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We propose an explanation of the peculiar linear temperature dependence of the uniform spin

susceptibility �ðTÞ in ferropnictides. We argue that the linear in T term appears to be due to the

nonanalytic temperature dependence of �ðTÞ in a two-dimensional Fermi liquid. We show that the

prefactor of the T term is expressed via the square of the spin-density-wave (SDW) amplitude connecting

nested hole and electron pockets. Because of an incipient SDW instability, this amplitude is large, which,

along with a small value of the Fermi energy, makes the T dependence of �ðTÞ strong. We demonstrate

that this mechanism is in quantitative agreement with the experiment.
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Introduction.—The key hypothesis of the Fermi-liquid
(FL) theory is that a system of strongly interacting fermi-
ons can be considered effectively as a gas of weakly
interacting quasiparticles. In the absence of residual inter-
action between quasiparticles, the static uniform spin sus-
ceptibility, �ðTÞ, and the specific heat coefficient, �ðTÞ, are
finite at T ¼ 0 and obey quadratic dependencies on T at
low temperatures. The effect of residual interactions on
�ðTÞ and �ðTÞ has been studied intensively in recent years
[1], with the key result that in two dimensions (2D) both
�ðTÞ and �ðTÞ are linear rather than quadratic in T [2–4].

Theory predicts that the behavior of �ðTÞ is universal in
a sense that the (negative) slope is given by the square of
the backscattering amplitude [5]. This linear decrease has
been observed in monolayers of 3He [6]. On the contrary, a
linear in T term in the spin susceptibility is not universal
and can be of either sign [3,7], causing uncertainty in the
interpretation of the experiments on semiconductor heter-
ostructures [8].

Recently, a pronounced linear temperature dependence
of the uniform susceptibility has been observed in high-Tc

superconductors with iron-based layered structure [9–12].
It extends from temperatures above either the spin-density-
wave (SDW) or superconducting transitions up to 500–
700 K with an almost doping-independent slope. The T
dependence is quite strong: �ðTÞ increases roughly by a
factor of 2 between 200 K and 700 K. An explanation of
this behavior based on the J1-J2 model of localized spins
has been proposed in Ref. [13]; however, given that the
linear T dependence persists up to large dopings, where
local probes, such as nuclear magnetic resonance (NMR)
and �SR, do not see localized moments [14,15], this
explanation is questionable.

The itinerant character of Fe pnictides is suggested by
the agreement between the band structure obtained in

ab initio calculations [16] and observed in de Haas-
van Alphen and angle-resolved photoemission spec-
troscopy (ARPES) experiments [17–21]. It is firmly
established by now that the Fermi surface (FS) of Fe
pnictides consists of two small hole pockets near (0, 0)
and two electron pockets near (�, �) points of the folded
Brillouin zone. In such a system, an obvious origin of the
SDW order is a logarithmic divergence of a particle-hole
vertex involving states on nested parts of the FS [16,22–
26].
In this Letter, we propose an explanation of the ex-

perimental T dependence of spin susceptibility based on
the itinerant picture. We argue that the origin of the
linear increase of �ðTÞ with temperature in ferropnic-
tides is the same as in a 2D FL. Furthermore, we show
that this behavior is universal for FLs with strong (�, �)
SDW fluctuations, namely, the slope of the linear in T
dependence is determined by the square of the SDW
amplitude with nesting momentum Q ¼ ð�;�Þ. This
amplitude is large which, along with a small value of
the Fermi energy "F, amplifies the T dependence of
�ðTÞ. Choosing the SDW coupling to reproduce the
observed SDW transition temperature TN at zero dop-
ing, we find a good agreement between calculated
and measured slopes of �ðTÞ. The doping dependence of
the slope also agrees with the data. We view this agree-
ment as a strong indication that the linear tempera-
ture dependence of �ðTÞ in pnictides [9–12] is in fact
the first unambiguous observation of a nonanalytic be-
havior of the 2D spin susceptibility. Besides being
fundamentally important on its own right, this observa-
tion also strengthens the case for the itinerant scenario for
Fe pnictides.
Theory.—We consider a two-band model of interacting

fermions occupying the electron and hole FSs:
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Here, ck� (fk�) is the annihilation operator for a hole
(electron) with momentum k and spin � [for an electron,

k is measured from the (�, �) point], "ck and "fk ¼ �"ck þ
2� represent single-particle dispersions, and �measures a
deviation from perfect nesting. Models of this type were
considered in the past in the context of an ‘‘excitonic
insulator’’ [27].

We assume that each of the electron and hole FSs is
doubly degenerate. The terms with u4 and u5 are intraband
interactions, the terms with u1 and u2 are interband inter-
actions with momentum transfer 0 andQ, respectively, and
the term with u3 is the interband pair hopping. All cou-
plings flow from their initial values at energies of order of
the bandwidth to renormalized values at "F [24,25]. We
assume that this renormalization is already included into
Eq. (1) and analyze the behavior of the system at energies
below "F.

We first obtain the linear-in-T contribution to the spin
susceptibility, ��ðTÞ, to the second order in the interaction
and then show that the prefactor of the T term in ��ðTÞ is
expressed via the SDW vertex to all orders in the
interaction.

Figure 1 depicts all topologically inequivalent second-
order diagrams for the thermodynamic potential, �ðT;HÞ,
describing both intra- and inter-band processes. Each of the
diagrams contains the object
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whereG�
k;! is a Matsubara Green’s function of either c or f

fermion with momentum k and spin � in a magnetic field
H. As in an ordinary FL, the nonanalytic H2T term in
’ðT;HÞ comes from a dynamic Kohn anomaly, i.e., from
diagrams with momentum 2kF carried by the interaction
lines [3,4]. It is, however, more convenient to re-express
the result via the polarization bubbles with small rather
than 2kF momenta. The Green functions in Eq. (2) can be

combined in two different ways: either as���
q;��
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q;� , or as
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polarization bubble of the cc, ff, or cf type with small
momenta q � kF. A bubble depends on the magnetic field
if the Zeeman energies of two fermions add up. One can
readily show that the cc and ff bubbles depend on the field

via�"#
q;�, while the field enters the cf bubble through�""

q;�

and �##
q;� terms. Evaluating individual diagrams, we find

that each of them can be expressed as a product of two
dynamic spin up/down bubbles:

�q;� ¼ m

2�
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where �� ¼ 0 for intraband scattering and �� ¼ � for
interband scattering. The rest of the calculations proceed
in the same way as for an ordinary FL [3,4]. In short, one
integrates�2

q;� over q first, replaces the Matsubara sum by

a contour integral, differentiates the result twice with re-
spect to H, sets H ¼ 0, and obtains the OðTÞ terms in �.
The first two diagrams in Fig. 1 describe intraband pro-
cesses and give the same results for �ðTÞ as in Refs. [3,4]:
��1;2ðTÞ ¼ �u24;5T, where � ¼ 4�0N

2
F=ð2"FÞ, "F ¼

vFkF=2, �0 ¼ 2�2
BNF is the Pauli susceptibility per one

sheet of the FS, and NF ¼ m=2� is the density of states. A
factor of 4 in � results from the double degeneracy of
electron and hole bands. The third through fifth diagrams
involve interband scattering and yield ��3ðTÞ ¼
2�u21T�ð�=TÞ, ��4ðTÞ ¼ �u23T�ð�=TÞ, and ��5ðTÞ ¼
2�u22T�ð�=TÞ, respectively. Here, �ðxÞ ¼ 2x cothx�
x2=sinh2x� 2x. The third and forth diagrams give finite
contributions if� ¼ �0, while the fifth diagram contributes
if � ¼ ��0. The sixth and seventh diagrams do not con-
tribute to ��ðTÞ, and the remaining two give ��8ðTÞ ¼
�2�u1u2T�ð�=TÞ and ��9ðTÞ ¼ ��u23T�ð�=TÞ.
Combining all diagrams, we obtain

��ðTÞ¼�T½u24þu25þ2ðu21þu22�u1u2Þ�ð�=TÞ�: (4)

The first two terms are the contributions from intraband
processes—they are the same as in an ordinary FL. The rest
of the terms correspond to interband processes, specific to
the electronic structure of ferropnictides. For T � � (per-
fect nesting), �ð�=TÞ � 1 and both intra- and inter-band
processes contribute to the linear term in the spin suscep-
tibility. In the opposite limit of T � � (poor nesting),
�ð�=TÞ � expð�2�=TÞ and the interband contribution

ω,σ

ω σ

ω +Ω,σ

ω+Ω,σ

ω,σ

ω σ

ω +Ω,σ

ω+Ω,σ

ω,σ

ω σ

ω Ω,σ

ω Ω,σ

ω,σ

ω Ω σ

ω ,σ

ω Ω,σ

ω,σ

ω σ

ω Ω,σ

ω Ω,σ

ω,σ ω Ω σ

ω Ω,σ ω ,σ

ω,σ ω σ

ω Ω,σ ω Ω,σ

ω,σ ω Ω σ

ω Ω,σ ω ,σ

ω,σ ω Ω σ

ω Ω,σ ω ,σ

FIG. 1. Second-order diagrams for the thermodynamic poten-
tial. Solid and dashed lines correspond to f fermions (electrons)
and to c fermions (holes), respectively.
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to �ðTÞ is suppressed exponentially. In the intermediate
regime T ��, �ð�=TÞ is nonmonotonic. Note that the
pair-hopping term u3, which gives rise to an attraction in
the extended s-wave pairing channel, does not contribute
to the T term in �ðTÞ.

The coupling constants in Eq. (4) are interactions at the
scale of the Fermi energy. These couplings are already
renormalized from their bare values at the scale of the
bandwidth [24] by the parquet renormalization group, in
such a way that u4, u5, and u1 flow to the same value, while
u2 flows to a smaller value. The renormalized couplings at
the scale of "F depend only weakly on the incoming and
transferred momenta. Further renormalization below "F
differentiates between ui with different transferred and
incoming momentum. Such renormalization is particularly
relevant for our system as the coupling u1, which corre-

sponds to the scattering process, u1ðk;pþ q;p;kþ
qÞcypfykþqfpþqck, diverges at the onset of the SDW insta-

bility for q ¼ 0 (we recall that momenta for f fermions are
measured from Q, so that the momentum transfer between
c and f fermions is actually q ¼ Q). The singular vertex is
u1ðk;p;p;kÞ, which means that electrons and holes swap
their respective momenta. Note that the divergence occurs
for any angle between k and p. At weak coupling, the
enhancement of u1 is confined to q � kF, while for a
generic q� kF the coupling u1 retains its bare value.

We now show that the u21 term in �ðTÞ / T is the same
coupling that diverges at the SDW instability. To see this,
we first note that the fermionic momenta in diagrams for
�ðT;HÞ are constrained by two requirements: (i) the mo-
mentum transfers are near 2kF and (ii) all four momenta
are near the FS. For the third diagram in Fig. 1, this implies
that p � �k, jkj � kF, while q is small (�T=vF).
Therefore, the vertex in this diagram is
u1ðk;�k;�k;kÞ. This is an analog of the backscattering
amplitude in a 2D FL. The vertex u1ðk;�k;�k;kÞ is a
special case of the SDW vertex u1ðk;p;p;kÞ for p ¼ �k.

Next, we consider higher-order diagrams. They can be
separated into two classes. In diagrams of the first class,
one obtains the nonanalyticity by keeping only two dy-
namic bubbles �q;� and lumping the rest of the diagram

into renormalization of the static scattering amplitude. In
particular, the backscattering amplitude u1ðk;�k;�k;kÞ
is renormalized into an effective coupling ueff1 , which
diverges at the SDW instability. Singular renormalizations
of u1 form a ladder series which is summed into

ueff1 ¼ u1
1� u1NF ln

"F
maxðT;�Þ

: (5)

The second class of higher-order diagrams contain three
and more dynamic bubbles. Terms of order of u31 etc. are
not expressed in terms of backscattering amplitude but
rather contain u1 with typical q of order kF. In this range
of momenta, u1 is not enhanced by SDW fluctuations and
remains small at weak coupling.

In addition, the diagrams of both classes also contain
analytic, ðT="FÞ2 terms. Such terms have been analyzed
numerically in the study of a linear in T behavior of the
Fermi velocity in a 2D FL [28] and found to be small even
when T � "F. We assume that the same happens here and
neglect regular terms below.
Neglecting u2 and setting u1 ¼ u4 ¼ u5 	 u > 0, we

finally obtain

��ðTÞ � 8ðuNFÞ2�0

vFkF
T

�
1þ �ð�=TÞ

ð1� uNF ln
"F

maxðT;�ÞÞ2
�
: (6)

This full result for ��ðTÞ was obtained from the second-
order expression by replacing u1 ¼ u by the exact SDW
amplitude ueff1 , given by Eq. (5). This is similar to the result
for the specific heat [5], but differs from the result for
��ðTÞ in an ordinary 2D FL, where the full ��ðTÞ is not
expressed via the backscattering amplitude [3,7]. This
difference can be traced down to the symmetry between
the particle-particle (Cooper) channel in an ordinary FL
and the particle-hole channel in a nested FL. Indeed, the
backscattering contribution to both �ðTÞ and ��ðTÞ for the
ordinary case undergoes logarithmic renormalization in the
Cooper channel. However, the Cooper ladder for the ordi-
nary case is identical to the particle-hole ladder for the
nested case, except for that the sign of the interaction is
reversed, i.e., the SDW instability for u > 0 for the nested
case is related to the Cooper instability for u < 0 for the
ordinary case. In both cases, there are also nonbackscatter-
ing contributions to ��ðTÞ. For the ordinary case, the

FIG. 2 (color online). (a) T dependence of the spin suscepti-
bility �ðTÞ, as given by Eq. (6), for perfect nesting (� ¼ 0) and
for a range of couplings uNF, as indicated in the plot. In a cal-
culation, maxðT;�Þ in Eq. (6) is approximated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ�2

p
.

Inset: Calculated slope d�ðTÞ=dT as a function of uNF at T ¼
300 K (chosen to match Ref. [11]). (b) Calculated �ðTÞ for
uNF ¼ 0:5 for a range of �, as shown in the plot. Inset: Same
curves as in (a) normalized by �extr, obtained by extrapolating
�ðTÞ down to T ¼ 0. (c) �ðTÞ in BaFe2�xCoxAs2 from Ref. [12].
Inset: Same data as in the main panel normalized by �ð0Þ.
(d) Calculated slope d�ðT ¼ 300 KÞ=dT as a function of �.
Inset: Measured slope as a function of doping (from Ref. [11]).
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backscattering term is reduced by Cooper renormalization,
and nonbackscattering contributions play the dominant
role. For the nested case, SDW renormalization enhances
the backscattering term, and other contributions can be
ignored. On the other hand, the Cooper channel composed
of electrons and holes for the nested case is equivalent to
the particle-hole channel for an ordinary case and, there-
fore, is not logarithmically divergent.

Comparison with experiments.—We now apply Eq. (6)
to ferropnictides. The experimental results for �ðTÞ in
BaFe2�xCoxAs2 [12] are shown in panel (c) of Fig. 2.
From the data, we estimate the slope of the T dependence
as ½�ð700 KÞ=�ð0Þ�expt � 2, where �ð0Þ is obtained by

extrapolating �ðTÞ to T ¼ 0 (theoretically, �ð0Þ � 4�0).

Taking vF ¼ 0:45 eV 
 �A and kF � 0:16 �A�1 from the
ARPES data [21], we obtain "F � 0:04 eV [29]. The
only unknown parameter of the theory—the dimensionless
coupling constant uNF—is fixed by requiring that the
SDW vertex ueff1 increases upon approaching TN (TN ¼
140 K at zero doping). As Eq. (5) is an approximate one-
loop formula, we set a criterion that ueff increases by a
factor of 2 at TN. This yields uNF � 0:5. We then find
½�ðT ¼ 700 KÞ=�ð0Þ�theor � 1:7, which is quite close to
the experimental value ½�ð700 KÞ=�ð0Þ�expt � 2. A more

detailed comparison between the experiments and Eq. (6)
is presented in Fig. 2, where we also show the dependen-
cies of the slope on uNF and �. We find quite a good
agreement with the experimental data.

We also make a simple prediction for future experi-
ments. Within our theory, the slope of the linear in T
term should increase in a magnetic field, as �ðT;HÞ ¼
�ðT; 0Þ½1þ ð�BH=TÞ2� for �BH � T [4]. Near optimal
doping, the linear in T dependence of �ðTÞ continues down
to T � Tc, and experiments in fields of about 10 T should
be able to observe this behavior.

Conclusion.—To summarize, we analyzed a nonana-
lytic, linear in T term in the spin susceptibility of a 2D
Fermi-liquid with nearly nested electron and hole pockets
of the Fermi surface. We found that the prefactor of the T
term contains the same interband coupling ueff1 , which is
enhanced by SDW fluctuations. These results describe
quantitatively a strong temperature dependence of the spin
susceptibility in ferropnictides, observed in a number of re-
cent experiments. An immediate consequence of the pro-
posed mechanism is that � should exhibit equally strong
linear dependencies on the magnetic field and on the wave
number [3]. We suggest to perform these measurements as
a crucial test for the origin of the observed effect.
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