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1. INTRODUCTION 

One of the factors responsible for the formation of a
magnetic structure with a period incommensurate with
the crystal lattice spacing, i.e., the incommensurate
magnetic structure, is the competition between mag-
netic interactions that orient moments differently with
respect to each other. An example of these interactions
is provided by antiferromagnetic exchanges with differ-
ently spaced magnetic neighbors (the ANNNI model)
[1]. The mutual orientation of moments depends on the
ratio between the contributions of exchanges, and the
fulfillment of the threshold condition for this ratio in the
simplest case leads to the formation of spiral (helical)
ordering. The limiting case of the competition between
the exchange interactions is a frustration, namely, a
combination of competing exchanges when there exists
an energy degeneracy of different states with a collinear
orientation of magnetic moments. An example of this
system is a triangular crystal lattice with the antiferro-
magnetic exchange between the nearest neighbors. The
removal of this degeneracy is also accompanied by the
formation of a noncollinear magnetic structure, and the
choice of one of several configurations of magnetic
moments with the minimum energy (ground state) is
described by an additional order parameter, i.e., chiral-
ity [2–4]. The number of possible magnetic structures
increases considerably for magnets formed by

moments of different ions or ions in different crystal-
line environments, i.e., multisubsystem magnets. This
is a consequence of the increase in the number of sym-
metry-allowed interactions and the appearance of new
interactions between subsystems (intersubsystem inter-
actions). In this case, the possibility of constructing the
collinear ground state is more likely the exception. As a
rule, the magnetic ordering is a result of the competi-
tion between many interactions, and it has a complex
noncollinear character. 

The first theoretical justification of the instability of
the collinear magnetic structure with respect to small
distortions of the helical type in a two-subsystem mag-
net was proposed by Kaplan et al. [5–9] almost simul-
taneously with the first experimental investigations that
revealed the existence of the incommensurate magnetic
structure in rare-earth and transition group metals. In
the thoroughly studied structure of the AB
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 cubic
spinel (where A and B are magnetic ions in the tetrahe-
dral and octahedral environments), the enhancement
of   the intrasubsystem antiferromagnetic exchange
between the B ions to a magnitude close to that of the
intersubsystem exchange leads to the formation of a
ground state of the ferrimagnetic spiral type. A further
increase in the relative contribution of the B exchange
makes this state unstable and results in the formation of
a more complex incommensurate magnetic structure,
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which was not revealed. The results of the analysis of
the magnetic structures of spinels are described in
detail in the monographs [10, 11]. This complex char-
acter of ordering is associated with the exchange in the
subsystem of B ions (B subsystem). In the B sub-
system, the magnetic ions in the absence of tetrahedral
distortions form structural units from regular tetrahedra
(Fig. 1). The ground state of a particular individual unit
is degenerate: there are topologically nonequivalent
mutual orientations of moments at the vertices of tetra-
hedra with the same exchange interaction energy. In the
cubic spinel with diamagnetic ions at the tetrahedral
positions (A positions), these units form an antiferro-
magnetic pyrochlore lattice [12–14], in which the mul-
tiple degeneracy of the ground state leads to a magnetic
behavior of the spin-liquid type. The long-range mag-
netic order in this system is formed only as the result of
an additional lattice distortion or the existence of addi-
tional anisotropic interactions (for example, the dipole–
dipole interaction) at a temperature significantly lower
than the Curie–Weiss temperature [15, 16]. The geo-
metric frustration of exchanges inside the B subsystem
is responsible for the appearance of the necessary con-
ditions for the formation of a complex (doubly modu-
lated [8]) incommensurate magnetic structure, which is
actually formed with an increase in the contribution
from the exchange mentioned above. However, the
main factor responsible for the formation of the helical
incommensurate magnetic structure with the dominant
intersubsystem exchange is a geometric frustration over
the intersubsystem exchange paths. 

2. MODEL 

The purpose of this work is to study the influence of
geometry of the frustrated intersubsystem exchange on
the conditions for the formation of an incommensurate
magnetic structure and to choose the direction of the
vector of this structure. Investigation into the influence
of the temperature and the magnetic field on the incom-
mensurate magnetic structure is of independent inter-
est. The difference between the effective fields acting
on moments in different subsystems leads to different
dependences of the subsystem magnetizations on the
field and the temperature and, as a consequence, to a
more complex phase diagram as compared to a homo-
geneous magnet. The phase boundary between com-
mensurate and incommensurate phases deserves spe-
cial attention. In particular, the analysis of the field and
temperature dependences of the vector of the incom-
mensurate magnetic structure and the net magnetiza-
tion in the vicinity of this boundary for the copper
metaborate CuB
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O

 

4

 

 permitted a conclusion on the frus-
tration mechanism of formation of a helical structure in
the two-subsystem antiferromagnet under consider-
ation [17]. In the CuB

 

2

 

O

 

4

 

 compound, all exchange
interactions occur through the boron–oxygen tetrahe-
dra, which results in considerable extension and
branching of exchange bonds. As a result, apart from

the exchanges between the nearest and next-nearest
magnetic neighbors in one of the subsystems, there
exist three different paths of the indirect intersubsystem
exchange. This complicates the elucidation of the influ-
ence exerted by the geometry of the exchange interac-
tion on the formation of the incommensurate magnetic
structure. Our analysis will be performed in terms of
the simplest Hamiltonian (1), which contains one type
of exchange interaction within each subsystem with the
constants 

 

J

 

A

 

 and 

 

J

 

B

 

 and one type of intersubsystem
interaction with the constant 

 

J

 

AB

 

; that is, 

(1)

where 

 

h 

 

is the external magnetic field, and  and 
are the spins of the A and B subsystems, respectively.
The necessary condition for the existence of the incom-
mensurate magnetic structure is the spatial displace-
ment of coordinates of ions in different subsystems
with respect to each other in the direction of the vector

 

k

 

 of the helix. In order to elucidate the influence of this
factor, we compare two models with different displace-
ments 
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Fig. 1.

 

 Fragment of the crystal structure of the cubic spinel.
Solid lines indicate the exchange inside the B subsystem.
Dashed lines represent the frustrated intersubsystem
exchange paths. 
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between the ions inside the A subsystem with the stron-
gest exchange. 

3. GROUND STATE 

The threshold conditions for the magnitudes of the
exchanges at which there can appear a helical structure
in the case of different intersubsystem displacements in
zero external field 

 

h

 

 = 0 can be easily evaluated by com-
paring the exchange energies of the helical structure
and the Yafet–Kittel ferrimagnetic structure (Fig. 2). A
similar procedure for 

 

l

 

 = 1 and 

 

J

 

A

 

 = 

 

J

 

B

 

 was used by
Zhang et al. [18]; however, according to the latter
equality, the energy of the helical structure was com-
pared with the energy of antiferromagnetically ordered
subsystems. 

The minimization of the exchange energy of spin
pairs of different subsystems for each phase,

with respect to the angles 

 

γ 

 

and 

 

γ

 

' of the relative orien-
tation and comparison of these energies allow us to

EF
1 1+ JASA

2 2γcos JBSB
2 2JABSASB γ ,cos+ +=

ES
1 1+ JASA

2 2γ 'cos JBSB
2 2γ 'cos+=

+ 2JABSASB 2l 1–( )γ ',cos

 

obtain different conditions for the formation of the heli-
cal structure:

(2)

In the presence of the dominant antiferromagnetic (AF)
exchange in one of the subsystems (A), the ferromag-
netic (F) interaction inside the second subsystem (

 

J

 

B

 

 <
0) always stabilizes the commensurate Yafet–Kittel
phase at 

 

l

 

 = 1 and, beginning with some threshold value
of 

 

J

 

B

 

, at 

 

l

 

 = 2. If the exchange in the second subsystem
(B) is antiferromagnetic (

 

J

 

B

 

 > 0), the helical structure
will always have a lower energy. It is important to note
that these conditions do not depend on the sign of the
intersubsystem exchange and, at 

 

l

 

 = 2, do not contain
spins 

 

S

 

A

 

 and 

 

S

 

B

 

: when the threshold conditions are ful-
filled, the helical structure is formed immediately after
the appearance of the net magnetization in the B sub-
system with weak exchange. 

4. THE LIFSHITZ INVARIANT 

In the phenomenological description of the incom-
mensurate magnetic structure, it is important to reveal
whether the expansion of the thermodynamic potential
in the vicinity of the phase transition (the Ginzburg–
Landau potential) contains terms linear in the spatial
derivatives of the order parameter [1]. For a two-sub-
system magnet, it is also important to determine what
combinations of the order parameters of the subsystems
are formed by these invariants. This affects the further
analysis of the stability and the type of the incommen-
surate magnetic structure. The symmetry analysis of
this expansion for the CuB
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O

 

4

 

 compound [19] demon-
strated that the corresponding invariant can be obtained
as a combination of components of the order parame-
ters of different subsystems. This indicates that the
mechanism responsible for the formation of the incom-
mensurate magnetic structure in the copper metaborate
is the intersubsystem interaction. However, the anti-
symmetric exchange (the Dzyaloshinskii–Moriya inter-
action [20, 21]) between moments of different sub-
systems, which, as rule, is responsible for the presence
of the Lifshitz invariant, does not lead to gradient terms
in the case of the CuB

 

2

 

O

 

4

 

 compound [17]. 

The gradient term of the thermodynamic potential
can be obtained for the frustrated symmetric intersub-
system exchange described by Hamiltonian (1) upon
continual transformation by expanding the classical

moments  and . For one moment of the A sub-
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Fig. 2.

 

 (a) Yafet–Kittel ferrimagnetic and (b) helical struc-
tures. Solid lines indicate the exchange inside the sub-
systems. Dashed and dotted lines represent the intersub-
system exchange with the nearest (
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 = 1) and next-nearest
(
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 = 2) neighbors, respectively. 

 

A B BA

 

k

 

γ

 

'

 

γ

 

(a) (b)



 

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

 

      

 

Vol. 108

 

      

 

No. 1

 

      

 

2009

 

PHASE DIAGRAM OF THE HELICAL STRUCTURE 75

 

system, the expression for the energy density of the
intersubsystem symmetry exchange has the form 

After summation over four moments of the sublattices
of both subsystems and subsequent introduction of the
ferromagnetic and antiferromagnetic vectors, we obtain
the energy density in the following form: 

(3)

where 

and 

are the ferromagnetic and antiferromagnetic vectors for
each subsystem. 

Therefore, the Lifshitz invariant constructed on the
antiferromagnetic vectors of both subsystems appears
in the thermodynamic potential. It should be noted that
the absence of the inversion center as a necessary con-
dition for the existence of this invariant is automatically
fulfilled for the interaction between moments of differ-
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ent subsystems. The existence of gradient terms for the
symmetric exchange in the vicinity of the correspond-
ing commensurate vector of the magnetic structure is
demonstrated in [1]. The phenomenological analysis of
the frustrated distorted triangular structure was per-
formed using the Lifshitz invariant appearing upon
deviation from 120-degree orientation of magnetic
moments with the formation of the incommensurate
magnetic structure [22]. 

For the crystal structure that allows for the occur-
rence of antisymmetric exchange that results in the
helical canting of moments, we have 

(4)

where D is the Dzyaloshinskii–Moriya interaction con-
stant. The corresponding expansion of the moments of
two antiferromagnetic sublattices upon continual trans-
formation leads to the energy density in the form 

(5)

For the antiferromagnet, the inequality M � L is sat-
isfied and the ferromagnetic term can be ignored. Tak-
ing into account the external formal similarity of
invariants (3) and (5) with the first derivatives, it
should be noted that relationship (3) involves the sca-
lar products of the antiferromagnetic vectors and their
derivatives for different subsystems, whereas expres-
sion (5) for the relativistic mechanism includes the
vector product. The magnitude of the coefficient JAB of
the gradient in expression (3) is not limited, whereas
interaction (4) is characterized by the corresponding
limitation 

(6)

where ∆g is the deviation of the g factor from the pure
spin value. The quantity ∆g/g imposes substantial limi-
tations on the wave vector of the helix for ions in the S
state, for which this deviation is insignificant. In actual
fact, the relative deviation of the g factor determines the
upper limit of the wave vector of the incommensurate
magnetic structure formed according to the relativistic
mechanism. For the incommensurate magnetic struc-
ture with the frustration mechanism, this limit is absent. 

5. FREE ENERGY 

The separation of the magnet into the subsystems is
convenient primarily for describing its properties at a
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finite temperature in the mean-field approximation;
that is, 

Here, Vij involves all interactions included by the model

and the effective fields  acting on the moments of
each subsystem depend on the average values and the
angles ϕi, j of the mutual orientation of the interacting
moments. In this case, the temperature dependences of
the equilibrium magnetization of each moment in the
mean field with the same strength in the subsystem
should be identical. Therefore, the minimization of the
free energy 

with respect to the angles of the local orientation of the
moments and their average values with due regard for
the self-consistency (the Euler–Lagrange variational
procedure) completely determines the equilibrium
structure in the mean-field approximation. The simple
three-dimensional helical structure is uniquely speci-
fied by three angles of the mutual orientation of the
moments (the principle of “equal relative angles” [8])
(Fig. 3). The sole origin of the anisotropy in the model
under consideration (relationship (1)) is an external
magnetic field. This means that the antiferromagneti-
cally ordered moments of the A subsystem always
rotate perpendicular to the external field, which deter-
mines the plane of the helical structure. The moments
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of the A (B) subsystem form angles α(β) with the exter-
nal field. The mean-field approximation provides the
additivity of the free energy with respect to the
moments of the subsystems; that is, 

where ZA, B are the partition functions for the spins
states in the subsystem. For spin S = 1/2, the partition
functions have the form 

where Z1A, 1B are the partition functions for one spin of
each subsystem. As a result, the free energy can be writ-
ten in the form 

(7)

and the average magnetization of the subsystems is rep-
resented as follows: 
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energy transforms into the exchange energy of the
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For the model with l = 1, JA > 0, JB > 0, and n = 1,
the effective fields are defined by the relationships 

(10)

Conditions (2) mean that the effects associated with the
formation of the helical structure occur at temperatures
considerably lower than the Néel temperature in the A
subsystem with the strongest exchange interaction.
Therefore, the derivative of the average magnetization
of this subsystem with respect to the angles can be dis-
regarded:

(11)

The derivative of the free energy with respect to the
angles ϕi, j = α, β, and γ (see expression (9)) results in
three equations for the equilibrium angles. As the phase
boundary is approached with an increase in the field
(h  hc), we have β  0 and γ  π/2. The deriv-
ative of the free energy with respect to the angle α
determines the longitudinal magnetization of the A sub-
system:

As a result, we obtain 
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The other two equations are linearized with respect to
the small functions sinβ and cosγ in the following
form:

(14)

The condition for the existence of the nontrivial solu-
tions for these variables leads to the ratio between the
temperature and the field at the phase boundary 

(15)

The critical field at T  0 can be obtained with allow-
ance made for relationship (12) at χB  0:
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It can be seen that the field of the transition to the com-
mensurate phase coincides with the “spin-flip field” of
the antiferromagnetic structure in the B subsystem and
is proportional to its magnetization at low tempera-
tures. 

In the absence of the external magnetic field (h = 0),
a flat helix with an arbitrary orientation of the plane is
formed according to the isotropic model (1). It order to
describe this structure, it is sufficient to set α = β = π/2
in the effective fields (relationships (10)):
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Therefore, the minimization is performed only with
respect to the angle γ. At the phase boundary, we obtain 

(18)

where 

(19)

The angle between the neighboring spins in the A sub-
system determines the wave vector of the helix in the
absence of the external field. This angle is defined by
the expression 

(20)

At T = 0, we have 
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(21)

The last formula for identical subsystems (JA = JB, SA =
SB) transforms into the result of the ANNNI model. The
temperature TSS of the appearance of the spontaneous
magnetization in the B subsystem and, as a conse-
quence, the formation of the helical structure in the sys-
tem can be obtained from the general relationship (8)
for the equilibrium magnetization SB by substituting
expressions (17) and (20):

(22)

As a result, we find 

(23)

In order to elucidate the role of the spatial displace-
ment of the coordinates of the interacting spins in the
subsystems, let us carry out a similar analysis in the
case of l = 2 with ∆c = 3c/2. For comparison of the
results of the analysis with the data for the CuB2O4
compound (n = 2), we take into account the numbers of
magnetic neighbors inside the subsystems and between
them,

and the corresponding distances between the interact-
ing B spins (Fig. 4). It should be noted that the analysis
of the magnetization curves in fields close to those at
the phase boundary [17] demonstrated that the total
mean field of the exchange interactions inside the B
subsystem corresponds to the effective ferromagnetic
exchange (JB < 0). With allowance for this fact, the rela-
tionships for the effective fields and the longitudinal
magnetization for the A subsystem take the form 

(24)
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Fig. 4. Schematic diagram illustrating the exchange interac-
tions at l = 2 for the CuB2O4 compound. 
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After minimization of the free energy, we obtain the
following linearized equation for the phase boundary
within the model under consideration: 

(25)

The expressions for the critical field, the angle of the
helix at T = 0, and the temperature of the appearance of
the spontaneous magnetization and, as a consequence,
the formation of the helical phase have the form 

(26)

(27)

(28)

It can be seen that, unlike relationship (16) for the anti-
ferromagnetic case, the critical field for the ferromag-
netic exchange in the B subsystem is determined by the
intersubsystem exchange. 

6. NUMERICAL MINIMIZATION
OF THE FREE ENERGY 

The linearization of the variational equations for the
equilibrium angles suggests the occurrence of a contin-
uous transition from the helical phase to the commen-
surate Yafet–Kittel phase; i.e., the transition should be
a second-order transition. In order to check this
assumption, we performed the numerical minimization
of the initial expression (7) for the mean field and com-
pared the equilibrium value with the minimum free
energy for the Yafet–Kittel structure. Moreover, we
determined the average magnetization for the B sub-
system and the wave vector of the helical structure. Fig-
ure 5 depicts the phase diagrams obtained for both
models by the linearization of the variational Eqs. (15)
and (25) and the temperature dependences of the mag-
netizations SB(T, h = 0) and SB(T, hc) determined in zero
and critical fields at the phase boundary by the numeri-
cal minimization of the free energy. For both models,
the temperature TIS of the formation of the incommen-
surate magnetic structure in the field is substantially
higher than the temperature TSS of the spontaneous for-
mation of the helical structure in the absence of the
field. The magnitudes of the exchange interaction con-
stants were taken as identical for both models: JA =

4JA hSB 2JABSBSA αcos– h JABSA αcos–( )–[

× JABSA αcos JBSB+( )χB ]

=  9 JAB( )2
2SB JABSA αcos JBSB+( )χB–[ ]2

.

hc

8 JAB( )2
SB

JA
------------------------,=

γ 0cos
3JABSASB

2JASA
2 32JBSB

2–
---------------------------------------,–=

TSS
JB

4
-----–=

+
27 JAB( )2

32JA
--------------------- 1 1 16JAJB

81 JAB( )2
---------------------–+ .

45 K, JAB = 11.3 K, and  = –  = 2 K. The mag-
netic fields and the exchange interaction constants are
given in kelvins (1 K = 7400 Oe). 

7. RESULTS AND DISCUSSION 

The existence of the phase boundary associated with
the magnetic field in relatively low fields determined by
the antiferromagnetic exchange in the B subsystem
(model with l = 1) or the intersubsystem exchange
(model with l = 2) is the radical difference between the
frustration and relativistic mechanisms. In the case of
the relativistic mechanism, in the absence of additional
anisotropic interactions, the long-period magnetic
structure exists up to spin-flip fields of the antiferro-
magnetic structure in the A subsystem. Compared to
the incommensurate magnetic structure with the com-
petition of the exchange interactions inside one of the
subsystems, the frustration mechanism is characterized
by the continuous variation in the wave vector of the
structure over a wide range with variations in the tem-
perature and the field. The field dependences of the
wave vector of the structure according to the calcula-
tions with the use of the numerical minimization are
plotted in Fig. 6. It should be noted that the threshold
condition in our case is more likely geometric in char-
acter and is absent altogether for the antiferromagnetic
interactions in both subsystems. The main feature of the
phase diagram (Figs. 5, 6) is that, apart from the tem-
perature TSS of the spontaneous formation of the helical
phase, there exists a temperature TIS below which the
helical structure exists only in the external magnetic
field (induced spiral (IS) phase). In the temperature
range TSS < T < TIS, the field dependence of the wave
vector exhibits a nonmonotonic behavior (Fig. 6). As

Jl 1=
B Jl 2=

B

2

0 2

hc, K

T, K
4 6

4

6

8

10

0.1

SB

0.2

0.3

0.4

0.5

0
TSS TIS TISTSS

l = 2
l = 1

Fig. 5. Phase diagrams for the helical phase (solid lines) and
the magnetization of the B subsystem in zero (dashed lines)
and critical (dotted lines) fields for the models with l = 1
(lines at T < 2 K) and l = 2 (lines at T < 6.5 K). 
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the field increases, the wave vector appears immedi-
ately with the appearance of the magnetization in the B
subsystem (k(h  0)  0), increases to a maximum
value, and then decreases to a small critical value:
k(h  hc1)  kc . In this case, the magnetization of
the B subsystem appears with an intermediate angle of
the orientation with respect to the external field: 0 <
β0 < π/2 (Fig. 7). With a further increase in the field, this

angle decreases to a critical value (β(h  hc1)  βc)
and then abruptly decreases to zero. In the phase plane,
the critical parameters of the incommensurate magnetic
structure determine the line where the free energy of
this structure coincides with the free energy of the com-
mensurate Yafet–Kittel structure (dotted line in Fig. 7).
This phase boundary is close to the phase boundary
obtained within the linearized approximation (the sec-
ond-order phase transition at h = hc2) but does not coin-
cide with it: hc1(T) < hc2(T). Therefore, the field-
induced transition from the helical structure to the com-
mensurate phase is a first-order phase transition and is
accompanied by a stepwise decrease in the wave vector
and the angle of orientation of the B subsystem to zero.
The jump in the net magnetization upon this transition
is small (∆M < 10–4M for the used exchange constants).
The phase boundary for the CuB2O4 compound exhibits
a double kink of the same order of magnitude [17],
which can be attributed to the first order phase transi-
tion smeared over a narrow range of fields. The fact that
the field-induced phase transition is the first-order tran-
sition is confirmed by the hysteresis in the appearance
of the transverse magnetization in the commensurate
phase [23]. The crystal structure of the CuB2O4 com-
pound allows for the existence of the Dzyaloshinskii–
Moriya interaction between the ions of the A sub-
system. This interaction leads to the canting of the
moments of the antiferromagnetic sublattices in the
basal plane. Therefore, the transition in the longitudinal
field from the helical phase to the commensurate Yafet–
Kittel phase is accompanied by the stepwise appear-
ance of the transverse magnetization component. The

(a)

0

1

2

3

4
1.5

1.0

0.5

0

T, K

TSS

TIS

l = 1

0.04

h, K

0.03

0.01

0.02

k

(b)

0
2

6

8

10 6

4

2

0

T, K

TSS

TIS

l = 2

0.3

h, K

0.1

0.2

k

4

Fig. 6. Dependences of the vector of the incommensurate magnetic structure (in terms of reciprocal lattice) on the temperature and
the field for the models with l = (a) 1 and (b) 2. 
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Fig. 7. Fragment of the phase boundary. hc1 is the critical
field determined by the numerical minimization of the free
energy (dashed line), hc2 is the critical field obtained using
the linear approximation (25) (solid line), and β0(T) is the
initial angle of orientation for the B subsystem at l = 2 in the
helical phase induced by the magnetic field (dotted line). 



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 108      No. 1      2009

PHASE DIAGRAM OF THE HELICAL STRUCTURE 81

existence of the ordering induced by the magnetic field
at both T = 0 and finite temperatures is a common prop-
erty of strongly frustrated magnets [24, 25]. A specific
feature of the two-subsystem antiferromagnet is that the
field-induced helical structure is a continuation of the
low-temperature incommensurate magnetic structure,
because the phase boundary at h ≠ 0 between them is
absent. In the given case, the magnetic field favors the
appearance of magnetization in a subsystem with weak
exchange and, as a consequence, the formation of the
helical structure with the equilibrium intermediate
angle between this magnetization and the field (Fig. 7). 

In addition to the general features of the incommen-
surate magnetic structure formed as a result of the
removal of the frustration degeneracy of states, it is
important to note that the critical field, the magnitude of
the wave vector of the incommensurate magnetic struc-
ture, and the transition temperature increase substan-
tially with an increase in the spatial displacement
between the ions of the interacting subsystems (expres-
sions (16), (21), and (23) for the model with l = 1 and
relationships (26)–(28) for the model with l = 2). In this
case, the direction of the wave vector of the incommen-
surate magnetic structure is determined by the direction
of the longest intersubsystem bonds as compared to the
intrasubsystem exchange paths. For example, for the
CuB2O4 compound, the bonds with l = 2 and 3, which
also exist in the crystal structure, are longer along the c
axis as compared to the bonds with l = 1 that are pre-
dominantly oriented in the basal plane: 

The preferred orientation of the paths of the exchange
bonds between the ions in the A subsystem in the struc-
ture of the CuB2O4 compound is identical to that of the
bonds with l = 1. Their length in the basal plane is larger
than the length of the intersubsystem exchange paths.
The opposite situation is observed for the tetragonal
axis: the intersubsystem bonds with l = 2 and 3 are con-
siderably longer than the exchange paths in this direc-
tion in the A subsystem. This provides the gain in the
total energy in the case of uniform helical canting of the
moments with k || c. 

In the aforementioned structure of the normal cubic
spinel with the dominant intersubsystem exchange
interaction, the direction of the longest intersubsystem
bonds also coincides with the direction [110] of the
vector of the helix (Fig. 8). 

This criterion for the determination of the direction
of the vector of the incommensurate magnetic structure
is not sole or main. For example, a tetragonal distortion
of the spinel can lead to the formation of the helical
structure with the vector k || [001] [7]. In any case, it is
necessary to compare the magnetic structures with the
minimum free (or exchange at T = 0) energies. How-
ever, the criterion of the longest frustrated exchange
bonds permits one to reduce significantly the range of
the search for the state with the absolute minimum. 

∆c l 2 3,=( ) ∆a l 1=( ) ∆c l 1=( ).> >
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