
 

ISSN 1063-7834, Physics of the Solid State, 2009, Vol. 51, No. 5, pp. 877–883. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © V.V. Val’kov, D.M. Dzebisashvili, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 5, pp. 833–838.

 

877

 

1. INTRODUCTION

It is known that, in a free-fermion gas, the probabil-
ity of occupation of the quantum state (

 

k

 

, 

 

σ

 

) is
described by the Fermi–Dirac distribution function

 = {exp[(

 

ε

 

k

 

, 

 

σ

 

 – 

 

µ

 

)/

 

T

 

] + 1}

 

–1

 

. In this expression,

 

ε

 

k

 

, 

 

σ

 

 is the energy of the single-particle state (

 

k

 

, 

 

σ

 

), 

 

k

 

 is
the quasi-momentum, 

 

σ

 

 is the spin moment projection
(which takes on two values 

 

σ

 

 = 

 

±

 

1/2), 

 

µ

 

 is the chemical
potential of the system, and 

 

T

 

 is the temperature in
energy units. When fermions interact with each other,
the physical properties of the system are discussed in
terms of quasiparticle excitations. In this case, one of
the key problems of the theory is the problem of the dis-
tribution function of Fermi quasiparticles [1–6]. Previ-
ously, it was demonstrated that, when the interaction
between fermions is switched on, the volume of the
Fermi sphere remains unchanged (the Luttinger theo-
rem) [3] and the discontinuity in the distribution func-
tion on the Fermi surface (the Migdal discontinuity) is
retained and depends on the interaction intensity [2].

Owing to the discovery of high-temperature super-
conductivity, investigations of properties of two-
dimensional electron systems with strong correlations
have acquired a special importance. It is believed that
these models adequately describe the main features of
the electronic structure of cuprate superconductors. The
majority of works in this direction have been performed
in the framework of the Hubbard model [7] or its
reduced variant, which arises when constructing the
effective Hamiltonian describing the low-energy range.
Despite the relative simplicity, this model allows one to
describe the main effects of strong intra-atomic interac-

f k σ,
0( )

 

tions, namely, the metal–insulator transition [8] in so-
called Mott–Hubbard insulators and the nonphonon
mechanisms of Cooper instability in high-temperature
superconductors [9–11] (see the reviews [12, 13]).

In recent years, there have appeared many publica-
tions devoted to the study of normal and superconduct-
ing phases within the Hubbard model and its modifica-
tions. However, a number of fundamental problems
remain unsolved up to now. In particular, the question as
to the distribution function of quasiparticle excitations in
the strong-correlation limit and the main factors deter-
mining its characteristics remains open. One of the
obstacles to the correct calculation of the distribution
function is a complexity of the inclusion of the spin
dynamics in the presence of strong correlations. For the
Hubbard model, this manifests itself in the problem asso-
ciated with the description of spin-fluctuation scattering
processes. In this respect, investigation of the influence
of spin-fluctuation scattering on the characteristics of the
distribution function of Fermi quasiparticles within the
Hubbard model in the strong-correlation regime seems
to be an important problem.

In this work, the distribution function of Hubbard
quasiparticles 

 

f

 

k

 

 was calculated using the diagram tech-
nique in the atomic representation for the Hubbard
model at 

 

U

 

 = 

 

∞ 

 

within the one-loop approximation. This
made it possible to investigate the influence of dynamic
spin-fluctuation processes on the distribution function 

 

f

 

k

 

.
It was shown that the spin-fluctuation scattering pro-
cesses lead to qualitative changes in the distribution
function 

 

f

 

k

 

 as compared to the frequently used Hubbard
I approximation.
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2. RELATION OF THE GREEN’S FUNCTION 
OF HUBBARD QUASIPARTICLES 

TO THEIR SINGLE-PARTICLE
DISTRIBUTION FUNCTION

The Hamiltonian of the Hubbard model at 

 

U

 

 = 

 

∞

 

 in
the atomic representation has the form

 (1)

Here, 

 

ε

 

σ

 

 = 

 

ε

 

 – 

 

σ

 

h

 

 is the single-site energy of an elec-
tron in a magnetic field 

 

h

 

, 

 

µ

 

 is the chemical potential,
and 

 

t

 

fg

 

 is the hopping integral. The Hubbard operators
are conventionally defined in the basis set of single-
site states: 

 

X

 

mn

 

 = 

 

|

 

m

 

〉〈

 

n

 

|

 

. In our case, this basis set
includes two single-electron states 

 

|σ〉

 

 (

 

σ

 

 = 

 

↑

 

, 

 

↓

 

) and
one vacuum state 

 

|

 

0

 

〉

 

.
The distribution function of Fermi quasiparticles in

the model under consideration will be calculated using
the diagram technique for the Hubbard operators [14–
17]. Within this approach, the first and second terms in
relationship (1) are chosen as the bare Hamiltonian 

 

H

 

0

 

and the interaction Hamiltonian 

 

H

 

int

 

, respectively. Let
us introduce the single-fermion Green’s function and
its Fourier transform

(2)

If the single-fermion Green’s function 

 

D

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

) is
known, the calculation of the distribution function of
Fermi quasiparticles is reduced to the calculation of the
sum over the Matsubara frequencies; that is,

 (3)

This relationship was derived by changing over
from the Wannier representation to the Bloch represen-
tation for the Hubbard operators

 

 

Since the single-fermion Green’s function 

 

D

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

)
satisfies the expression 

 

D

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

) = 

 

G

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

)

 

P

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

)
[14], the problem is reduced to the calculation of the
function 

 

G

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

) and the strength operator (or, in other
words, the terminal factor) 

 

P

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

). In the graphical
form, the relation of the Green’s function 

 

G

 

0

 

σ

 

, 0

 

σ

 

(

 

k

 

) to

H εσ µ–( )X f
σσ

fσ
∑ t fgX f

σ0
Xg

0σ
.

fgσ
∑+=

D0σ 0σ, fτ; gτ'( ) – Tτ X̃ f
0σ τ( ) X̃g

σ0 τ'( )〈 〉=

=  
T
N
---- ik R f Rg–( ) iωn τ τ'–( )–{ }D0σ 0σ, k( ),exp

k ωn,
∑

k k ωn,( ).=

f k σ, Xkσ
+

Xkσ〈 〉 T iωnδ( )D0σ 0σ, k( ),exp
ωn

∑= =

δ +0.

X f
0σ 1

N
-------- ikR f( )Xkσ,exp

k

∑=

X f
σ0 1

N
-------- ikR f–( )Xkσ

+
.exp

k

∑=

the mass operator Σ0σ, 0σ(k) and the strength operator
P0σ, 0σ(k) is determined by the set of equations

(4)

Here, the thick line indicates the Green’s function
G0σ, 0σ(k), and the circle with the symbol Σ and the
semicircle with the symbol P represent the mass and
strength operators, respectively. The double line corre-

sponds to the collective Green’s function (k),
and the wavy line indicates the interaction tk. The thin
line represents the bare propagator

 (5)

By eliminating the Green’s function (k) from
the system of equations (4), we obtain the following
exact expression determining the Green’s function
G0σ, 0σ(k) through the mass and strength operators:

 (6)

By using this representation and the above relationship
between the quantities D0σ, 0σ(k) and G0σ, 0σ(k), we find
the formula convenient for calculating the distribution
function

 (7)

When deriving this expression, the strength operator
was represented in the form of two terms: P0σ, 0σ(k) =
1  –  + δP0σ, 0σ(k). The term 1 –  = 1 –

(1/N)Σf  corresponds to the Hubbard I approxi-
mation, and the term δP0σ, 0σ(k) describes the correction
to the strength operator. Similarly, the collective-excita-
tion spectrum  = εσ – (1 – )tk corresponding to
the Hubbard I approximation is separated in the denom-
inator. In this simplest case, the mass operator Σ0σ, 0σ(k)
and the correction δP0σ, 0σ(k) are equal to zero. Then,
the summation over the Matsubara frequencies can be
performed analytically. With due regard for the expres-
sions  = Nσ = n/2, this results in the well-known rela-
tionship for the distribution function of Hubbard quasi-
particles in the paraphase; that is,

 (8)

=

= +

+ Σ

P

,

.

G0σ 0σ,
0( )

g0σ iωn( ) iωn εσ– µ+( ) 1–
.=

G0σ 0σ,
0( )

G0σ 0σ, k( )

=  iωn εσ– µ P0σ 0σ, k( )tk– Σ0σ 0σ, k( )–+{ } 1–
.

f k σ, T iωnδ( )exp
ωn

∑=

×
1 Nσ– δP0σ 0σ, k( )+

iωn ε̃kσ– µ δP0σ 0σ, k( )tk– Σ0σ 0σ, k( )–+
------------------------------------------------------------------------------------------------,

δ +0.

Nσ Nσ

X f
σσ〈 〉

ε̃k σ, Nσ

Nσ

f k σ, 1 n/2–( )
ε̃kσ µ–

T
----------------⎝ ⎠

⎛ ⎞exp 1+
⎩ ⎭
⎨ ⎬
⎧ ⎫

1–

.=
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In order to obtain the distribution function with allow-
ance made for the dynamic and kinetic interactions in
the system under consideration, it is necessary to calcu-
late the mass operator and the correction δP0σ, 0σ(k) to
the strength operator in some approximation. In this
case, the arising dependence of these quantities on the
Matsubara frequencies leads to substantial renormal-
izations of the distribution function due to the influence
of dynamic scattering processes. The magnitude of
these renormalizations appears to be dependent on the
quasiparticle energy. This circumstance is responsible
for the qualitative modifications of the distribution
function as compared to that obtained within the Hub-
bard I approximation.

3. ONE-LOOP APPROXIMATION 
FOR THE STRENGTH AND MASS OPERATORS

The first corrections to the distribution function due
to the influence of spin-fluctuation scattering processes
appear within the one-loop approximation. In the
graphical form, the contributions to the quantities
Σ0σ, 0σ(k) and δP0σ, 0σ(k) are determined by the diagrams
shown in Fig. 1. These diagrams were constructed
using the principle of topological continuity [15, 17]
and the principle of dominance of Fermi-like Hubbard
operators over Bose-like Hubbard operators. The latter
principle means that, when writing the ordered thermo-
dynamic average Tτ of the product of an arbitrary num-
ber of Hubbard operators according to the Wick’s theo-
rem, the pairing begins with a Fermi-like operator, all
other things being equal. Within the approximation
under consideration, there is only one diagram for the
mass operator, whereas the strength operator is charac-
terized by two diagrams.

After assigning analytical expressions to graphical
elements and introducing necessary summations, we
obtain

 (9)

 (10)

Similar relationships for the mass and strength opera-
tors were previously derived using the generating func-
tional method [16]. It should be noted that, since the
mass operator depends neither on the frequency nor on
the momentum, its inclusion is reduced to the renor-
malization of the chemical potential. However, the cor-
rection to the strength operator depends on the Matsub-
ara frequency and the quasi-momentum, and its value
in general is determined by the spin and charge fluctu-
ations. The last statement is associated with the fact that

Σ0σ 0σ,
T
N
---- tqG0σ 0σ, q( ),

q

∑–=

δP0σ 0σ, k( ) –
T
N
---- tq G0σ 0σ, q( )Dσσ σσ, k q–( ){

q

∑=

+ G0σ 0σ, q( )Dσσ σσ,
irr( )

k q–( ) }.

relationship (10) contains both the Fourier transform of
the transverse quasi-spin Green’s function

(11)

and the Fourier transform of the irreducible longitudi-
nal Green’s function

 (12)

In the paramagnetic phase, this Green’s function with
due regard for the condition of completeness of the

basis set of single-site states  +  +  = 1 and

the operator identity  =  +  (σ = ±1/2)
can be represented in the form

 (13)

In a strongly correlated system, the characteristic ener-
gies of charge fluctuations are higher than those of spin
fluctuations. Therefore, the thermodynamic contribu-
tion of charge fluctuations is smaller than that of spin
fluctuations. In this respect, hereafter, the irreducible
Green’s function will be calculated with allowance
made only for the spin fluctuations. Taking into account
the spherical symmetry of quasi-spin Green’s functions
in the paraphase, from expression (13), we obtain the
relationship between the irreducible Green’s function
and the transverse quasi-spin Green’s function in the
form

 (14)

Dσσ σσ, fτ; gτ'( ) – Tτ X̃ f
σσ τ( ) X̃g

σσ τ'( )〈 〉=

=  
T
N
---- ik R f Rg–( ) iωn τ τ'–( )–{ }Dσσ σσ, k( ),exp

k ωn,
∑

k k ωn,( )=

Dσσ σσ,
irr( )

fτ; gτ'( ) – Tτ∆ X̃ f
σσ τ( )( )∆ X̃g

σσ τ'( )( )〈 〉 ,=

∆A A A〈 〉 .–=

X f
00

X f
σσ

X f
σσ

X f
σσ

N̂ f /2 2σS f
z

Dσσ σσ,
irr( )

fτ; gτ'( ) 1
4
--- Tτ∆N̂

˜
f τ( )∆N̂

˜
g τ'( )〈 〉–=

– TτS̃ f
z τ( )S̃g

z τ'( )〈 〉 .

Dσσ σσ,
irr( )

fτ; gτ'( ) 1
2
---Dσσ σσ, fτ; gτ'( ).=

Fig. 1. One-loop diagrams for the (a) mass and (b, c)
strength operators.
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With due regard for this equality, the one-loop correc-
tion to the electronic strength operator in the paraphase
can be written in the form

 (15)

The presence of the quasi-spin Green’s function in this
expression reflects the contribution of the spin degrees
of freedom to the energy characteristic of the spectrum
of Hubbard quasiparticles. Within the approximation
under consideration, the spin-fluctuation scattering pro-
cesses manifest themselves only through the correction
to the strength operator. In order to determine finally
their role, it is necessary to calculate the transverse
quasi-spin Green’s function in the same one-loop
approximation. It should be noted that similar expres-
sions for the Green’s function (6) and the strength oper-
ator (15) were derived using the equations of motion for
retarded Green’s functions by Irkhin and Zarubin [18].
However, the used method for decoupling higher
Green’s function allowed the authors to take into
account the spin-fluctuation dynamics only by intro-
ducing the averaged (over the Brillouin zone) spectral
function of magnons with the spectrum ωk correspond-
ing to spin excitations of the ferromagnetic type. In the
framework of our approach, the spin dynamics is
directly included through the spin Green’s functions
calculated in the paramagnetic phase.

4. DYNAMIC MAGNETIC SUSCEPTIBILITY

The transverse spin Green’s function (k) is
calculated by the same diagram technique as for the
Hubbard operators. By designating this function as the
double dashed line, the Dyson equation in the one-loop
approximation can be written in the following graphical
form:

(16)

Here, the closed circle indicates the spin strength oper-
ator (q). Within the approximation under con-
sideration, the contributions of this operator are deter-
mined by the graphs

(17)

where the open circle represents the zeroth-order con-
tribution equal to  – Nσ and two diagrams after the

open circle are one-loop corrections δ (q). The

δP0σ 0σ, k( ) 3
2
--- T

N
---- tqDσσ σσ, k q–( )G0σ 0σ, q( ).

q

∑–=

Dσσ σσ,

=
σσ σσ σσ

+
σσ σσ

σ0 σ0

σσ
+

σσ

0σ 0σ

σσ σσ
.

Pσσ σσ,

0σ

= +
σ0

σ0

0σ

0σ

0σσ0

σ0PPP

+
PPP

,

Nσ

Pσσ σσ,

thick wavy line in formula (16) corresponds to the
effective interaction satisfying the equation

(18)

In the graphical relationships (17) and (18), the symbol
P in the open semicircle, as before, indicates the elec-
tronic strength operator P0σ, 0σ(q). By writing Eq. (16)
in the analytical form, we obtain the following repre-
sentation of the quasi-spin Green’s function:

 (19)

Here, we took into account the explicit form of the
quasi-spin bare propagator depicted by the thin dashed
line: (iωm) = {iωm + 2σh}–1. The spin mass operator

(k) is determined by the contributions of two
loops on the right-hand side of Eq. (16) and given by
the expression

(20)

For the strength operator (k) determined by
graphs (17), according to the rules of the diagram tech-
nique, we find

(21)

The derived equations (19)–(21), together with
Eqs. (6), (9), and (15), form a closed system of integral
equations that makes it possible to investigate self-con-
sistently the influence of spin-fluctuation processes on
the thermodynamic characteristics of the Hubbard
model. In particular, this system of equations allows
one to study the renormalizations of the distribution
function of Hubbard quasiparticles due to the spin-fluc-
tuation scattering processes.

5. DISTRIBUTION FUNCTION 
OF HUBBARD QUASIPARTICLES

In order to solve the above system of integral equa-
tions, we introduce a number of simplifications. The
first simplification is associated with the fact that, when
calculating the spin Green’s functions, the electron
Green’s functions are represented in the Hubbard I
approximation. This circumstance allows us to perform
the summation over the frequencies in Eqs. (20) and
(21) in an explicit form. As a result, from relationships
(20) and (21), the expressions for the mass and strength

= + .P

Dσσ σσ, k( )
Pσσ σσ, k( )

iωm 2σh Σσσ σσ, k( )–+
-------------------------------------------------------.=

gσσ

Σσσ σσ,

Σσσ σσ, k( ) = –
T
N
---- tq 1 tqD0σ 0σ, q( )+( )Gσ0 σ0, k q–( )[

q

∑
+ 1 tqD0σ 0σ, q( )+( )G0σ 0σ, k q+( ) ].

Pσσ σσ,

Pσσ σσ, k( ) Nσ Nσ–( ) T
N
---- tq k+ P0σ 0σ, q k+( ){

q

∑+=

– tqP0σ 0σ, q( ) }G0σ 0σ, q k+( )G0σ 0σ, q( ).
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operators in the paramagnetic phase can be written in
the form

(22)

 (23)

According to the second simplification, the strength
operator is calculated from formula (15) by replacing
the dynamic susceptibility χ(k, iωm) dependent on the
quasi-momentum by the susceptibility averaged over
the Brillouin zone; that is,

(24)

In this case, the correction coefficient α is introduced
into the right-hand side of Eq. (15) in order for the sum
rule for the Matsubara susceptibility to be satisfied

 (25)

With allowance made for approximation (24), the cor-
rection to the electronic strength operator δP0σ, 0σ(k,
iωn) takes the form

 (26)

In order to close the system of self-consistent equa-
tions, it is necessary to add the following equation for

Σσσ σσ, k iωm,( ) = iωm
1
N
----

f q k– f q–( ) tq tq k–+( )
iωm ξq– ξq k–+

-----------------------------------------------------,
q

∑

Pσσ σσ, k iωm,( ) iωm
1
N
----

f q k– f q–
iωm ξq– ξq k–+
-------------------------------------.

q

∑=

χ k iωn,( ) χ iωn( ) = –α3
2
--- 1

N
---- Dσσ σσ, k iωn,( ).

k

∑

T
N
---- χ k iωn,( )

k ωn,
∑ T χ iωn( )

ωn

∑ 3n
4

------.= =

δP0σ 0σ, iωn( ) T
N
----

tqχ iωn m–( )
iωm ξq–

---------------------------.
q m,
∑=

the determination of the renormalized chemical poten-
tial (  = µ – Σ0σ, 0σ):

 

where fk is the above-defined distribution function (7)
of Hubbard quasiparticles. The spin index is omitted
because we consider the paramagnetic phase.

The results of the solution to the system of self-con-
sistent integral equations for µ, α, (iωm), and
δP0σ, 0σ(iωm) are presented in Figs. 2 and 3. The calcu-
lations were carried out using the nearest neighbor
approximation when tk = –2 |t |(cos(kx) + cos(ky)). The
chemical potentials are given in units of |t |. The temper-
ature was taken to be T = 5 K.

For a clear illustration of the spin-fluctuation
effects, the distribution function fk of Hubbard quasi-
particles according to the calculation within the Hub-
bard I approximation at the concentration n = 0.8 is
depicted by the dashed line in Fig. 2. It can be seen
from this figure that, in the case under consideration,
the distribution function fk has the form of a conven-
tional Fermi step decreased by the well-known renor-
malizing factor 1 – n/2. Solid line 1 in the same figure
shows the distribution function fk calculated with
allowance made for the spin-fluctuation scattering pro-
cesses at the same concentration n = 0.8. A comparison
of two dependences demonstrates that there are three

µ

n/2
1
N
---- f k,

k

∑=

χ

420–2–4
tk

0.8

0.6

0.4

0.2

0

f k

123

Fig. 2. Distribution functions of Hubbard quasiparticles at
different concentrations: (1) n = 0.8,  = 0.626, α = 2.2; (2)
n = 0.667,  = 5.2 × 10–4, α = 1.33; and (3) n = 0.2,  =
–2.51, α = 0.915. The dashed line indicates the distribu-
tion function fk calculated in the Hubbard I approximation
at n = 0.8.

µ̃
µ̃ µ̃

0
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iω

m
)|t

|
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Fig. 3. Dependences of the real and imaginary parts of the
mass operator and the dynamic susceptibility on the Mat-
subara frequency at the concentration n = 0.8.
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m'

δP
m''



882

PHYSICS OF THE SOLID STATE      Vol. 51      No. 5      2009

VAL’KOV, DZEBISASHVILI

fundamental differences between them. First, the inclu-
sion the dynamic spin-fluctuation processes leads to a
finite probability of occupation of states above the
Fermi momentum kF defined as the quasi-momentum at
which the distribution function fk has a discontinuity
with a finite value Z. Second, in the energy range lower
than the chemical potential, there arises a strong renor-
malization of the distribution function, which depends
on the deviation of the quasiparticle energy from the
chemical potential. Third, the position of the disconti-
nuity in the distribution function changes substantially
due to the one-loop corrections to the mass operator.

As the concentration decreases, the fraction of elec-
trons occupying states with k > kF initially increases,
reaches a maximum at n = 0.667 (Fig. 2, curve 2), and
then decreases. It is evident that, at concentrations con-
siderably lower than unity, the efficiency of the spin-
fluctuation scattering processes should be low and, cor-
respondingly, the distribution function fk should differ
little from the Fermi step. As can be seen from the pre-
sented dependences, this regularity actually occurs.

The frequency dependences of the strength operator
δP0σ, 0σ(iωm) =  +  and the dynamic Matsub-

ara susceptibility (iωm) at the concentration n = 0.8
are plotted in Fig. 3. The strength operator and the sus-
ceptibility correspond to the odd and even Matsubara
frequencies, respectively. It should be noted that the
real part  of the mass operator is a symmetric func-
tion of the Matsubara frequency, whereas the imaginary
part  of the mass operator is an antisymmetric
function of the Matsubara frequency. It can be seen
from Fig. 3 that, on a scale of the band width W ≈ 4 |t |,
the renormalizations of the strength operator due to the

δPm' iδPm''

χ

δPm'

δPm''

inclusion of the one-loop corrections ( ) are very
significant and they are responsible for the substantial
modification of the distribution function fk.

As can be seen from Fig. 3, the contribution to the
dynamic Matsubara susceptibility (iωm) at high tem-
peratures is made only by frequencies with small num-
bers m. In this case, it is possible to use the so-called
high-temperature limit when (iωm) ≅ . This
corresponds to the static approximation. The results of
the calculations performed within this approximation
are presented in Fig. 4 by the solid and dashed lines rep-
resenting the distribution functions fk at small and large
values of the susceptibility (0), respectively. It can be
seen from Fig. 4 that, in the low-temperature range (T =
5 K), the static approximation at the small value of the
susceptibility in actual fact does not lead to the differ-
ence between the distribution function fk and the Fermi
step and corresponds to the simplest Hubbard I approx-
imation with Z = 1 – n/2. For larger values of the sus-
ceptibility (0), the distribution function is character-
ized by a strong smearing that should be observed at
high temperatures. However, in this case, the tempera-
ture is low and the smearing is completely associated
with the scattering processes.

Therefore, when the efficiency of the spin-fluctua-
tion scattering processes is high, the use of the static
approximation can lead to an incorrect result (manifest-
ing itself in a strong smearing of the distribution func-
tion) and the disappearance of the Migdal discontinuity.
However, the inclusion of the dynamic effects of spin-
fluctuation scattering retains the Migdal discontinuity
and brings the distribution function into the form char-
acteristic of the Landau theory of Fermi liquids.

6. CONCLUSIONS

It should be emphasized that, as follows from the
results obtained, the spin-fluctuation scattering processes
for electron systems in the strong-correlation regime
substantially affect the distribution function of Hubbard
quasiparticles. It is evident that this influence is not the
only manifestation of the spin-fluctuation processes.
These processes are mathematically taken into account
through the strength operator in the numerator of the sin-
gle-fermion Green’s function. This means that the pro-
cesses under consideration should significantly affect the
spectral intensities and, hence, the characteristics of the
pseudogap behavior of strongly correlated electron sys-
tems. The proposed method for including the spin-fluc-
tuation scattering processes makes it possible to solve the
above problems. However, this is beyond the scope of the
present work.
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