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Abstract—We propose that the apparatus of quantum mechanics of a free atom (in particular, the theory of
nj symbols and Rakah—Wigner genealogic coefficients generalized to the case of point groups and widely used
in crystal field theory) be used for constructing multielectron bases with allowance for covalence and spin—
orbit interaction. This allows us to take into account the electron—electron interaction for 3d ions the most
comprehensively. The basis constructed in this way can be used in the generalized strong coupling method for
the multiband p—d model in describing the structure of the quasiparticle energy spectrum and physical prop-
erties of systems with strong electron correlations. The procedure of construction and computation is dem-
onstrated for the >7’ »g term in the d® configuration of the transition metal atom in an octahedral field. The
mechanism for the emergence of magnetic anisotropy in S ions (Fe3* and Mn?*) due to covalent mixing of
d® L configurations with a nonzero orbital angular momentum (L is a hole in ligands) is demonstrated.

PACS numbers: 71.10.-w, 71.15.-m, 71.27.+a
DOI: 10.1134/S1063776109080196

1. INTRODUCTION

Electron correlations play an important role in the
formation of various magnetic and transport proper-
ties of transition metal oxides. Many attempts have
been made in recent years to describe these properties
and primarily the metal—insulator transition, super-
conductivity in cuprates, and colossal magnetoresis-
tance in manganites. Mott [1, 2] and Hubbard [3]
demonstrated that it is the strong Coulomb d—d inter-
action that explains the existence of many transition
3d metal oxide compounds with a partly filled 3d band
in the form of magnetic insulators. A compound is a
metal if the width of the 3d band is larger than the
Coulomb d—d interaction. If, however, the Coulomb
interaction exceeds the bandwidth, 3d electrons are
localized, the compound becomes an insulator with
localized magnetic moments, and the dielectric gap
width is determined by the intensity of the electron—
electron interaction. In other words, a strong (Cou-
lomb or exchange) interaction of 3d electrons exceed-
ing or on the order of their kinetic energy (with the
electron bandwidth as a measure) renders these sub-
stances the properties of strongly correlated systems,
which complicates theoretical description of their
physical properties.

In [4], a scheme was proposed in which transition
metal compounds can be classified in accordance with
two regimes depending on the relation between
ligand-to-metal charge transfer energy A, and Cou-
lomb energy U. In the Mott—Hubbard regime, in
which D,, > U, band splitting occurs due to charge
fluctuations of the d—d and d" + d" — d"*' + d" !
types, while the splitting is proportional to U. In the
charge transfer regime, when A, < U, the d" + d" —

d"*' + d"L type fluctuations (L denotes a hole in
ligands) form the p—d type splitting, and the band-
width is proportional to A,,.

The Mott—Hubbard single-band model (even with
charge-transfer effects included) is insufficient for a
comprehensive description of the properties of many
compounds of transition metals [S—8]. It has become
clear that these properties can be described only with
allowance for orbital, spin, charge, and lattice degrees
of freedom. For example, orbital and charge ordering
of manganese ions in manganites plays an important
role in the colossal magnetoresistance effect [9—13].
Usually, the electron—electron interaction is described
using (at best) the Kanamori approximation in which
only the density—density and exchange interactions
are preserved from the entire set of matrix elements.
The importance of including the total Hamiltonian for
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the electron—electron interaction was emphasized and
substantiated in [14], where the role of multiplicity
effects in the formation of the energy gap was demon-
strated:

Ud"y = E(d"™ Y+ E(d""")-2E(d").

In [15], it was shown how spin crossovers change the
value of U(d") and affect the Mott—Hubbard transi-
tion. In other words, a comprehensive multiband the-
ory taking into account the Coulomb interaction com-
pletely is required for describing real multiorbital
Mott—Hubbard systems.

A cluster approach based on multiband Hubbard
models or p—d models was proposed for cuprates |16,
17] and manganates [18] for describing the structure of
the quasiparticle energy spectrum for systems with
strong electron correlations. In this approach, the
technique of Hubbard X operators and exact diagonal-
ization of MeQjy clusters (Me is a transition metal) is
used. However, two of the main advantages in using the
Xoperators is the conservation of a regular structure of
the Hilbert space at all computational stages and auto-
matic fulfillment of the condition excluding energy-
wise disadvantageous configurations with double fill-
ing of the same quantum state of one-electron orbitals.
The construction of Hubbard operators requires
knowledge of the wave eigenfunctions for each sector
(@1, d", d"*") of the Hilbert space under investiga-
tion. The algorithm for constructing such functions
for ionic crystals is well known, but allowance for
covalence requires its elaboration. Here, we propose
that the apparatus of the nj symbols and Rakah—
Wigner genealogical coefficients (generalized to the
case of point groups and widely used in crystal field
theory [19]) be employed for constructing multielec-
tron bases taking into account covalence and the
spin—orbit interaction. The basis constructed in this
way will be used for calculating the electron structure
of transition metal oxides with crossovers of multielec-
tron terms with different spins. This study contains the
required methodological material.

2. MODEL OF THE MeO¢g CLUSTER TAKING
INTO ACCOUNT ELECTRON
CORRELARTIONS AND COVALENCE

Let us first recall the main concepts and notation in
the theory of molecular orbitals. To describe the elec-
tron states of a cluster, the molecular orbital method,
applicable to any multiatomic systems and widely used
in quantum chemistry, is employed [20, 21]. It is well
known that group theory makes it possible to draw a
number of general conclusions on the properties of
molecular orbitals. Knowing the symmetry of a clus-
ter, we can immediately establish the classification of
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Fig. 1. Coordinate axes chosen for ligands in a MeOg octa-
hedral molecule (complex).

molecular terms from irreducible representations of
the corresponding point group [22]. Each electron of
the cluster can be described by a one-electron spin
orbital

\Pwypms = q)myp(r)Xl/LmS(G)ﬂ

where @, () is a molecular orbital transformed in
accordance with the p line of irreducible representa-
tion y of the point group under investigation; identical
representations y are distinguished by index ®. In the
molecular orbital approximation in the form of a lin-
ear combination of atomic orbitals, we have

nl n'l'
cDmyp(r) = Anly(pyp.(r) + an'/'yXypf (I"),
n'l'

1 . . . . .
where (p;'PL (r) is a combination of atomic functions of

the n/ shell of a metal ion, which is transformed in
accordance with irreducible representation y (i.e., it is

a crystal harmonic) and X;lul (r) is an analogous com-

bination of atomic ligands (i.e., it is a linear combina-
tion of crystal harmonics of each ligand). Thus, the
correspondence between the orbitals of the central
atom and group orbitals of the ligands, which can be
combined to form molecular orbitals, has been estab-
lished (Table 1).

We will consider the orbitals of ligands with octahe-
dral symmetry using the system of coordinates shown
in Fig. 1. A schematic of molecular orbitals formed in
this case is shown in Fig. 2.

In crystal field theory, it is assumed that the £, level

becomes lower, whereas the e, level becomes higher in

an octahedral field as compared to their positions in a
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Table 1. Classification of central atom orbitals and group orbitals of ligands in accordance with irreducible representations

for an octahedral molecule [21]

Representation Central atom orbitals Group orbitals of ligands
alg S (51+(52+G3+G4+65+66
d
2 265+204—G,—0C,—GC;— 0,
e
dxz_z G| —0,+03—0y
Xz T[yl T Tys+ Ty + 71-'y6
by a’yz Ty + Tys + My + Ty
vy T+ T+ M3+ Ty
Py G =03 Tcy2+nx5_nx4_ny6
Hy Dy Gy =04 Ty +Tys— T3~ Ty
D, G5— G Tcyl +nx2_nx3_ﬂ:y4
Tcyl —Tys + T3 — T[yé
tlg - Tcx2_ﬂ:y5+ny4_nx6
Te1 = Ty + T3 = Txa
Tcy2 TTys— Ty + TEyG
t2u - 1~ TEyS - Tty3 + Ty
Tcyl T~ T3+ Ty

Note: Notations o and 7 is used for p orbitals of ligands in accordance with the type of bonds in which they participate.

free ion. Analysis of the effect of the electrostatic
potential produced by six point charges located at the
vortices of the octahedron around the central ion
shows that the former level becomes lower by 4Dq,
while the latter level becomes higher by 6Dq, where
10Dq is the splitting between the #,, and e, levels. In the
molecular orbital method, the change in the energy of
atomic orbitals upon the formation of a molecule is
more complicated and cannot be described so easily
(see Fig. 2). As a result, total splitting A of the levels
acquires a covalent correction.

We will describe the MeO4 complex as a mixture of
ionic (dV(ST)) and covalent states with R holes in the
anion subsystem,

d"RLAsT), R=1,2,...,10-N,
or

ey (S\T )15 (S,T,) ST
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and

e, (SITD . (ST { ST 1} (ST s)
X pa(S,T4){ $:102} ST,

where m + /= Nand n + k= R. This notation indicates

that / + n electrons on the e, orbital form the ST}
state, while m + k electrons on the #,, orbital form the

ST state; in turn, the S,T", and S,I", states form the
3‘11:1 state. Analogously, the states of ligands p., (S;I'5)
and ]")l; (S,I'y) are combined into the 3’21: » state and,

finally, 3‘ 1I:1 and 3’21:2 form the complete wavefunc-

tion of the S>I"; state. We choose the scheme with a
strong crystal field because it allows us to approach in
a natural way the covalence problem, since one-elec-
tron wavefunctions with the same point symmetry of
the ion and its ligands are mixed in crystals (see above).
Symbols p, and p, denote a hole on oxygen group
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(n-1)d

eg + t2g

Atomic orbitals
of central atom

2a,,(ab)
3t,y(ab)
2e,(ab)
—_— \\
A
2t,,(ab)
2y *._ m-orbitals
=W S
-_— t1g+tlU+t2g+t2U
%, o-orbitals
:;;;"a]g +e, +hy
Group oxygen
115,(b) ' orbitals
~__led)
11, 4(b) K
la,(b)

Molecular orbitals

Fig. 2. Diagram of molecular orbitals and energy levels for an octahedral molecule with ¢ and 7 orbitals. Binding (b), nonbinding

(nb), and antibinding (ab) molecular orbitals are indicated.

orbitals in the e, and #,, symmetries (see Table 1): Do =

i7" and pt = p° . Henceforth, we will use the fol-
lowing notation:

de = d3127r2

1
Py = —(205+20,—6,—-0,~-GC;—0y)
g Zﬁ

QU
Il

1
€ dx27y25 b = 5(01_624_63_64)5

1
dQ = dxya pC = E(Tcxl + nyZ + Tcy3 + Tcx4)

1
dg = dyz, pEJ = E(Tcx2 + nyS + Tcy4 + nx6)

g

1
Xz pn = E(nyl +Tcx5+nx3+ny6)'

The wavefunction transformed in accordance with
line M of representation I" and characterized by total
spin .S and spin projection Mg will be denoted by
[CSMMs). This function can be written in the form
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0\ S\ T8,TSMMg = " (DT, M Mo M)

MM,

X z (S, SzMS1M52|SMs>
My M,

x |F1S1M1Ms,>|r2S2M2Ms2>-
Coefficients (I',I", M, M,]I"M) on the right-hand side

transform direct product Ar' X Ar2 to a quasi-diago-
nal form and are analogous to the coefficients of vector
summation (these coefficients are referred to as the
Clebsch—Gordan coefficients of point groups), and

r r . .
A " and A * are the matrices of representations I'; and
I',. Wigner proved that instead of Clebsch—Gordan
coefficients, we can introduce more symmetric 3T

r,r,r
M, M, M
groups, the relation between these symbols is

symbols for the SR group. For cubic

oM Mrmy = (1720 T T

M, M, M
where [I'] is the dimension of representation I' [23].
We have also introduced the Clebsch—Gordan coeffi-
cients (S;8,Mg Ms|SMg) for the spin component
[24].
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Let us write in explicit form the wavefunctions of
term °7,, for an ion with the d° configuration in an
octahedral field taking into account covalent admix-
ture of states with a single hole. Taking into account
the conservation of total spin § = 2 and symmetry 75,
we can form  from the initial state

1 e s the two states,
2:CT)e;CA) Ty M, M) th
3 4 _
165.CT)e) Tib Ty M, M),
3 -5
13 CT)es] Topo " Ty, M, M),
while only one state, viz.,
56 CAN b, To M, M.

can be formed due to the m bond. This can be repre-
sented by the following relations:

4 /3 3444 - 5
|[t2g( Tl)eg] Tlpc TZgMa MS>’

4

165, T)ex] Topy Ty, M, M),

due to the o bond and

115,C T))es ("Ay) T M, M)
N
[65462CAN T\p, Ty M, M)
due to the m bond.
Since

_ 3
115,C T [€apo] Ay Ty M, M)

1,4 3 3740 = 5
= _|[t2g( Tl)eg] Tlpcs TZgMa MS>
J2
14,3 394,00 = 5
__|[t2g( Tl)eg] TZPG T2gM9 MS>
2
The total state > T 5, can be written as the superposition

of an ionic (d°) and two covalent (d7[)(T and d71")n)
components:

5 3 3 5
PTouM, M) = C|t5,CT))es( A,) Ty M, M)
_ 3
+ Colts, CT))[esps] Ay’ Ty M, M) (1

+ Cyllge; (A T To M, M),
where M =&, n, { and Mg= -2, —1,0, 1, 2. Let us
consider the wavefunction for M = £ and Mg = 2; in
this case, we have

15, C T eg(4,) Ty M = & Mg =2)

= Z <T1A2a M1M2|T2, E)

MM,
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X Z <51=1S2=1,M51M52|S=2, Ms=12) (2)

Ms Ms,
43 23 2
x|, T\My, Mg )le, A,My, M) = & n'e'e
= dirdiydyrdirdgrd;p|0).
Here, we assume that M, = x, M, = a,, and My =

M 5, = 1 are the only possible values for which this

expression differs from zero.
Analogously, we consider covalent component

d7[96 . We first form the wavefunction

3_ 3
|egp0 AZaZ, MS>

= > (EE, MM Ay, ay)

M, M,

>

Mg Mg,

<s; = L= Lamls =1, MS>

2 J - 2 '
x leg E,M), M)|ps E,M), My).

In this case, the 7, state for the d7136 configuration
with M = & and My = 2 assumes the form

4 /3 3_ 13,5
|t2g( Tl)[egpcs] A2 T2gM= &a MS = 2>

= Z <T1A27 M1M2|T2, §>

MM,

X Z <Sl:1S2:]5MS]MSZ|S:25MS:+2>
e, 3)

3 _ 3
x |t;g M, M51>|e; o Ay M, M52>

- &2n+c+i2[e+szﬁ2 %5

¥
1 i} _
= d§¢d2¢d§¢d§¢72[d(}dg?d:w} — dgrdyydirber]|0).

Here, as well as in expression (2), we have M, = x,
M, =a,,and Mg = M, = 1.For d'p,, it is more con-
venient to form the
|t§ge§,(3A2)4T1 M', M) for the ionic d’ configuration
first:

wavefunction

5 2,3 4
|t2geg( AZ) T1M1, MS>

2009
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= > (Toy, M\M|T,, M)

MIMZ
X Z S‘lzls;zl,Ms'MS S’=§,M
oy 2 2 : 2

2 3 ,
% |5 TogMy, M)y 4, M), My).

When a hole at an oxygen atom is added, we obtain the

following expression for the d71")n component of the
3T, state:

[, CAN ' Tip ToM = &, Ms=2)

= z <T| T2, M1M2|T27 EJ>

MM,

3 1
X Z <S] == §S2=§’MSIMSZ

Ms1 Ms2

S=2 M= 2>
4)

2,3 4 _ 2
X |t;geg( A2) T1M19 MSI>|ADTC T2gM29 MS2>
1 2 Do+ 2 4.2 4yt +
= —{&MCp,-ENnChp 10 ¢
ﬁ n 4
1 _ _
= Tzdgrd&{dhdhd&l);r —dyydirdi piy ydyrdy|0),
where M, =y, z; M, =C,m; Mg = Mg = 1;and |0) is

the vacuum state a’OLO .

As a result, the wavefunction for the >T5, term can
be written in the form

Ty M = &, Mg =2) = C,dird dyrdirdird}]0)

1
+ (:2d+¢d+¢d+¢d+¢——

x [dprdird; 1y — dindyLdirper](0) Q)
1 _ _
+ Cy—dird; {dyrdy dirpor — durdind? by}
J2
x dgrd;2|0).
Wavefunctions for the eg configuration, / =1, ..., 4,
and the tg’g configuration, m = 1, ..., 6, are given in

Table 2. The recurrence formula considered in [25]
makes it possible to calculate the matrix elements of
the scalar operator of the Coulomb interaction
between the states originating from the e;tg’g configu-
rations. Analogous formula (A.8) for matrix elements
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fthe Coul bi . I m n M—(l+m+n) . .
(0) e Coulomb interaction egtzgpcpn 1S g1ven

in the Appendix (M is the total number of electrons in
the system) for the four-subshell case. In the limit # =
0 and total number M =/ + m of electrons in the sys-
tem, relation (A.8) assumes the form of a recurrence

relation in the two-subshell case eétgg [25].

Recurrence relation (A.8) describes the intra-
atomic interactions of electrons of a transition metal

(H53"), the interaction of holes at the anion with elec-
trons (H/f M ! ), and the interaction between holes at

oxygen (Hf; ! ), Since covalence is reduced to mixing
of ionic configurations d" without oxygen holes and of
covalent configurations with a single p hole, the role of

strong correlations for p holes is much less significant
than for d electrons. For this reason, instead of a com-

plete description of Coulomb interactions Hf;”l and

Hf; ! , we use a simplified scheme, retaining only the
density—density interaction with parameters V,, and

U,, respectively. The general scheme developed for

Hdct?”l can also be used in principle for ligand electrons;

this leads to the emergence of Rakah parameters for
ligands and for the cation—anion interaction, which
extremely complicates the problem in our opinion.

Coefficients C;, C,, and C; in expression (1) are
obtained by diagonalization of the Hamiltonian
matrix for the >, term in basis @, ¢,, @3

3 3 5
¢ = |6,CT)e;CA)’ Ty,
15,C T eapo] Ay Ty,
50 CAN Ty T,

H, = E,—4Dq+ 154-35B+7C—E,(d"),

(05}

D3

Hy = Eq+A,+2Dq+214-37B+ 14C-E,(d"),
+21A-40B+ 14C—E,(d),
Hy, = =221,

Hy; = 2f21§d, Hy; =0,

where 7, and ,, are the jump integrals for the ¢ and
1 bonds; 4, B, and C are the Rakah parameters,

W= Sp(eg) - 8p(t2g)5 Sp(eg) = gp + ((ppG) - (ppTE)),

8p(t2g) = Sp - ((ppG) - (ppTE)),

ppo and ppr are the Slater—Koster parameters [26], A,,
is the charge transfer energy, and

E(d) = in(n-yu™, "= 4-Ypilc
av 2 av av 9 9
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Fig. 3. Set of low-energy terms for (a) &, (b) d{‘, and (¢) d configurations of an ion in the octahedral field taking covalence into

account.

For #,, = 0 and 7;, = 0, we obtain, as in crystal field

theory, pure state |t§g(3Tl)e§(3A2)5T 5o Without a cova-
lent admixture.

Exactly the same procedure can also be used for
other terms. This gives the wavefunctions of the
ground and excited states of configurations ¢” !, d",
and d"+ .

3. SPIN—-ORBIT INTERACTION

The components of 3D representation of I', are
transformed analogously to vector components. This
means that the matrix elements of the orbital angular
momentum components at wavefunctions of triplet
states [, and I'5 differ from zero. Using the Wigner—
Eckart theorem, we can prove that it is convenient in
this case to use a pseudoangular momentum with
components that have the same matrix elements
(within manifold I'; and I'5) as the matrix elements of
orbital angular momentum L = 1 in the p state:

(Ly=al,

where coefficient o is controlled by the specific struc-
ture of orbital triplets I'y and I's, and angle brackets
indicate projection onto the triplet manifold. In par-
ticular, a = —1 for triplet I'5 originating from the D
term; oo = 1/2 if energy level I's belongs to the Fterm,
and o = —3/2 for triplet I', belonging to the F term
[27]. The existence of a finite angular momentum

(LY = a1 indicates the existence of a nonzero spin—
orbit interaction:

ALY -S = al(1-S) = A(1-8S).
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If we disregard the second-order effects associated

with the matrix elements of operator l(I: -S) corre-
sponding to transitions to excited cubic multiplets, we

can add total spin .S and pseudomomentum ~l =1.As

a result, we obtain multiplets J assuming all values
from |S— 1| to S+ 1 [27, 28] (Fig. 3). The figure also
shows the splitting of multiplets of ions in crystal fields
of cubic symmetry; the wavefunctions of these multip-
lets are given in Table 3.

We will be using the formalism of a fictitious angu-
lar momentum [27], in which basis one-electron func-
tions My, My, and n, of triplet #, are connected with

eigenfunctions |m ) of operator /7 via formulas
(6)

In writing the eigenfunctions of the fictitious orbital
angular momentum of the cubic term, we will use the
following notation:

XiiY’ |0_>=Z
J2

Expressions (6) and (7) differ in two respects: the
former control the one-electron wavefunctions of
cubic triplet #,, while the latter are multielectron wave-
functions of cubic triplet term 7, or 75. In this case,
the expression for the wavefunctions of various mul-
tiplets can be written in the form

£1) = ¥

)

STJJ7) = S (L=15,L;S, \J,72)|ST, LS.,

LS,
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Table 2. Wavefunctions for configurations eg, (/=1,...,4)and t’zng (m=1,...,6)[19]

329

Configuration Wavefunctions Configuration Wavefunctions
2.1 2.1 2,2
Ty36 = & = dz4/0) Ty36 = £m'C
21 21 2 2
t; Tzé‘l’] = n+ = d;,T|O> [; T2§n — a T]+Q
2.1 2.1 2.2
1,36 = ¢ = d4(0) T3¢ =¢&gn¢
ix = ' Tx = g
3T, 1y = E)JrCJr 3T11y _ —§+T12C+
3T11z = n'et 3Tllz _ §+n+cz
1 1 ,.2 2 2 1 1 .22 2.2 2.2
A= —=(E+n +0) A= —EM +n T +C7E)
3 3
1 1 .2 2 2 1 1 ,,.2.2 2.2 2 2
E® = —(& +n" -20) EB = —(CE +n°C -28Mm")
2 6 4 6
2 1 1,2 .2 2 1 1 ,.2.2 2.2
Ee = —(n"-8&) Ee = —(C°&-n"C)
J2 J2
1 | P + - 1 1 02 +,.— 2 — o+
ng=-—m~<¢+Cn) Ig=—EnC-&nd)
2 ﬁ 2 ﬁ
1 1 o o4p— | o4e— 1 1 et 20— o 2.+
I'm=-—(EC +C0¢) Im=-—EnC -§nC)
’ J2 ’ V2
1 1 o+ - te— 1 1 o+ =2 = +,2
IC=-—(Emn +n &) IC=—EnC-Enl)
J2 J2
4 3
Azéaz = —é+n+f;+
2.1 1 o4~ o o+
E§9=72(§T]C -En¢)
2.1 1 - - -
Fpe = Qe -Ec-Leh
2.1 1 o+ 2 +,2
Tyox = —(En-80)
2 N
3 2Tl=i+2_2+ 6 1 2 2,2
£ 257 ﬁ(nC gmn) £ A = £’
2.1 1 2.+ 2.+
Ise=—(EC -nC)
LN
T3 = HEC e
2
2T1n 1 (n+g2+§2n+)
Lo = —
201
2,1 1 .2 2
Tt = 5 {4’
2E%9 _ 2E%6 = 0%’
e! &
2Els =g 2Ela = 0%’
2 2
3A21a2 =0"¢"
', = %2(9%82)
e 1 1,2 2 e lA — 6282
E6 = E(S -0 1
'gg = %(G+a_—9_s+)
2
Note: Here, &2 = £*&~, and so on.
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Table 3. Linear combinations of states |/M| for integer J = 1, 2, 3, 4 and half-integer values of J, which are transformed
according to irreducible representations of the cubic and the double cubic group

J States J States
J=0 |A1a1) = |00> |E'(x'> _ ‘ll>
IT,1) = [11) o1 22
J=1 |T,0) = [10) 2 BB = ‘1 _1>
Ty, —1) = |1, -1) )
[£6) = 120) Eay = L §§>_§’§ _§>
Eg) = 2y + Lp, -2 J6R2/ el 2
2 gy = LB _§> BEEE
J=2 |T,1) = 2, -1) SR 2 Jel22
1 1
IT,0) = —[22) - —[2,-2) 153\ 555 5
Lk 5 U = ——= 5§>‘—\§"5>
T,-1) = -21) 7=3 /8 51%
L - )
Ayay) = ﬁ\3z>—72|3,—2> 22
b5 NE T = —3’—§>
IT)1) = = ==[3,-3) - =—=|31)
2.2 2.2 vy = L3\ 4953
7:0) = [30) Jol 2 fel22
71 = - Ay By o |33
J=3 2.2 2.2 Ux) = 5
J3 NE
1) = - A3 3y 223 _ |31
T2D) = - 2239+ 225, -1 L |m>_‘22>
_ 1 I =3
T,0) = —|[32) + —|3, -2 =Bl
0 = )+, ow = -3
3 J5 3 3
Ty, —1) = - 233 _3)+ 2231 _p 3
b = 22 9L v = B
N N N
Aya) = 22140y + 2244y + X214, 4
Aay) 2J§| >+2J8| >+2J3| ) |E'a'>=£2_;>+_[7_‘21>
2’ 22
0y = — a0y + AT gy AT g gy 12 /12
23 26 2.6 B = _ﬁ‘zz>_ﬁ‘z,_1>
|Ee) = %2|42>+%2|4,—2> J121220 R 2
i o - B34
[Ty1) = ———=[4, =3) - =—[41)
22 2.2 |E"B") = Ll _§> + l‘ Z§>
| 1 7 2 72 T 22
J=4 |T,0) = —[44) — —I4, —4) J=1
Lo ERE. S
11y = Lz AL,y
Zﬁ Zﬁ ULy = ﬁ‘z _Z> _ﬁ‘21>
7y = 2z Ly JuR 2 il
o NAAN AN
2 - 2553
7,00 = La2y- Lia, —2) J1222/ k2
2 v = BL -3 419
7,1y = - T4 3 2R T
2.2 2.2

Note: Since the inclusion of covalence preserves the total orbital and spin angular momenta and changes only wavefunctions, linear
combinations of states |/M) have the same form as in the crystal field theory [19, 27].
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where wavefunctions |ST, L;S,) are given by a super-

position of configurations d¥(ST") and dN+RLR (ST)
due to covalence.

Let us consider in greater detail the form of the
wavefunction of cubic term 5T2g (orbital triplet origi-

nating from term >D) for the Co* ion in the octahedral
surrounding. Under the action of spin—orbit coupling,
the orbital triplet with fivefold degeneracy in spin
(85 = 2) splits into a triplet, a quintet, and a septet (see
Fig. 3). The triplet is the lowermost energy level. These
results can easily be obtained considering that triplet
ST, 5, can be described by effective angular momentum

~l = 1 with oo = —1. Then the “term” with o = —1 and
S = 2 splits due to the spin—orbit interaction into

states with effective total angular momenta J =1, 2, 3.
Since spin—orbit interaction parameter A is negative
for configuration ¢°, we can expect that the multiplet
will be reversed. In fact, we obtain a normal multiplet
with the lower triplet state since oo = —1.

For the ground level, we have .~I =1, and the wave-

functions of states with Jz = *1 are defined by vector
summation formulas:

Ty =1,J,=0)

:—£|5T22=1,ZZ=0,S=2,SZ=0>
3547 =
+J%)| TLL=1,L;=+1,5=2,8,=-1)
+J%|5TZZ=I,ZZ=—1,S=2,SZ=+1>,
PTJ=1,J,=+1)
=—J%|5T2Z=I,Zz=il,S=2,SZ=0>
—J%|5T2Z=I,ZZ=O,S=2,SZ=iI>

. ﬁISTzz —1,L,=%1,5=2,8,=+2),

where the components on the right-hand side are
given by
|5TZZ = 1, ZZa S = 2, SZ>

= Ci|i5,CT))e;(CAy) oy Lz, S, )
+ CZ|t;g(3Tl)[e;pc]3A25T2gzZ Sy

+ C3l[,esCANT 15 Ty Lz, ).
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By way of example, we set L, = 0and S,=0. Using
expression (7), we obtain

115,CT)er(CA,) Ty Lz =0, S, =0)

= LMo e +E M0 +En0e
J6
+EM O e +EMN O e +E N 0.
Analogously, for states with a single hole, we have
12C T [eepo) 4, T Lz = 0,5, = 0)
=L

J6

x[07e’p, —0%e pil+ éﬁn‘%z [67€°p; — 07" Py |

Clen Lioelp - 0% py1+ 8 L

2 2

+En L0%es, - 0% ]
7

— 1 - 2_+ 24—

+EM —[0&D, —0°e ]

NG ’

ven Lo'ep. - 0% 5 1)
J2
in the case of a o bond and
(650, AN Tip Ty Lz =0, S, = 0)

1 ,.2) 1 2 ——— — 2_—\n+ +
= {4 = - 0
[66; {ﬁ(i np-&mp,0e

1 _+ T S
+—(EM P -EM’p)0 e

5
+ j;(ézn*pé —E )0
¥ %2(5_\211132 —E )0
+ %2(&%17); —&'n’%,)07s"

# (€ é_n2ﬁ§)9_8+}
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in the case of a © bond. Ultimately, we can write func-
tion (8) in the form

T,L=1,L;=0,5=2,5,=0)

= C, —}—6d§¢da(d§¢d§¢d§¢d:¢ +dirdy dgrd;,

+ b gt + ot gt + ottt
+de drdord + derd, 1 doydoy + deydyrdy dy

1 1
iy udind 0+ O dada(dadhfz
x [dg,dird; pyy — dyrdg,dy poL]

1 _ _
+ dédﬁifz[d&dﬁdﬁpi —dgrdyyd i per]
1 _ _
+ d§¢d§¢72[d§¢d2¢d§¢p2¢ — dordyydirpey ]
1 _ _
+ d@d%—ﬁ[d&dﬁd:w& — dgrdyyd; por]
1 _ _
+ dgﬂhfz[d&dédzwﬁ — dgrdyydirpe, ]
1 _ _
+ dédhfz[d&dﬁdiwﬁ — dgrdy,d;2Po1](0)
1 1 _ _
: cs—fgdgma{—ﬁ(d;dadap; _dldid )
1 _ _
x dgrdiy + Tz(dgwdadﬁwé —drdirdy pon)dyydyy
1 i} _
+ J—E(dgrd@dfnpé —dirdyady by )dirdyy
1 _ _
+ Tz(dgﬁd@dﬁwé —d;ydrdy 1 pon)dond;,
1 i} .
+ J—E(dgrdgﬁd;w& —d;rdysdy by )dyLdi

1 _ _
i i~ sl }|o>.

4. MAGNETIC ANISOTROPY OF § IONS

Magnetic anisotropy of ferrimagnets with a high
symmetry of the crystal structure is assumed to be one-
ion type. Ferrites with the spinel or garnet structure
belong to this group of crystals.
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In the one-ion approach to anisotropy analysis,
ions are classified into two categories: (i) ions with an
orbital angular momentum in the ground state and
(ii) ions with zero orbital angular momentum (i.e.,
ions in the S state, or .S ions). Accordingly, two differ-
ent theoretical approaches have been developed for
describing magnetic anisotropy: the method of spin
Hamiltonian for § ions [29, 30] and the method of
Hamiltonian in the coordinate—momentum represen-
tation [31, 32] for ions with a nonzero orbital angular
momentum.

In the spin Hamiltonian method, the reasons for
anisotropy are not considered. It is only assumed that
the coefficients in the expression for the Hamiltonian
depend on the properties of cations and their sur-
roundings. These coefficients are estimated by fitting
the Hamiltonian spectrum to experimental spectra
(e.g., EPR spectra) without explaining their relation to
the physical properties of ions and crystals.

The knowledge of the mechanisms or processes of
the orbital angular momentum formation for .S ions
would enable us to use a unified theoretical approach
for describing magnetic anisotropy of the entire set of
dions [33].

Let us consider by way of example a &° ion (Fe3*,
Mn?*) in cubic surroundings, in which the orbital
angular momentum in the ground state °4, is zero and
the spin—orbit interaction makes zero contribution.
As a consequence, the problem of magnetic anisot-
ropy arises. The emergence of anisotropy in the theory
of magnetism is usually considered in perturbation
theory in covalence. We will show that covalence
effects make a nonzero contribution to the spin—orbit
interaction even in the ground state.

Covalent admixture for the °4, multielectron term
follows the following scheme:

[6(*A,)e’ T Ep,°A)) due to the & bond and
/
5CA)e"(A,)°A)
N

[ACT)ECA)’Tp, A, due to the 7t bond.
The total state can be written in the form
°4,M, M) = C\|65("Ay)e’ CA,) A M, M)
+Col[6(*4)e’) Ep, A M, M)

5 _
+ G5CT)ECA)] Top, A M, M),

where M =a,, Mg=—-5/2,-3/2,—1/2,1/2,3/2, and
5/2; coefficients C;, C,, and C; are determined by
exact diagonalization. For example, the contribution

ofthe state |[t;(3Tl)e2(3A2)]5T2[7:A1> we are interested

2009
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in to the total state |6A1M, My) is 10% for parameters
typical of iron oxides.

A state with the t;gez electron configuration is
formed as a result of transfer to the #,, shell at the d ion,
which exhibits an energy behavior in the crystal field

analogous to the behavior of the I's(° T 20) tggeg term; as

a result, the Fe3* ion (which is a classical representa-
tive of .S ions) passes to the effective P state, acquiring
an orbital angular momentum and changing its spin.
The effective P state is described by orbital angular

momentum / = 1 and orbital factor a = —1 (see Sec-
tion 3).

5. CONCLUSIONS

We have proposed a method for constructing the
wavefunctions of multielectron terms of a transition
metal ion taking into account covalence and the spin—
orbit interaction. For this purpose, we generalized the
apparatus of quantum mechanics for a free atom to the
case of point groups. This approach enabled us to take
into consideration the electron—electron interaction
for 3d ions most comprehensively. A recurrence for-
mula has been derived for calculating matrix elements
of the Coulomb interaction between multielectron
configurations with allowance for covalence. The pro-
cedure of construction and calculation was carried out
for the 7, term in the ¢® configuration of the transi-
tion metal ion in the octahedral field. In each sector
(@1, d", and d" ") of the Hilbert space considered
here, a certain set of energy terms exists (see, for
example, Fig. 3), for which intersections and cross-
overs may take place. Applying the above technique for
each term, we can determine the eigenstates of a cell or
cluster with various numbers of electrons. Eigenstates
|p) obtained in this way can be used for constructing
Hubbard’s X operators. The explicit form of eigen-
states in the secondary quantization representation
makes it possible to calculate matrix elements

333

Yio(m) = (plalg) (and yi,(m) = (glarslp)) of the
jump amplitudes of the corresponding root vectors

&m (pg). Such matrix elements could be calculated

taking advantage of the fact that annihilation operator

z . +y2 .
a); (or production operator a,. , where index o

denoted spin projection £ and p denotes the line of
irreducible representation y) is a double cubic tensor.
Using the Wigner—Eckart theorem, we then obtain

(CSMMJaT's' MMy = (-1)" "™
% I Y r [ S o S j<FS||aYZ||r'S'>,
M u M\ M¢—c M

where the explicit form of wavefunctions ['SMM)

and |['S'M'My) is obviously unneeded. However,
such an approach requires knowledge of the reduced

matrix elements (I S||a72| I'S"y, the calculation of
which is a cumbersome and complicated process. The
multielectron basis constructed by us makes it possible
to consider real multiorbital systems with various
interactions using the generalized multiband Hubbard
model and to apply a large number of methods devel-
oped for the Hubbard model for studying such systems
(in particular, the generalized strong coupling method
for calculating the band structure of a quasiparticle
with allowance for the above-mentioned crossovers
emerging upon a change in external conditions).
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APPENDIX

Recurrence Formula for the Matrix Elements of the Coulomb Interaction

Since the wavefunction is completely antisymmetric, we can write

(el S\ Tty (S,T,) {SIT 1 pa(SsTy)ps " (8,0,) { S22} ST|Gy

x eb(SsT ) (SeTe) {SsT3 i (S;T)pt =" ") (8Tg) { SaT 4} ST)

M m g n ~(l+m+n o
= S5 SIS ST po(SiTa)py " (ST (S ST |Gy |

(A.1)

X eb(SsTS) (ST o) {83 T3} (ST )p = (ST ) { Sl } ST,
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where

o
Gy = Z G(ij) = z |r_|

1<i<j<M 1<i<j<M

is the Coulomb interaction operator.

The total M-electron functions with configuration eétzgp';pf (+m+m) can be represented as the sum of the

products of the wavefunctions for the d and p states,

b (S, T ) (ST ) {S1T 1} p(SsT3)ps = " (S,T ) {82l 2} ST = { MI(I+ m)! (M — (1 +m))!}'”

xS PAT, = Tiy= Tiy— . = Tip)(Si2, imymyS, my (Do, 7,7, ) (A2)

Y172
X |el(S,T ) (ST ) ST im g ) lpa(SsT)ps =" (8T ) SalamyTy),

where v runs through all transpositions of M — 1 electrons except the first one, 7}; denoting the transposition of the

ith and first electrons. Wavefunctions |e§(‘5’11"1)t'2"g(S2 )Slrlm,m and |p.(S,T 3)p,I U+m+")(S4 )S2F2m2y2> on
the right-hand side contain the coordinates of the first (/ + m) and last (M — (/ + m)) electrons, both functions being
antisymmetric. Consequently, expression (A.2) can be decomposed into two parts, |Xet2> and |chpn> ; for the first

term, we obtain

Yo = (M4 m)! (M= (1 m) S (D) P = Tia= oo = Tig)
X (31327 mym “~/13~(2|ra )
X |eh(S\T ) (ST ) ST 1 7 ) pe(SsT ) = (8,1 ) SaTamy7) (A.3)
[+m

5, (=D'P ($182, mymy | S, m)(TiT, 7,7,IT, )

Vm1m2

{M'(1+M)'(M (I+m))!}

Y172

|eg(SF )t2g(S2 2)S1F1mly1)|pG(S3 3)Pn (1+m+n)(S4 4)52r2m2Y2>

Analogously, wavefunction |e;(S1F1)t§"g(S2F2):9 11:11311?1) for d electrons itself can be decomposed into two
parts, |Y,) and |Y,,) ; for the first part, we have

l v'
%) = -D)'P,
((I+ m)!l!m!}l/zmzl;nz (A4)

Y172

%~ =~ m
x (818, mymy|S1, m )Ty, vy, Y1>|eg31F1m1Y1>|t2g52r2m2Y2>s
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where V' runs through all transpositions of / + m — 1 electrons except the first one. Substituting expression (A.4)
into (A.3), we decompose |X,, ) into |X,) and |X, ). For |X,), we obtain

[+ m
X, H'P, H'P,
o (MU + m) (M~ (I +m ))'}‘/2{(1+m)'1' /Z( : Z( :

172 Y172

x (815, ’;11’;12|S, m) ("1, Wzlf, 1){(S8,S,, mym,|S), 7711><r1rza V1Yl 1, “~/1>

x |l S T ym v ) ST ymay pa(SsTy)pt ="+ (S, ) 8ol amy7y)

[+ m
1)'P, 1 p
M m (M= ))'}1/2{(l+m)‘l' T 2 GO D

e Y172

X (8152, mymy|S, m)(T1Ta, 7|1, 18185, mymy|S1, m )T o, v17a/T1, 1)
— ] ] 1 ] ' ' ]

x 3 (e (SIS} ST S, myom|S1, m)(ET, veiICy 1)

SiTymiyy

myYe

1 m+n
X|e§Eml/ZYe>|e SFlm1Y1>|f2gS2F2m2Y2>|Pc(S3 3)Pn S )(S4F4)52r2m2Y2>

[+ m ( ) ~~ .
- (-D)'P, (8182, m,m,|S, m) (A.5)
M+ m) (M= (I+ m))} 2N+ m szl;nz mlmz%:amava
Y2 YiYaMy oY
8Ty, 7,

ind nd ~ o~ - ~ ind ~ 1 1 Al
x (U102, 1721, (8185, mymy|S1, m )T Ty, v, 7,01, Y1><§S1, m1/2m1|51, m)
(ST, Y YT, Y1)(S1 S, mymy|Sy, T Do, vi7alT 0, 710 (ee’ ™ (SIT1)S, T Je'SiT)
1 — '] 1 m “ m n
xlesEmpyle, (STDA(ST)SITmmlp(ST)py " (S,Ty) Salmyp)

- (me) (l+m) zz Z ZZZ<S'SZ”"1’”2|S m><rlr2’YIYZ|r v

mymymm, $\Tymiyy 5, ST ST
YiYa YiYa MipYe my, my m'y'

~ ~ o] , \ ,
x (8185, mim,|S1, m){T Ty, vy, Y1><§S1, m1/2m1|S1, mp){ET Ly U, v
X <S'1527 m'lm2|‘*_gl, ml><r'lr2a 'Y'I’Y2|1:17 ?1><SISZ: mlﬁ12|‘§: IT’Z><1:1F2, ?1?2|1:7 ?>
1_ — " ' B - ' ' - i '
X (5 S, IS, mYET, Y AT ') (e (SITDSIT [ e'SiT)

x ey (SIS, {SIT 1} pa(SsT)ps " (S, T ) { S0} STS T m'y).

o

It should be noted in this connection that for all values of S'T"'m'y', a nonzero contribution to (A.1) comes only
fromS' =8, "=, m=m,andy" =v.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vl. 109  No.2 2009



336 ORLOV, OVCHINNIKOV

Expressing summation over indices m and vy in terms of the Rakah coefficients, we can write |

X,) in the form
1/2 ~ _ ~ —
Xy =(L)7 3 @siriiee (ST r([355), 5,515,514, 15153051451 5)
815,58
nrr

(A.6)
x ([ETY(T,), T,]{T1} T2 |E, [T} T(THT,]{TIT)

e (ST (ST ISIT 1 pa(S;Ty)py ™" (ST { Sl 2} 5T).
Functions |X, ), |X, ), and |X, ) can be found analogously.

Since orbitals d and p are mutually orthogonal, matrix element (A.1) can be split into components, each of
which is a matrix element of the Coulomb interaction among M — 1 electrons

XGylX) = (XJGy | X)) + <Xt2|GM—1|X;2> +(X |GM—1|X;G> + <XpK|GM—1|X;Jﬂ>'

(A7)
The final expression for the matrix elements has the form

(el (ST (ST LT b pa(SsTa)pe =T D(S,T) {5212} ST|G|

(SIS (ST Tl " (s (5T 51y = A
xS (ST {lee” (SF)SF)([ S\(S)), SzJ{Sl}SZS|- [S,5,(5, )Sz]{S}S)

Si\rys
STS5I58:T

x ([ET(T,), T,]{T1} Do |E, [T T,(T) L] {T1T)

x (el (ST (ST (ST 1 pn(SsT)pe ™ (ST ) (S22} STIGy,_ |

I—l

(ST (ST { 85T} P (S;T e~ (8yTg) { Sal4} ST)
x([ls'(S) S}{Sg}&ml [5:5,(3:)8:1(5} 5)
3 5\25), D¢ 27 596\P93

x ([ET5(T's), Tel{ T3} T | E, [TTg(T5)Ta]{ T3 T) (e SsTs{lee’ ' (SsT)S5s)

m m— " " 1 i e c 1 J C c C
o BSTolts ™ (STHST([55:5), 8,151 5.5 155,30 5:145) 5)
§,058,T

ST ST 55T 5
x ([Ty05(T,), T, 1{T 1} Tal| T, [T50 (D)1 T)T)

x (eb(S\T )ty (ST {SIT pa(SsT oy~ (8,0 {S2T 2} ST Gy, |

x eb(SsTs) e (S,Te) {SaTs i (S, )pt =™+ ( 8T ) { SaT4} ST)

(356050, 5] (535512, 15,5550 8405} 8) (TN, DT Pl T [NEUTORTID) (A8)
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x (1, SsTel|taty ~ (SgTe)SeTe) +

/\/f’ll’l' n n—1 PR
V—2 z (PS5t |poprs  (S3175)85175)
8§38,
STS, 48, Ty

«(5 |84 15050 | (521 SIS, S,54(52)] {(5}58) (T, TYE )T I, T ()T £T)

X (eh(S\ T (ST ST s (SyTy)pe =" (8, ) {8215} ST|Gy, |

x eb(S5T ) hn(SeT) {833 bpl~ (SyTy)p =+ + ") (8 Tg) { 84T 4} ST)

(5 S0 53405 [ (51115, S, (5015)28) (Fa[ Ty, T3 A M IS, TyTy(T T 1)

JIM=—(l+m+n) {M—(I'"+m' +n")}
M-2

x (paSiTAlpeps (S5T5)S;T,) +

<3y TS lpapy YT (SITDSATY)
S, r8,T,
ST STy STy
~ '1 ~ ~ . — — 1 ~ ' ~ ~ ' —_ —_
x (Sl [ss, S45<S4>]{S2}S|[Sl, 5584(5)] {S}ES) (T1[Ts, Ty To(T) {2} T [T, [Ty (T) (T} 7,T)
X (eL(S\T (ST ) LSIT i (SsT)ps == (ST (5o} ST G, |
X eh(SsT5) 5 (SeTe) {833} (ST )plt =m0 (§yT5) { S4T} ST)

(555 S350 [ (SIS $,845015 )8 (Fal, T T r) M DS, T T T 7o)

 (pa STl e (ST SET).
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