long wave but the criti-
cal Grashof number is nonzero in contrast to the binary case
�see Fig. 5�a��. The point is that for small Grashof numbers,
the vertical concentration gradients depend on Gr �see Fig.

FIG. 7. The dependence of vertical density gradients on the
separation ratio �1 for ternary fluid with �=0.3, s=0.2, Sc22=500.

FIG. 8. Critical perturbations of velocity field, temperature, and composition for monotonic instability in ternary fluid with �1=0.2,
�2=−0.1 ��=0.1�, s=0.2, Sc22=500. The critical parameters are Gr=508 and k=1.37. White and black areas correspond to positive and
negative values, respectively.
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3�. So, the net vertical density gradient becomes unstable
when Gr reaches some critical value. This value decreases
when negative Soret effect of the first component becomes
stronger �i.e., ��1� increases�. More detailed discussion of
transversal instability will be given in the next section.

C. Ternary fluids: Transversal perturbations

The stability of the thermogravitational column with re-
spect to transversal perturbations is described by the problem
�34�–�36�. Note that the matrix of the linear system of equa-

tions for the coefficients in expansion �37� is always real, so
the eigenvalues are either real or form complex-conjugate
pairs. The control parameters, which determine whether the
system is stable or unstable, are the solutal Rayleigh num-
bers R. These numbers characterize the vertical gradients of
composition and depend on S, �, and Gr. In real TGC ex-
periments, the spacing of the column L is chosen in such a
way that vertical separation does not depend on the applied
temperature difference �T �i.e., the numbers R do not de-
pend on Gr, see Sec. II E�. In what follows, we will consider
this particular case and analyze how the physical properties
of fluid �S and �� affect the stability of the column. The
results formulated in several statements below are valid for
the general case of a multicomponent fluid. The proofs of all
statements are given in the Appendix.

Statement 3. If solutal Rayleigh numbers Ri	0 for i
=1, . . . ,n−1, then �r	0. In other words, the system is
stable when the separation ratios of all components are posi-
tive �see statement 1�. In this case, all partial density gradi-
ents are gravitationally stable ���i /�z
0�.

Statement 4. If solutal Rayleigh numbers Ri
0 for i
=1, . . . ,n−1, then ��=0. It means that when the separation
ratios of all components are negative, the transversal pertur-
bations are monotonic. Here all partial density gradients are
gravitationally unstable ���i /�z	0�.

These statements can be considered as analogue of ex-
change of stabilities principle �23� for a vertical multicom-
ponent fluid layer with the Soret effect. The numerical cal-
culations for binary fluid �Sec. IV A� are in agreement with
these results.

Statement 5. If the net solutal Rayleigh number R	0 and

FIG. 9. Critical perturbations of velocity field, temperature, and composition for oscillatory instability in ternary fluid with �1=0.5,
�2=−0.2 ��=0.3�, s=0.2, Sc22=500. The critical parameters are Gr=169, k=0.82, ��=8.49. White and black areas correspond to positive
and negative values, respectively.

FIG. 10. Neutral curves for transversal perturbations in ternary
fluid with �=0.3, s=0.2, Sc22=500.
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�r=0, then ���0. The same is valid for R=0 provided that
the wave number l	0. In other words, if neutral perturba-
tions exist for R�0, then they are oscillatory �except for the
case R= l=0�.

It follows from statement 3 that for positive R �i.e., for
positive net separation ratio �� neutral as well as unstable
perturbations can exist only in ternary or higher fluids. The
calculations show that they do exist in some range of control
parameters, see Figs. 6 and 10. Since the solutal Rayleigh
numbers are determined by the separation ratios of compo-
nents �relation �13��, it is convenient to analyze the stability
of the system in terms of these physical parameters. Figure
11 presents the dependence of critical separation ratio �1 and
the critical frequency on the wave number l. The minimal
absolute value of critical �1 is reached at l=0, so the trans-
versal instability is long wave. We found that this critical
value exactly corresponds to �1� given by �41�. So, the trans-
versal instability for positive � is caused by the gravitational
instability of net vertical density gradient �40�, which arises
for �1
�1�. The extensive calculations confirm this state-
ment. In Fig. 12, the dependence of minimal critical separa-
tion ratio �1 on the net separation ratio � is presented. The
straight lines in this plot exactly correspond to those de-
scribed by formula �41�. With increasing �, the system re-
mains stable at larger absolute values of negative �1. When
the ratio of diffusion times s is decreased to zero, the un-
stable partial density gradient of the first component �see
�39�� increases, so the system becomes less stable. According
to statement 5, the onset of transversal instability for positive
� is oscillatory. It is clearly demonstrated by the numerical
calculations �Fig. 11�b��. Note that although the critical fre-
quency decreases with decreasing l, it cannot be exactly zero
at l=0, see statement 5.

Statement 6. In the range of net solutal Rayleigh numbers
R�0, a denumerable number of nonoscillatory neutral per-
turbations and corresponding critical Rayleigh numbers ex-
ist. The minimal absolute value of critical R tends to zero as
l→0.

Numerical calculations show that for negative R �i.e., for
negative net separation ratio ��, the system is always un-

stable. The onset is monotonic with the critical parameters
R=0 and l=0. It is surprising that for negative �, the system
is unstable even when the net vertical density gradient is
gravitationally stable. On the basis of the obtained results,
we can propose the following hypothesis for the general case
of a multicomponent mixture.

Hypothesis 1. When ��0, the system is stable with re-
spect to transversal perturbations when the net vertical den-
sity gradient is gravitationally stable ���̄ /�z�0�. Otherwise,
the system is unstable. The onset of instability is oscillatory
with the critical wave number l=0. When �
0, the system
is always unstable. The onset is monotonic with the critical
wave number l=0.

For net separation ratios in the range −1
�
2, which
includes the most part of practical cases, one can safely use
the approximation R /�
63 /2 in formula �13�. Then the net
vertical density gradient can be written as

(a) (b)

FIG. 11. The dependence of critical separation ratio �1 �a� and critical frequency �b� on the transversal wave number l for ternary fluid
with s=0.2, Sc22=500. The system is unstable when �1 lies below the curves.

FIG. 12. The dependence of minimal critical separation ratio �1

on the net separation ratio � for different values of s=Sc11 /Sc22 for
ternary fluid with Sc22=500. The three points at the line s=0.2
correspond to those of Fig. 10.
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��̄

�z
= − �

i=1

n−1
�ci

�z
= −

63

2 Gr�i=1

n−1
�i

Scii
. �42�

Setting this gradient to zero, one can easily determine the
stability boundary for positive �. Note that the criteria ex-
pressed by hypothesis 1 are valid for mixtures with cross-
diffusion effect as well since the net separation ratio and the
sum of dimensionless concentrations are invariant under
transformation, which eliminates cross-diffusion terms
�statement 2�. However, when cross-diffusion is taken into
account, one should make the following replacement in �42�

Scii → �i
−1, � → P−1Q� ,

where �i are the eigenvalues of the matrix S �see also Sec.
III C�.

The obtained results indicate that a plane thermogravita-
tional column can be used for measuring the transport coef-
ficients in ternary and higher mixtures when one or several
components have negative Soret effect. In binary systems,
such measurements are possible for positive Soret effect
only. It should be noted that in real columns, the transversal
instability sets in at the maximal possible wavelength, which
is equal to the transversal width of the column. It follows
from Fig. 11�a� that the decrease of this width has a stabiliz-
ing effect on the transversal mode.

V. CONCLUSION

In this work, we have first performed a comprehensive
linear stability analysis of convection in a plane thermogravi-
tational column with a multicomponent fluid. A particular
attention is focused on binary and ternary mixtures. The ba-
sic state describing the steady flow and separation in a mul-
ticomponent fluid is derived. An effective formalism is used
to describe thermal diffusion and convection in mixtures
with many components. The stability with respect to two
types of perturbations is investigated: Longitudinal waves �in
the plane of vertical axis and temperature gradient� and
transversal waves �in the plane perpendicular to the tempera-
ture gradient�. The stability problems are reduced to those
without cross-diffusion effect by a special transformation and
then solved by the Galerkin method.

The calculations show that in binary fluids with positive
separation ratio �, the onset of longitudinal instability is
oscillatory. The decrease of Schmidt number has a stabilizing
effect on the oscillatory mode. The monotonic mode be-
comes more dangerous when � decreases approaching to
zero. For negative �, the system is always unstable with
respect to long-wave transversal perturbations due to desta-
bilizing vertical stratification. The stability map for binary
fluids is valid in ternary case provided that the two principle
components have the same diffusive properties. Otherwise,
the Soret effect can stabilize or destabilize the oscillatory
mode depending on the separation ratios of components �1
and �2. The transversal instability in ternary fluids essen-
tially depends on the net separation ratio �=�1+�2. For
��0, the system is stable �unstable� when the vertical den-
sity gradient is stabilizing �destabilizing�. Surprisingly, the

system is always unstable for �
0 regardless of vertical
density stratification. The onset of long-wave transversal in-
stability is oscillatory for ��0 and monotonic for �
0. It
is argued that these results are valid in the general case of a
multicomponent fluid. The analogue of exchange of stabili-
ties principle for a plane column with a multicomponent fluid
is proved: The system is stable with respect to transversal
perturbations when all components have positive Soret effect
��i	0�; when all of them have negative Soret effect ��i

0�, the growth of perturbations is monotonic. It should be
noted that strong destabilization of the column for fluids with
negative Soret effect cannot be revealed by considering two-
dimensional perturbations in the plane of vertical axis and
temperature gradient.

The obtained results are presented in the form, which is
rather simple and convenient for specialists in experimental
measurements. We conclude that a plane thermogravitational
column can be used for measuring the transport coefficients
in ternary and higher mixtures when one or several compo-
nents have negative Soret effect. In binary systems, such
measurements are possible for positive Soret effect only. The
decrease of transversal column width has a stabilizing effect
on transversal instability and allows one to perform measure-
ments in fluids with larger negative Soret effect.
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APPENDIX

Proof of statements 3 and 4. Consider problem �34�–�36�
assuming that the matrix S is diagonal,

w� − l2w + I · � = − �w , �A1�

Scii
−1��i� − l2�i − Riw� = − ��i, �A2�

x = � 1, w = 0, �i� = 0, �A3�

where i=1, . . . ,n−1. Let us multiply equations �A1� and
�A2� by w̄ and �i, respectively �the bar denotes a complex-
conjugate value�. Integrating the resulting equations from −1
to 1 taking into account boundary conditions �A3�, we find

� �w��2dx + l2� w2dx −� I · �w̄dx = �� w2dx ,

�A4�

Scii
−1�� ��i��

2dx + l2� �i
2dx + Ri� w�idx� = �� �i

2dx .

�A5�

Here and below the limits of integration are omitted for brev-
ity. Let us sum up Eq. �A4� and its complex conjugate. Simi-
larly, Eq. �A5� is multiplied by Scii /Ri and added to its com-
plex conjugate. Summing up the resulting equations over i
=1, . . . ,n−1, we obtain
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��̄ + �� � w2dx = 2� �w��2dx + 2l2� w2dx

−� �I · �w̄ + I · �̄w�dx , �A6�

��̄ + ���
i=1

n−1
Scii

Ri
� �i

2dx = �
i=1

n−1
2

Ri
�� ��i��

2dx + l2� �i
2dx�

+� �I · �w̄ + I · �̄w�dx . �A7�

The sum of �A6� and �A7� is given by

��̄ + ���� w2dx + �
i=1

n−1
Scii

Ri
� �i

2dx�
= 2� �w��2dx + 2l2� w2dx

+ �
i=1

n−1
2

Ri
�� ��i��

2dx + l2� �i
2dx� .

All integrals in this relation are positive. When Ri	0 for i
=1, . . . ,n−1, we have �̄+�	0. It follows that �r	0,
which proves statement 2.

Let us now subtract Eq. �A4� from its complex conjugate.
Similarly, Eq. �A5� is multiplied by Scii /Ri and subtracted
from its complex conjugate. Summing up the resulting equa-
tions over i=1, . . . ,n−1, we obtain

��̄ − �� � w2dx =� �I · �w̄ − I · �̄w�dx , �A8�

��̄ − ���
i=1

n−1
Scii

Ri
� �i

2dx =� �I · �w̄ − I · �̄w�dx . �A9�

Subtracting �A9� from �A8� gives

��̄ − ���� w2dx − �
i=1

n−1
Scii

Ri
� �i

2dx� = 0.

When Ri
0 for i=1, . . . ,n−1, the second multiplier is al-
ways positive, so �̄−�=0. It follows that ��=0, which
proves statement 3.

Proof of statement 5. Suppose that conditions of the state-
ment are satisfied and ��=0. The eigenfunctions, which cor-
respond to the eigenvalue �=0 satisfy the problem

w� − l2w + I · � = 0, �A10�

�� − l2� − Rw = 0, �A11�

x = � 1, w = 0, �� = 0. �A12�

Let us differentiate Eq. �A10� two times and substitute the
expression for �� from �A11� into the resulting equation. Ex-
pressing I ·� in terms of w from �A10� and taking into ac-
count the boundary conditions, we find

w�� − 2l2w� + �l4 + R�w = 0, �A13�

x = � 1, w = 0, w� − l2w� = 0. �A14�

Note that real and imaginary parts of functions w and � sat-
isfy the same problem, so only real solutions can be consid-
ered. The general solution of Eq. �A13� for R	0 is given by
�26�

w = e−�x�a1 cos �x + a2 sin �x� + e�x�a3 cos �x + a4 sin �x� ,

� =��l4 + R + l2

2
, � =� R

2�l4 + R + 2l2
,

while for R=0 and l	0 it is written as

w = e−lx�a1 + a2x� + elx�a3 + a4x� .

Here a1–a4 are real constants to be determined from bound-
ary conditions �A14�. It can be checked that the determinant
of the corresponding linear system of equations is nonzero. It
follows that all constant are zero, so w=0. Then from �A11�
and �A12� we find �=0. It follows that �=0 is not an eigen-
value of problem �34�–�36�. This contradiction proves the
statement. As for the case R= l=0, it is easy to show that in
this case there exist nonoscillatory neutral perturbations of
the form w=0, �=const.

Proof of statement 6. The neutral nonoscillatory perturba-
tions of velocity satisfy problem �A13� and �A14�. It was
shown in �24� that for R
0 this problem has a denumerable
number of eigenvalues R �i.e., critical net solutal Rayleigh
numbers� and corresponding eigenfunctions. The minimal
critical number �R�→0 as l→0.
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