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1. INTRODUCTION

The development of general rules for controlling
quantum systems is one of the problems of modern
physics. The most rapid increase in interest to this prob-
lem is associated with its applications for controlling
chemical reactions and building quantum computers [1,
2]. Selective operators that change the states of two
chosen levels are commonly used in manipulating the
states of multilevel quantum systems with a nonequi-
distant energy spectrum [3–11]. The most straightfor-
ward way of implementing such an operation is to tune
the frequency of the external field to the resonance fre-
quency of the transition between the chosen levels. The
amplitude of this field should be much smaller than the
frequency difference between the necessary resonance
and unnecessary nonresonance transitions. The dura-
tion of the operation has to be increased when the
amplitude decreases, but the time of the experiment is
limited by the decoherence time.

One of the methods for reducing the operation time
can be the organization of a selective operator using
short intense nonselective pulses separated by intervals
of free evolution under the internal interaction respon-
sible for the level nonequidistance. As applied to quan-
tum computing using NMR methods, this approach has
been demonstrated for systems of two spins 

 

I

 

 = 1/2 with
close Larmor frequencies (see, e.g., [12]). The pro-
posed sequences are unsuitable for the nonequidistant
levels of the single spin attributable to a quadrupole
interaction quadratic in spin projection operators. For

them, we [13] proposed a method based on the method
of an effective Hamiltonian [14, 15] and demonstrated
its work for three levels of a nucleus with spin 

 

I

 

 = 1. The
demand for such schemes is related to NMR experi-
ments on quadrupole nuclei in liquid-crystalline matrix
[5–7]. The rapid spatial motion of molecules narrows
individual lines in the NMR spectrum, causing a signif-
icant increase in decoherence time and creating favor-
able conditions for quantum computing. However, in
this case, the crystal field gradient on a quadrupole
nucleus also decreases, causing a decrease in level non-
equidistance (the resonance frequency difference
between the individual lines in the NMR spectrum) and
creating difficulties in applying simple selective radio-
frequency (RF) pulses.

In this paper, we extend our approach to four-, five-,
and six-level systems (with spins 3/2, 2, and 5/2 in
accordance with the formula 

 

d

 

 = 2

 

I

 

 + 1; 

 

d

 

 is the number
of levels in the system). To reduce the error from qua-
drupole interaction when the spin is rotated by a nonse-
lective RF pulse, we found an equivalent sequence of
five RF pulses for this rotation. In contrast to the previ-
ously known case [15, 16], our composite pulse reduces
not only the amplitude error but also the phase one,
which is important in quantum computing.

The paper is structured as follows. The construction
of an effective Hamiltonian is described in Section 2.
The method of its implementation using RF pulses and
error reduction methods are investigated in Section 3.
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The results of our numerical simulations are contained
in Section 4. A composite nonselective pulse is con-
structed in the Appendix.

2. THE METHOD OF CONSTRUCTING
AN EFFECTIVE HAMILTONIAN

FOR THE COMPOSITE SELECTIVE ROTATION 
OPERATOR

The rotation of the magnetic (spin) moment through
an angle 

 

θ

 

 about an 

 

α

 

 axis is specified by the operator

(2.1)

where 

 

I

 

α

 

 is the spin projection operator onto the 

 

α

 

 axis.
In particular, the projection operators are transformed
by the rotation according to the formulas [14, 17]

(2.2)

The relations for other projections can be obtained
using a cyclic change of variables. These formulas are
valid for any spin.

The selective rotation operator (

 

θ

 

) of the two
states corresponding to levels 

 

m

 

 and 

 

n

 

 through an angle

 

θ

 

 about an 

 

α

 

 axis for a 

 

d

 

-level quantum system is rep-
resented by a 

 

d

 

 

 

×

 

 

 

d

 

 matrix:

(2.3)

Here, 

 

E

 

k

 

 is a unit matrix of dimension 

 

k

 

. The phase 

 

ϕ

 

defines the rotation axis. The rotation about the 

 

x

 

 (

 

α

 

 =

 

x

 

, 

 

x

 

 rotation) and 

 

y

 

 (

 

α

 

 =

 

 y

 

, 

 

y

 

 rotation) axes corresponds
to 

 

ϕ

 

 = 0 and 

 

π

 

/2, respectively. Operator (2.3) can be
written in exponential form,

(2.4)

where the exponent contains a matrix in which only two
elements, 

 

B

 

ij

 

 and 

 

B

 

ji

 

 (

 

i

 

 = 

 

m

 

 + 1, 

 

j

 

 = 

 

n

 

 + 1), are nonzero.

θ{ }α iθIα–( ),exp=

iθIx–( )Iz iθIx( )expexp Iz θcos Iy θ,sin–=

iθIy–( )Iz iθIy( )expexp Iz θcos Ix θ.sin+=

Rα
m n–

Rα
m n– θ( )

=  

Em 0 0 0 0

0 θ
2
---cos 0 ie–iϕ θ

2
---sin– 0

0 0 En m– 1– 0 0

0 ieiϕ θ
2
---sin– 0 θ

2
---cos 0

0 0 0 0 Ed n 1––

.

Rα
m n– θ( ) iθBα

m n––( ),exp=

 

To be able to make selective transformations, sup-
pose that the energy level nonequidistance of the quan-
tum magnetic moment in a strong constant magnetic
field 

 

B

 

0

 

 is realized by an interaction with a Hamiltonian

(2.5)

where 

 

q

 

 is the coupling constant and 

 

I

 

 is the nuclear
spin. The interaction of the quadrupole moment of the
nucleus with the crystal field gradient and the spin–
orbit coupling of electrons in axially symmetric cases
have such a form [17]. We will measure the energy in
units of the angular frequency and set 

 

�

 

 = 1.

To obtain the selective rotations (2.4) using the non-
selective operators (2.1), we should transform the oper-
ator 

 

H

 

q

 

 so as to obtain an effective (average) Hamilto-

nian coincident with  (more precisely, 

 

H

 

eff

 

t

 

 =

 

θ

 

) from it. This problem can be solved by many
methods. Let us generalize the method that we sug-
gested previously for a three-level system [13] to sys-
tems with more than three levels.

For our system, the transitions only between the
adjacent levels in whose rotation operators only the off-
diagonal elements closest to the main diagonal Bi, i + 1

are nonzero are permitted under single selective RF
pulses. The matrices Ix and Iy and certain combinations
of the matrices derived from Hamiltonian (2.5) by
transformation (2.2) have such properties:

(2.6)

where

(2.7)

As will be shown below, these operators can be realized
in practice using nonselective RF pulses separated by
intervals of free evolution.

Using the evolution operator of the system under
interaction (2.5), we can change the phases of the
matrix elements by a value dependent on the state:

Hq q Iz
2 1

3
--- I I 1+( )–⎝ ⎠

⎛ ⎞ ,=

Bα
m n–

Bα
m n–

Kx
π
2
---⎝ ⎠

⎛ ⎞ 2Ky
π
4
---⎝ ⎠

⎛ ⎞+ IzIx IxIz+ Mx,= =

2Kx
π
4
---⎝ ⎠

⎛ ⎞ Ky
π
2
---⎝ ⎠

⎛ ⎞+ IzIy IyIz+( )– My,= =

Kx ψ( ) ψ{ }xHq ψ{ } x– ,=

Ky ψ( ) ψ{ }yHq ψ{ } y– .=



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 108      No. 1      2009

SELECTIVE CONTROL OF THE STATES OF MULTILEVEL QUANTUM SYSTEMS 7

(2.8)

(2.9)

Both operators are antisymmetric relative to their sec-
ondary diagonals. In both matrices, only the off- diago-
nal elements closest to the main diagonals are nonzero.
Combining operators (2.6) and (2.8) as well as Ix and Iy,

we can construct a matrix that coincides with , to
within a coefficient. If the derived operator is taken as
the effective Hamiltonian Heff, then the evolution of the

system under the action of Heff during the time (θ)
will correspond to the selective rotation operator (2.4)
between the corresponding pair of its levels through an
angle θ. The phase difference between the states of var-
ious levels resulting from free evolution during the time

(θ) under the action of Hq plays a key role in the
realization of selectivity. In this case, the constant q
specifies a natural time and frequency scale. Therefore,
in subsequent formulas, we will measure the time in
units of 1/q and the frequency in units of q. Let us con-
sider successively the cases with d = 3, 4, 5, and 6.

(1) d = 3. The effective Hamiltonians Heff  for
the various qutrit rotations that correspond to the oper-

ator θ  were obtained in [13]:

(2.10)

The upper and lower signs in front of the operators cor-
respond to the 0–1 and 1–2 transitions, respectively.

(2) d = 4. A feature of the half-integer spins 3/2 and
5/2 (d = 4 and 6) is the absence of matrix elements on
the secondary diagonals in the operators Mα. Therefore,
the rotation on the central transition should be obtained
using a scheme slightly different from that described
above. Let us first consider the two lateral transitions:

(2.11)

The upper and lower signs in front of the operators cor-
respond to the 0–1 and 2–3 transitions, respectively.

The central transition can be obtained using the sum
of operators (α = x, y)

(2.12)

(3) d = 5. The effective Hamiltonian of the x rotation
between states 0–1 and 3–4 is

(2.13a)

and between the states 1–2 and 2–3 is

(2.13b)

(the upper and lower signs in front of the operators cor-
respond to the 0–1 (1–2) and 3–4 (2–3) transitions,
respectively). In Eqs. (2.13),

e
itHq–

Mxe
itHq Mx t( )

0 a12e
itk12–

… 0 0

a21e
itk21 0 … 0 0

0 0 … 0 a d 1–( )de
itk d 1–( )d–

0 0 … ad d 1–( )e
itkd d 1–( )–

– 0

= =

e
itHq–

Mye
itHq My t( ) = i

0 a12e
itk12–

… 0 0

a– 21e
itk21 0 … 0 0

0 0 … 0 a d 1–( )de
itk d 1–( )d–

0 0 … ad d 1–( )e
itkd d 1–( )–

0

,=

… … … … …

… … … ……
kij k ji Iz ii, Iz jj,+ ,= =

aij kij Ix ij, .=

Bα
m n–

td
m n–

td
m n–

t3
m n–

Bα
m n–

θBx
m n– Mx Ix+±( )t3

m n– ,=

θBy
m n– My Iy++−( )t3

m n– ,=

t3
m n– θ

2 2
----------.=

θBx
m n– Mx± My τ( )+( )t4

m n– ,=

θBy
m n– My+− Mx τ( )+( )t4

m n– ,=

t4
0–1 t4

2–3 θ
4 3
----------, τ π

4
---.= = =

θBα
1–2 Iα Iα τ( )+( )t4

1–2,=

t4
1–2 θ

4
---, τ π

2
---.= =

θBx
m n– Mx Ix+±[ ](=

+ My τ( )– Iy τ( )±[ ] )t5
m n– ,

θBx
m n– Mx± 3Ix+[ ](=

– My τ( )– 3Iy τ( )±[ ] )t5
m n–
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For the y rotation, we should interchange the subscripts
x and y and reverse the signs ± in the effective Hamilto-
nian (2.13).

(4) d = 6. The effective Hamiltonian of the x rotation
between states 0–1 and 4–5 is

(2.14a)

and between states 1–2 and 3–4 is

(2.14b)

(the upper and lower signs in front of the operators cor-
respond to the 0–1 (1–2) and 4–5 (3–4) transitions,
respectively). In Eqs. (2.14),

For the y rotation, we should interchange the subscripts
x and y and reverse the sign ± in the effective Hamilto-
nian (2.14).

The central transition occurs under the operator
(α = x, y)

(2.15)

3. CONSTRUCTING THE COMPOSITE 
SELECTIVE ROTATION OPERATOR

USING NONSELECTIVE OPERATORS

In the previous section, we formally solved the
problem of transforming Hq into the operator Heff =

θ /  represented as the sum . Let us
now turn to making this transformation using the
sequence of rotation operators (2.1) separated by inter-
vals of free evolution with the Hamiltonian Hq. Let us
substitute the representation of Heff as the sum into the
evolution operator

(3.1)

Formally, the sought-for sequence can be obtained
from Eq. (3.1) if we rewrite its right-hand side as the

t5
0–1 t5

3–4 θ
16
------, t5

1–2 t5
2–3 θ

8 6
----------, τ π

2
---.= = = = =

θBx
m n– My τ1( ) My τ τ1+( )+[ ](=

± Mx Mx τ( )+[ ] )t6
m n– ,

θBx
m n– My 2τ1( ) My τ 2τ1+( )–[ ](=

± Mx Mx τ( )–[ ] )t6
m n–

t6
0–1 t6

4–5 θ
16 5
-------------, t6

1–2 t6
3–4 θ

16 2
-------------,= = = =

τ π
2
---, τ1

π
8
---.= =

θBα
2–3 Iα Iα τ( )+[ ] Iα τ( ) Iα τ τ1+( )+[ ]+( )t6

2–3,=

t6
2–3 θ

12
------, τ π

2
---, τ1

π
4
---.= = =

Bα
m n– td

m n– Hkk∑

iHefft–( )exp it Hk

k

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

.exp=

product of exponentials and use the property of expo-
nential operators:

(3.2)

In what follows, we will write the free evolution opera-
tor during time t in the expressions for the pulse
sequences as “–t–”.

In fact, the operators in sum (3.1) do not commute
with each other. Therefore, to obtain a pulse sequence
whose action is equivalent to the evolution with the
Hamiltonian Heff , we will use the Trotter–Suzuki for-
mula for exponential operators [18]:

(3.3)

To improve convergence, we will symmetrize the prod-
uct of operators in this formula. As applied to multi-
pulse NMR spectroscopy, these methods have been
well studied and described in monographs (see, e.g.,
[14, 15]). Below, we consider the pulse sequences sep-
arately for d = 3, 4, 5, and 6.

Note that “reverse” free evolution operators are
encountered in Eq. (3.2):

(3.4)

To obtain this operator, we can extend the time in the
permitted evolution operator by a period T:

(3.5)

T = 2π for integer spins (d = 3, 5) and T = π for half-
integer ones (d = 4, 6). This significantly increases the
total duration of the sequence. The reverse free evolu-
tion (3.4) can also be achieved by a different method—
using the composite pulse (A.11). In this paper, we will
not use it, since the sequences become more complex
and the error increases.

(1) d = 3. To obtain the pulse sequence that performs
a selective rotation on a qutrit, let us write out the oper-
ator Mα in (2.10) via the operators Kx and Ky and then
symmetrize the exponential operators using the
ABCBA scheme [18]:

(3.6)

e
iψ Iα–

itHq–( )e
iψ Iα( )exp

=  e
iψ Iα–

e
itHq–

e
iψ Iα ψ{ }α t– ψ{ } α– ,–=

e
itHq–

iMα–( )e
itHq( )exp

=  e
itHq–

e
iMα–

e
itHq t– e

iMα–
– t–( ) .––=

it Hk

k

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

=  
iHktk

N
------------–⎝ ⎠

⎛ ⎞exp
k

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

N

O
t
N
----⎝ ⎠

⎛ ⎞
2

⎝ ⎠
⎛ ⎞ , tk

k

∑+ t.=

iHqt( ).exp

iHq T t–( )–( ).exp

e iθA/2N– e iθB/2N– e iθC/N– e iθB/2N– e iθA/2N–( )N

=  e iθ A B C+ +( )– O
θ
N
----⎝ ⎠

⎛ ⎞
3

⎝ ⎠
⎛ ⎞ .+
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For the y rotation, it is convenient to choose A = Kx , B =
Ky , and C = Iy . As a result, we arrive at the pulse
sequences obtained previously in [13]. For example,
the selective y rotation between the 0–1 states of a qutrit
can be written using (2.10) and (3.6) as the sequence of
operators

(3.7)

(2) d = 4. When the pulse sequence is constructed
for spin I = 3/2, it is important that the operators in
sum (2.11) commute with each other (since there is no
central coupling transition). Therefore, only the opera-
tors Mα rather than the entire sum need to be symme-
trized. In this case, we will symmetrize the operators
according to the ABA scheme:

(3.8)

where A = Kx and B = Ky. Furthermore, operators (2.6)
and (2.8) correspond to the simultaneous rotation on
the two lateral transitions but in the opposite and the
same directions, respectively. This can be used to
obtain more complex gates.

For the y rotation on the 0–1 states, we obtain the
sequence

(3.9)

Using the commutative property of the z-rotation oper-

ators  and  with a

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

θ
2 2N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

–
θ

4 2N
---------------–

–
θ

2 2N
---------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

θ
4 2N
---------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–

–
θ

2 2N
--------------- π

4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

N

.–

e iθA/2N– e iθB/N– e iθA/2N–( )N

=  e iθ A B+( )– O
θ
N
----⎝ ⎠

⎛ ⎞
3

⎝ ⎠
⎛ ⎞ ,+

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
4 3N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

–

– θ
4 3N
---------------

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

– θ
4 3N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

N

–
π
4
---–

–
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
4 3N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–
θ

4 3N
---------------–

–
π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
4 3N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

N

– 3π
4

------– .–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x±

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y±

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

quadrupole Hamiltonian, this sequence can be simpli-
fied:

(3.10)

For the y rotation on the 1–2 states (central transi-
tion), we obtain the sequence

(3.11)

(3) d = 5. In sequence (3.3) of the effective Hamiltonian
(2.13), we first symmetrize the terms in square brackets
just as for a three-level system and then the entire sum
according to the ABA scheme. For the y rotation on the
0-1 states, we obtain the sequence

(3.12)

(4) d = 6. Since the operators in square brackets in
Eqs. (2.14) commute with each other, only the sum of

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
4 3N
---------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

–

–
θ

4 3N
--------------- π

2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

– θ
4 3N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

N

–
π
4
---–

–
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
4 3N
---------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–
θ

4 3N
---------------–

–
π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
4 3N
---------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

N

– 3π
4

------– .–

θ
8N
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

π
2
---–

θ
4N
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

– π
2
---–

θ
8N
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

–

N

.

Seq1
π
2
---– Seq2– 3π

2
------– Seq1–

N

,

Seq1
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
32N2
------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

–≡

–
θ

64N2
------------ θ

32N2
------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

–

–
θ

64N2
------------ π

2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

– θ
32N2
------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

N

,–

Seq2
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
16N2
------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–≡

–
θ

32N2
------------ θ

16N2
------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

–

–
θ

32N2
------------ π

2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

– θ
16N2
------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

N

.–
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the operators inside the brackets and the operators Mα
themselves should be symmetrized.

For the y rotation on the 0–1 states, we obtain the
sequence

(3.13)

where we made a transformation similar to (3.10).
For the y rotation on the 2–3 states (central transi-

tion), we obtain the sequence

Seq1( )N π
8
---– Seq2( )N–

7π
8

------,–

Seq1
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
32 5N2
--------------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

–
θ

32 5N2
--------------------–≡

–
π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
32 5N2
--------------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

N

–
π
2
---–

–
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
16 5N2
--------------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

–
θ

16 5N2
--------------------–

–
π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
16 5N2
--------------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–

N

–
π
2
--- π

4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
32 5N2
--------------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

––

–
θ

32 5N2
-------------------- π

2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

– θ
32 5N2
--------------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

N

,–

Seq2
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
32 5N2
--------------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–
θ

32 5N2
--------------------–≡

–
π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

θ
32 5N2
--------------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

N

–
π
2
---–

–
π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
16 5N2
--------------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

–

–
θ

16 5N2
-------------------- π

2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

– θ
16 5N2
--------------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

–

N

–
π
2
--- π

4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

θ
32 5N2
--------------------–

π
2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x

––

–
θ

32 5N2
-------------------- π

2
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

– θ
32 5N2
--------------------–

π
4
---

⎩ ⎭
⎨ ⎬
⎧ ⎫

y–

N

,–

(3.14)

The sequences for the rotations about the x axis and
other transitions can be obtained from the above ones
after the substitution of operators that can be easily
derived from the form of Eqs. (2.10)–(2.15).

4. NUMERICAL SIMULATION
OF THE REALIZATION OF THE COMPOSITE 

SELECTIVE ROTATION OPERATOR
USING NONSELECTIVE RF PULSES

To control a quadrupole nucleus, we will apply a
variable RF magnetic field. An RF pulse is produced
under the action of a field with amplitude B1 and fre-
quency ω for a finite time tp � 1/ω. We will consider
rectangular RF pulses, i.e., we will assume that the RF
field is switched on and off instantly, while its ampli-
tude is constant during the entire pulse. In a reference
frame rotating with frequency ω [17], the change of the
state with time is specified by an evolution operator,

(4.1)

with a time-independent effective Hamiltonian,

(4.2)

Here, ω0 = γB0 is the Larmor spin precession frequency
and Ω = γB1 is the RF field amplitude. The RF field
phase ϕ defines the field direction in this reference
frame. For rotation (2.1) to be realized, the RF field
amplitude in Eq. (4.2) must be much larger than the dif-
ference between the resonance frequencies of various
transitions, i.e., Ω � q. Let us take ω = ω0. For an RF
pulse corresponding to (2.1), we then obtain from (4.1)

(4.3)

where tp = θ/Ω is the pulse duration.
The formulas of the previous section hold rigorously

when the ideal nonselective rotation operators (2.1) are
used. In a real experiment, these operators can be
obtained using the evolution operator (4.3). The pres-
ence of a quadrupole interaction simultaneously with
the RF field leads to errors that disappear only in the
limit Ω  ∞ (see Appendix). In particular, since the
sign of the quadrupole interaction does not change as
the sign of the rotation angle (the RF field direction)
changes, the condition

and, as a result, Eqs. (3.2) do not hold.

Seq1
π
4
---– Seq1–

3π
4

------,–

Seq1
θ

24N
----------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

π
2
---–

θ
12N
----------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

– π
2
---–

θ
24N
----------

⎩ ⎭
⎨ ⎬
⎧ ⎫

y

–

N

.≡

U t( ) e iHt–=

H ω ω0–( )Iz q Iz
2 1

3
--- I I 1+( )–⎝ ⎠

⎛ ⎞+=

+  Ω I x ϕ cos I y ϕ sin+ ( ) .

Pα θ( ) itp Hq ΩIα+( )–( ),exp=

Pα θ( )P α– θ( ) 1=
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Another known method for reducing the error of
nonselective rotation consists in using composite
pulses [15, 16]. In particular, composite pulses were
suggested in [16] to reduce the error of the rotation due
to the quadrupole interaction for a nucleus with 

 

I

 

 = 1.
Unfortunately, the suggested variants do not remove the
phase distortions and, therefore, are inefficient for our
purposes. In the Appendix, we obtained composite
pulses that consist of five simple pulses and that remove
the linear (in 

 

q

 

/

 

Ω

 

) contribution to the error for arbitrary
spins. In the general case, the sequence for the rotation
through an angle 

 

θ

 

 around the 

 

x

 

 axis can be written as

(4.4)

where the times of free evolution are defined as

P y–
3π
2

------⎝ ⎠
⎛ ⎞ τ1– P y–

π
2
---⎝ ⎠

⎛ ⎞ P x–
3π
2

------⎝ ⎠
⎛ ⎞–

– τ2 Px ψ1( )Px ψ2( ),–

b
2

2
------- θsin⎝ ⎠

⎛ ⎞ , ψ1arcsin π
2
--- b, ψ2– θ b,–= = =

(4.5)

For the y rotation, the subscripts x and y should be inter-
changed.

In particular, for a nonselective rotation around the
x axis through π/2 and π/4, we find in (4.4), respec-
tively,

(4.6)

and

τ1
1
Ω
---- π 1

2
--- θ 2b– 2bsin–

1
2
--- 2θsin+⎝ ⎠

⎛ ⎞+ ,=

τ2
1
Ω
---- π 2bsin–

1
2
--- 2θsin+ .=

ψ1 ψ2
π
4
---, τ1 π 1

2
---–⎝ ⎠

⎛ ⎞ 1
Ω
----,= = =

τ2
π 1–

Ω
------------,=

ψ1
π
3
---, ψ2

π
12
------,= =

Characteristics of the composite selective rotation operators  for various d

m–n Tp = Σtp Tc = Σtc T∞ NS

d = 3

0–1, 1–2 7N

d = 4

0–1, 2–3 8N

1–2 πN 3N

d = 5

0–1, 3–4 21N2

1–2, 2–3 21N2

d = 6

0–1, 4–5 24N2

1–2, 3–4 24N2

2–3 6N

Note: NS is the number of nonselective rotation operators (simple or composite) in the sequence, Tp = Σtp is the total duration of the simple
nonselective RF pulses, Tc = Σtc is the total duration of the composite nonselective RF pulses, and T∞ is the total duration of the intervals
of free evolution.

Rα
m–n θ( )

θ
2 2Ω
--------------- 2πN

Ω
-----------+ N

Ω
---- 4a

π
4
---⎝ ⎠

⎛ ⎞ 2a
π
2
---⎝ ⎠

⎛ ⎞ a
θ

2 2N
---------------⎝ ⎠

⎛ ⎞+ +⎝ ⎠
⎛ ⎞ 3θ

2 2
----------

3πN
Ω

----------- 4N
Ω

------- a
π
4
---⎝ ⎠

⎛ ⎞ a
π
2
---⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞ 3θ

2 3
---------- π+

θ
2Ω
------- N

Ω
---- 2a

θ
8N
-------⎝ ⎠

⎛ ⎞ a
θ

4N
-------⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞

θ
8Ω
------- 6πN2

Ω
-------------+

N2

Ω
------ 12a

π
4
---⎝ ⎠

⎛ ⎞ 6a
π
2
---⎝ ⎠

⎛ ⎞ 2a
θ

32N2
-------------⎝ ⎠

⎛ ⎞ a
θ

16N2
-------------⎝ ⎠

⎛ ⎞+ + +⎝ ⎠
⎛ ⎞ 3θ

8
------ 2πN+

3θ
8Ω
------- 6πN2

Ω
-------------+

N2

Ω
------ 12a

π
4
---⎝ ⎠

⎛ ⎞ 6a
π
2
---⎝ ⎠

⎛ ⎞ 2a
3θ

32N2
-------------⎝ ⎠

⎛ ⎞ a
3θ

16N2
-------------⎝ ⎠

⎛ ⎞+ + +⎝ ⎠
⎛ ⎞ 3θ

4 6
---------- 2πN+

9πN2

Ω
-------------

12N2

Ω
------------- a

π
4
---⎝ ⎠

⎛ ⎞ a
π
2
---⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞ 3θ

4 5
---------- π 2N 1+( )+

9πN2

Ω
-------------

12N2

Ω
------------- a

π
4
---⎝ ⎠

⎛ ⎞ a
π
2
---⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞ 3θ

4 2
---------- π 2N 1+( )+

θ
3Ω
------- 2N

Ω
------- 2a

θ
24N
----------⎝ ⎠

⎛ ⎞ a
θ

12N
----------⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞ π 2N 1+( )
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(4.7)

Thus, a nonselective spin rotation can be realized
using a simple (4.3) or composite (4.4) RF pulse. Sub-
stituting these operators into the above formulas for

τ1
23
24
------π 3 1–

4
----------------–⎝ ⎠

⎛ ⎞ 1
Ω
----,=

τ2 π 3 1–
2

----------------–⎝ ⎠
⎛ ⎞ 1

Ω
----.=

composite selective rotations, we numerically simu-
lated the experimental situation. The simulation results
are presented in the figures for various selective rota-
tions of various spins in the form of an error,

(4.8)

where  are the elements of the matrix of the ideal

selective rotation operator (θ) (2.3) and Uij are the
elements of the numerically calculated matrix obtained
using the product of evolution operators (4.1). Charac-
teristics of the sequences of RF pulses are given in the
table.

Figure 1 shows the results for the sequence of ideal
nonselective rotation operators at various θ and I. This
figure illustrates the angular dependences of the error
resulting from the operators constituting Heff being non-
commutative. We see that this error increases with rota-
tion angle. Therefore, we will have to divide the
sequences into a larger number of cycles (to increase N)
at large angles.

Such ideal rotations are achieved in the limit
Ω/q  ∞. As we see from Figs. 2 and 3, the error
due to the distortion of the nonselective rotation
operator (4.3) under the simultaneous action of the RF
field and Hq is added at finite values of this parameter.
This part of the error can be reduced by replacing the
simple pulses in the sequences with composite ones
(see Figs. 2 and 3 as well as Fig. 1 and the correspond-
ing figure from [13]). Figure 2 presents the error of the
selective rotation on spins I = 1 and 2. Figure 3 com-
pares the errors of the selective rotations for various
transitions of spin I = 5/2. A feature of the central tran-

∆ 1
d
--- Uij Uij

theor–
2

i j,
∑ ,=

Uij
theor

Rα
m n–0.002

0 0.4

∆

θ/π
0.2 0.6 0.8 1.0

0.004

0.006

0.008

0.010
d = 3 4 5

4

5

6

6

3

3

Fig. 1. Error of the composite selective rotations  ver-

sus angle θ for various d and various numbers of repetitions
N in Eq. (3.3): N = 1 (dashed curves), N = 2 (dotted lines),
and N = 3 (dash–dotted curves; only for d = 3). The solid
curves indicate the error when composite nonselective RF
pulses are used in the composite selective rotation operator

(θ) at Ω = 50q instead of the ideal rotation operators.

The dotted curve for d = 5 and the dashed curve for d = 6
coincide.

Ry
0–1

Ry
0–1

Fig. 2. Error of the composite selective rotations (π/2) and (π/2) for d = 3 and 5 versus reciprocal of the nonselective RF

pulse amplitude. The solid and dashed lines indicate the dependences when, respectively, composite and simple nonselective RF
pulses are used. The curves for both transitions at d = 3 coincide, while the 1–2 transition for d = 5 is highlighted by the dotted line.
In the inset, the region near zero, where the error reaches the limiting value, is magnified.

Ry
0–1

Ry
1–2

0.02

0 0.01

∆

0.05

0.04

0.02

0 1 2

3(2)

q/Ω

d = 5 (N = 1)

0.100.03 0.04 0.06 0.07 0.08 0.09

×10–3

3(1)

5(1)

0.002

0.004

0.008

0.010

3(2)

3(1)

3(1)

3(2)

0.06

0.08

0.10

0.006
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sition is a smaller error when using simple RF pulses in
sequence (3.15) than that for composite nonselective
rotations. The reason is easy to understand upon view-
ing Fig. 5 (see below). For the central transition, the RF
pulse rotation angle of π/24 is small and falls to the left
of the intersection between the lines for the depen-
dences of the errors (i.e., simple pulses lead to a small
errors; therefore, composite pulses increase it by add-
ing the error from additional pulses). For the other two
transitions in sequences (3.14), the angles are large (π/4
and π/2) and fall to the right of the intersection. Natu-
rally, in the limit Ω  ∞, the errors of the two
sequences for each transition reach a common limiting
value—the error for the sequence of ideal nonselective
rotation operators. The same peculiarity is observed for
the central transition of spin I = 3/2.

Figure 4 for I = 3/2 shows the dependence of the
error on the durations of the selective (π/2) rotation
operators, simple (TS = tp = θ/Ω) and composite ones,
for the 0–1 and 1–2 transitions. The composite operator
was obtained by two methods: first, using the sequence
of simple nonselective pulses and, second, using the
same sequence with composite nonselective rotation
operators (4.4). The formulas for the durations of the
sequences are given in the table. The corresponding
pairs of curves converge as TS  T∞, where T∞ is the
limiting value of the total duration defined by the total
duration of the intervals of free evolution and is reached
in the limit Ω  ∞. T∞ = 1.433π for the 0–1 transition
and T∞ = Nπ for the 1–2 transition, since the peculiarity
of the central transition is an invariable duration of the
intervals of free evolution τ = π/2 as N increases. The
minimum error ∆∞ stems from the fact that the opera-
tors are noncommutative and decreases equally when
passing from N = 1 to 2 for both transitions. For the 1−2
transition, the time T∞ doubles.

At finite Ω , the duration of the sequences increases
by the total duration of the RF pulses of simple, Tp, and
composite, Tc, nonselective rotations (see table). The
dependences shown in Fig. 4 can be understood by
assuming that the RF pulse errors (A.7) or (A.8) (see
Appendix) are added in the region Ω/q  ∞ under
consideration. For simple pulses,

(4.9)
∆p ∆∞ qI I 1+( ) tp f p∑+=

≈ ∆∞ TS T∞–( )bp,+

0.02

0 0.01

∆

0.04

0.02

0 1 5

q/Ω
0.050.03 0.04

×10–3

×10–3

1
2
3

4

2–3

0.06

0.08

0.10

2 3 4

2–31–21–20–1

0–1

Fig. 3. Error of the composite selective rotations (π/2) for d = 6 versus reciprocal of the nonselective RF pulse amplitude.

The solid lines and other curves indicate the dependences when, respectively, simple and composite pulses are used. The numbers
near the curves indicate the corresponding m–n transitions. In the inset, the region near zero, where the error reaches the limiting
value, is magnified.

Ry
m n–

0.02

0 4

∆

TS, 1/q
2 6 8 20

0.03

0.04

0.05

0.06

N = 1

2
2

1

10 12 14 16 18

0.01

Fig. 4. Error of the realization of selective rotations

(π/2) for d = 4 versus RF pulse duration (TS = tp) and

total duration of the pulse sequence. The values are shown
for the 0–1 (dashed curves) and 1–2 (solid curves) transi-
tions when composite nonselective pulses (TS = T∞ + Tc) are
used. The dotted lines correspond to the sequences of sim-
ple nonselective pulses (TS = T∞ + Tp). For the rotation by a
simple selective RF pulse, the dots indicate the minimum
values of the rapidly oscillating error [13].

Ry
m n–
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where bp is a constant. Here, we approximately took fp

outside the sign of the sum and used the fact that Tp =

 = TS – T∞. We see a linear dependence on TS in
Fig. 4. The parallelism of the straight dotted lines sug-
gests that the corresponding coefficients are close. For
composite nonselective RF pulses at fixed Ω , the dura-
tion and error of one such pulse depend weakly on the
angle. Therefore, the total error is determined by their
number NS,

(4.10)

since tc ≈ (TS – T∞)/NS. Here, bc is a constant. The cor-
responding change in the shape of the parabolas with NS
is seen in Fig. 4.

For comparison, Fig. 4 shows the error (4.8) of the
rotation due to an ordinary selective rectangular RF
pulse. The dots indicate only the minimum values that
are reached if the phase of the nonresonance levels
change by 2π in TS = tp = θ/Ω. The error increases rap-
idly as the pulse duration changes (see [13]). We see
that using composite selective rotation operators allows
us to reduce the error for the same time (or to reduce the
time for the same error). These properties are also
observed in systems with a large number of levels.

As a specific example, let us turn to the experimen-
tal work [6], in which the qutrit states were controlled
by NMR methods. A deuterium nucleus (I = 1) partially
oriented in a liquid-crystalline matrix at room tempera-
ture was taken. The NMR spectrum of deuterium [6]
consisted of two lines corresponding to q = 120 Hz in
(2.5). The authors used both selective and nonselective

tp∑

∆c ∆∞ q2I2 I 1+( )2 tc
2 f c∑+=

≈ ∆∞ TS T∞–( )2bc/NS,+

RF pulses. For rectangular nonselective RF pulses,
Ω/q ≈ 100. At these parameters, for a composite selec-
tive rotation through π/2 at N = 1 we find from the for-
mulas given in the table that

(4.11)

In [6], the duration of a simple Gaussian selective RF
pulse for the rotation through π/2 was 6 ms. Although
the duration of the composite selective pulse (4.11) at
the parameters taken from the paper was shorter by
only a factor of 1.5–2.0, the error of the operation will
be significantly smaller, as can be inferred, for exam-
ple, from a comparison of Fig. 2 in this paper with the
results for a Gaussian pulse in Fig. 1 from [13].

In our calculations, we used rectangular RF pulses,
which allowed the theoretical ideas to be demonstrated
most clearly. Unfortunately, the RF pulses of real NMR
spectrometers are never ideal, causing the error to
increase as their number increases. To reduce such
errors [15], pulses of a more complex shape or compos-
ite pulses are used in practice. Passing to them will not
affect the qualitative conclusions of the suggested
approach, although it will lead to complication of the
formulas and calculations. Since these refinements are
related to the characteristics of the specific instrument,
the corresponding calculations have to be performed
during the setup when the experiment is carried out.

In another paper [7], the same group of experiment-
ers considered a quadrupole 23Na nucleus (I = 3/2) with
four levels in a liquid-crystalline matrix. In the number
of RF pulses needed for a composite selective rotation,
the case of four levels is no more complex than the pre-
vious one (see table) and even simpler for the central
transition. However, in this case, a larger splitting of the

T∞ 2.2 ms, T∞ Tp+ 2.3 ms,= =

T∞ Tc+ 3.9 ms.=

0.02

0 0.3

∆

I(I + 1)q/Ω
0.2 0.4 0.5

0.04

0.06

0.08

0.10

0.1 0.6

(a)

0.01

0 1.0

∆

θ/π
0.2 0.4 0.8

0.02

0.03

0.6

(b)

Fig. 5. Comparison of the errors of the realization of simple and composite nonselective y rotations: d = 3 (solid lines), 4 (dashed
lines), 5 (dotted lines), and 6 (dash-dotted lines). (a) The dependences on the reciprocal of the RF pulse amplitude for a rotation
angle of π/2. The parabolic curves and straight lines correspond to the composite and simple pulses, respectively. (b) The depen-
dences on the angle θ at RF pulse amplitude Ω = 50q for simple (rising curves) or composite (weakly changing lines) pulses.
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NMR spectrum is observed, since the quadrupole
moment of sodium is larger than that of deuterium by
almost a factor of 50. Therefore, conditions are more
favorable for applying simple selective pulses. To pro-
vide the conditions for the application of composite
selective pulses described above, we have to increase
the RF field amplitude in comparison to the case of deu-
terium nuclei or to heat the sample to reduce the order
parameter of the liquid crystal.

5. CONCLUSIONS

To reduce the error of an ordinary selective RF
pulse, we have to reduce its amplitude and to increase
its duration. At the chosen duration, tp ~ 1/q, the error is
finite. Changing the shape of a short pulse reduces it
insignificantly [13]. Above, we showed that the error of
the selective rotation could be reduced theoretically to
zero if the rotation were performed using a sequence of
intense nonselective RF pulses separated by intervals of
free evolution under a quadrupole interaction. Because
of the presence of such intervals, the total duration of
the sequence TS cannot be made smaller than some lim-
iting value of T∞ dependent on the quadrupole interac-
tion (q and I) and on the arrangement of the sequence.
In other words, for TS > T∞, the theory allows the limit
∆  0 to be reached using composite selective pulses,
while for a simple selective pulse ∆  0 only when
TS  ∞. The possibility of such a reduction in the
error s important for quantum computing, since only at
∆ smaller than some critical value can the error correc-
tion procedure be applied [1].

In conclusion, note that the derived sequences of
nonselective rotation operators can be of use not only
for the quadrupole nuclei considered above but also for
the electron spins controlled by microwave or laser
pulses in systems with weak axially symmetric spin–
orbit coupling.
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APPENDIX

Composite Nonselective Pulse

We will use a property of Hamiltonian (2.5) that fol-
lows from the property of the sum of the squares of
three projection operators as the basis for constructing
a composite pulse:

(A.1)

This explains the choice of two pairs of operators to
compensate for the error at the ends of the intervals of
free evolution in sequence (4.4). The fifth pulse is
needed to produce the necessary combined rotation.

Ix
2 Iy

2 Iz
2 I I 1+( )–+ + 0.=

Under the action of a rectangular pulse (4.3), the oper-
ator Iz changes not instantly but according to Eqs. (2.2),
where θ = Ωt. Therefore, we obtain the more complex
relations (4.5) for the parameters.

Thus, let a strong time-varying RF field (4.2) be
applied to the magnetic moment of a nucleus. At q = 0,
the evolution operator takes the form

(A.2)

At q ≠ 0, by restricting ourselves to the first order in
small quantity q/Ω , we obtain

(A.3)

Based on (2.2), we will represent the time depen-
dence of the magnetic moment operator as

(A.4)

After the substitution of this expression into Eq. (A.3),
we obtain a system of six equations from the condition
of the integral in parentheses being equal to zero:

(A.5)

(A.6)

It is easy to verify that the composite pulse (4.4) satis-
fies these equations. Condition (A.2) is met for any b,
since at q = 0 the ideal rotations

are performed in opposite directions about the same
axis. The value of this parameter can be determined
from the last equality in (A.6). The positive contribu-
tion from the last two pulses to the integral should off-
set the negative contribution from the third pulse. The
satisfaction of condition (A.5) is then achieved by
choosing the duration of the intervals of free evolution
τ1 and τ2.

U0 t( ) θ{ }α≡ T̂ i Ω τ( ) Ix ϕ τ( )cos[
0

t

∫⎝
⎜
⎛

exp=

∫ + Iy ϕ τ( )sin ]dτ
⎠
⎟
⎞

.

U t( ) U0 t( ) 1 i U0
1– τ( )HqU0 τ( ) τd

0

t

∫– .=

U0
1– τ( )IzU0 τ( ) µx τ( )Ix µy τ( )Iy µz τ( )Iz.+ +=

1
t
--- µα

2 τ( ) τd

0

t

∫ 1
3
---, α x y z,, ,= =

µx τ( )µz τ( ) τd

0

t

∫ µx τ( )µy τ( ) τd

0

t

∫=

=  µy τ( )µz τ( ) τd

0

t

∫ 0.=

P x– ψ1( ) π
2
--- b–

⎩ ⎭
⎨ ⎬
⎧ ⎫

x–

, Px ψ2( ) θ b–{ }x= =
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The dependences of error (4.8) on q/Ω and θ for
simple and composite nonselective RF pulses are
shown in Fig. 5 for various spins. The q/Ω dependence
is linear for a simple pulse and quadratic for a compos-
ite one. The θ dependence of ∆ is nearly linear for a
simple pulse and is almost completely absent for a com-
posite one. In addition, the error increases with I, since
the quadrupole interaction becomes stronger. Qualita-
tively, the dependences of the errors on these parame-
ters can be expressed by the following formulas for
simple and composite pulses, respectively:

(A.7)

(A.8)

where fp and fc are nearly constant functions, which are
nearly independent of Ω at Ω/I(I + 1) > 5q and depend
weakly (about 10%) on d and θ. Thus, for example, at
θ = π/2 and when d changes from 3 to 6, the function fc

is 1.11 × 10−3, 1.33 × 10−3, 1.10 × 10−3, and 0.9 × 10−3,
while the function fp is 0.1, 0.099, 0.093, and 0.087. The
error increases with pulse durations tp and tc, which are
inversely proportional to the RF field amplitude:

(A.9)

The dependence a(θ) is defined by Eqs. (4.4) and (4.5)
and is shown in Fig. 6. Whereas tp depends linearly on
θ, the dependence of tc is much weaker, since the dura-
tions of two 3π/2 pulses and one π/2 pulse make the
main contribution to its value.

Relation (A.1) allows the reversal of the sign in front
of the quadrupole interaction in the effective Hamilto-
nian to be achieved. For this purpose, let us rewrite it as

∆p qtpI I 1+( ) f p,=

∆c q2tc
2I2 I 1+( )2 f c,=

tp θ/Ω, tc a θ( )/Ω.= =

q Iz
2 I I 1+( )

3
-------------------–– q Ix

2 Iy
2 2I I 1+( )

3
----------------------–+=

and, accordingly, change conditions (A.5). In this case,
substituting ψ1 = π/2, ψ2 = 0, and

(A.10)

into Eq. (4.4), we can obtain –tHq.

To reduce the error, let us symmetrize the sequence
using the well-known narrowing sequence WHH-4 [14]
as an example,

(A.11)

where 2τ1 = t – π/Ω and τ2 = t. Here, to remove the error
from the finite duration, we used two 3π/2 pulses
instead of the identical increase in the rotation angle of
all pulses to β > π/2 proposed in [14]. Our approach
allows universal conditions for τ1 and τ2 to be obtained
instead of the need for solving a transcendental equa-
tion for β every time when t and Ω change. Other
sequences were also suggested to reverse the time [15,
19]. At a sufficiently large amplitude Ω , the contribu-
tion to the error arises from (Ix)2 and (Iy)2 being non-
commutative at I > 1. This error can be removed using
the Trotter–Suzuki formula by dividing t into N seg-
ments.
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