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1. INTRODUCTION 

Amorphous and nanocrystalline magnetic alloys
offer a number of advantages over polycrystalline
materials, such as the low coercive force, high suscep-
tibility, narrow magnetic resonance line, etc. The tech-
nology of their production is simpler than that of single
crystals. This opens up wide possibilities of using the
above alloys for the design of devices intended for mag-
netic recording of information and high-frequency
equipment. 

Theoretically, amorphous and nanocrystalline mag-
netic alloys are characterized by the two main proper-
ties: (1) inhomogeneity of all parameters of the spin
Hamiltonian (exchange, magnetic anisotropy, and other
parameters) and (2) extended correlations of these
inhomogeneities with the correlation length varying
over a wide range (several tens and several hundreds of
interatomic distances). The presence of large correla-
tion lengths prevents the use of well-developed theoret-
ical methods accounting for the effect of uncorrelated
(

 

δ

 

-correlated) inhomogeneities for the calculation of a
number of effects in these materials. 

Effects of inhomogeneities with arbitrary correla-
tion lengths on the spectrum and damping of spin
waves in terms of the continuum model were taken into
account in the first nonvanishing approximation of the
perturbation theory in our earlier works [1–3]. More
recently, in the same approximation, effects of corre-
lated inhomogeneities on the spin wave spectrum were

taken into account in the lattice model of ferromagnets
[4, 5] and the continuum model [6]. 

The main result of the theory proposed in [1–3] is
that, in the vicinity of the correlation wave number 

 

k

 

c

 

 =

 (where 

 

r

 

c

 

 is the correlation length of the inhomoge-
neity), the laws of dispersion 

 

ω

 

'(

 

k

 

) and damping 

 

ω

 

''(

 

k

 

)
should be modified and the corresponding modification
should have different forms for inhomogeneities of dif-
ferent physical parameters. This theory was used for
developing the experimental method of correlation
spin-wave spectroscopy, which made it possible to
measure the correlation lengths of inhomogeneities in
many amorphous and nanocrystalline alloys [7]. 

In all works, except for [3], effects of inhomogene-
ities of each Hamiltonian parameter on the spin-wave
spectrum were considered separately, because the inho-
mogeneities of different parameters were assumed to be
stochastically independent of each other. In our previ-
ous work [3], apart from stochastically independent
inhomogeneities of the exchange constant 

 

α

 

(

 

x

 

) and the
magnitude of the magnetization vector 

 

M

 

(

 

x

 

) (where 

 

x

 

 =
(

 

x

 

, 

 

y

 

, 

 

z

 

)), we analyzed the inhomogeneities of these
parameters in the presence of their mutual correlations
(cross correlations). In this case, we investigated the
limiting case of strong cross correlations when the sto-
chastic mutual correlation of random functions 

 

α

 

(

 

x

 

)
and 

 

M

 

(

 

x

 

) transforms into a functional relation between
them. The purpose of the present work is to calculate
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the combine effect of inhomogeneities of the exchange
constant 

 

α

 

(

 

x

 

) and the magnetic anisotropy 

 

β

 

(

 

x

 

) on the
spectrum and damping of spin waves in the presence of
cross correlations with an arbitrary magnitude and sign
between the random functions 

 

α

 

(

 

x

 

) and 

 

β

 

(

 

x

 

). 

2. THE MODEL AND METHOD 

Let us consider the model of a ferromagnet in which
the exchange parameter 

 

α

 

(

 

x

 

) and the uniaxial anisot-
ropy 

 

β

 

(

 

x

 

) (where 

 

x

 

 = {

 

x

 

, 

 

y

 

, 

 

z

 

}) are inhomogeneous. The
anisotropy direction 

 

n

 

 is assumed to be constant and
coinciding with the direction of the external magnetic
field 

 

H

 

. The equation of motion of the magnetization
vector 

 

M

 

 represents the Landau–Lifshitz equation 

 (1)

where 

 

g

 

 is the gyromagnetic ratio and 

 

H

 

e

 

 is the effective
magnetic field defined by the expression 

 (2)

The energy density 

 

W

 

 in our model has the form 

 (3)

The exchange parameter 

 

α

 

(

 

x

 

) and the anisotropy
parameter 

 

β

 

(

 

x

 

) can be represented in the form 

 (4)

where 

 

α

 

, 

 

∆α

 

 and 

 

β

 

, 

 

∆β

 

 are the means and the root-mean-
square fluctuations of the above parameters, and 

 

ρ

 

α

 

(

 

x

 

)
and 

 

ρ

 

β

 

(

 

x

 

) are the dimensionless centered (

 

〈ρ

 

α

 

(

 

x

 

)

 

〉

 

 = 0,

 

〈ρ

 

β

 

(

 

x

 

)

 

〉

 

 = 0) and normalized (

 

〈

 

(

 

x

 

)

 

〉

 

 = 1), 

 

〈

 

(

 

x

 

)

 

〉

 

 = 1)
random functions of the coordinates. Curly brackets
indicate the averaging over an ensemble of random
realizations of the corresponding random functions. 

We represent the magnetization 

 

M

 

(

 

x

 

, 

 

t

 

) in the form

 

M

 

0

 

 + 

 

m

 

(

 

x

 

, 

 

t

 

), and linearize Eq. (2) in a conventional
manner (

 

M

 

z

 

 

 

≈

 

 

 

M

 

0

 

; 

 

m

 

x

 

(

 

x

 

, 

 

t

 

), 

 

m

 

y

 

(

 

x

 

, 

 

t

 

) 

 

�

 

 

 

M

 

0

 

). By assuming
that the magnetization projections can be written in the
form 

 

m

 

x

 

(

 

x

 

, 

 

t

 

) and 

 

m

 

y

 

(

 

x

 

, t) ~ exp(iωt), we obtain the fol-
lowing system of linear equations with coefficients
dependent on x for these projections: 

 (5)

∂M
∂t

-------- g M He,[ ],–=

He
–

∂W
∂M
-------- ∂

∂x
------ ∂W

∂ ∂M/∂x( )
-------------------------.+=

W
1
2
---α x( ) ∂M
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--------⎝ ⎠
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2
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1
2
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β x( ) β 1 γ βρβ x( )+[ ],=
γ α
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α

-------, γ β
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β

-------,= =

ρα
2 ρβ

2

iω
g

------mx– M0βmy M0βγ βρβmy Hmy+ +=

– M0α ∇2
my γ αρα∇2

my γ α∇ρα∇my+ +( ),

iω
g

------my– M0βmx M0βγ βρβmx Hmx+ +=

– M0α ∇2
mx γ αρα∇2

mx γ α∇ρα∇mx+ +( ).

We perform the Fourier transform 

 (6)

where k is the wave vector; d is the space dimensional-
ity; and the integration is carried out over the entire
space of wave vectors and the Cartesian coordinates,
respectively. 

By introducing the circular projections 

 (7)
we find the integral equation for the resonance projec-
tion m+(k) (hereafter, the index “+” will be omitted) 

 (8)

where we introduced the designation ν = (ω – ω0)/gM0α.
Here, ω0 is the ferromagnetic resonance frequency.
These stochastic equations will be investigated using the
perturbation theory method proposed in [1–3]. 

The averaging of Eq. (8) over random realizations of
the functions ρα(k – k1) and ρβ(k – k1) leads to the rela-
tionship 

(9)

By expressing the quantity m(k) from Eq. (8) and
increasing the subscripts on the wave vector k by unity,
we derive 

 (10)

At the first step, we decouple the means of the products
of the functions ρi and m in Eq. (9) according to the
general rules into the products of the means and the cor-
relator of the product of the centered values of these
functions; that is, 

 (11)
where 

 (12)
Since the product of the means in relationship (10a) van-
ishes because the functions ρi are centered, the averaged
equation should not contain terms proportional to the
first powers of the quantities γi. For the same reason, one
of the terms , which is formed after substitution of
expression (10b) into relationship (10a), vanishes in the

m x( ) m k( )e
ikx k,d∫=

m k( ) 1
2π
------⎝ ⎠

⎛ ⎞
d

m x( )e
ikx– x,d∫=

m
± k( ) mx k( ) imy k( ),±=

ν k2
–( )m k( ) γ α kk1( )ρα k k1–( )m k1( ) k1d∫=

+
βγ β

α
-------- ρβ k k1–( )m k1( ) k1,d∫
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–( ) m k( )〈 〉 γ α kk1( ) ρα k k1–( )m k1( )〈 〉 k1d∫=

+
βγ β

α
-------- ρβ k k1–( )m k1( )〈 〉 k1.d∫

m k1( ) γ α
k1k2( )ρα k1 k2–( )m k2( )

ν k1
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----------------------------------------------------------- k2d∫=

+
βγ β

α
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correlator 〈ρi〈m(k1)〉〉, and relationship (10a) transforms
into a trivial identity. Therefore, the next step begins with

the substitution of expression (10) into Eq. (9). As a
result, we obtain 

(13)

where we introduced the designations γ = γα and ηβ =
βγβ/α. 

The means of the products of three random func-
tions under the integral sign are decoupled in the first
nonvanishing approximation of the perturbation theory
(the Bourret approximation [8]); that is, 

 (14)

where each of the subscripts i and j takes on values α
and β. In this relationship, the correlator 〈 〉
(where  = ρiρj – 〈ρiρj〉) on the right-side is rejected.
The substitution of expression (10b) into this correlator
with an increase in the subscripts on the wave vector k
by unity would lead to the next term of the expansion of
the perturbation theory, etc. 

Since ρi(x) and ρj(x) are homogeneous random
functions, they satisfy the relationship 

 (15)
where Sij(k) is the spectral density of the correlation
function Kij(r) of inhomogeneities. The correlation
function is defined by the expression 

 (16)
where r is the distance between two points. The corre-
lation function Kij(r) and the spectral density Sij(k) are
related by the Fourier transform (the Wiener–Khintchin
theorem for homogeneous random functions) 

 (17)

Taking into account expressions (12) and (13),
Eq. (11) is integrated over the vector k2. Thereafter, the
quantity 〈m(k)〉 can be removed from the integral sign,
and we obtain the dispersion relation for spin waves in
the general form 

(18)

In this relation, the terms proportional to γ2 and 
account for effects of the exchange and anisotropy
inhomogeneities, respectively. The term proportional to
the product γηβ includes effects of correlations between
the exchange and anisotropy inhomogeneities. 

3. DISPERSION AND DAMPING LAWS 
FOR SPIN WAVES 

Let us consider separately the cases of one-dimen-
sional and three-dimensional inhomogeneities. 

3.1. One-Dimensional Inhomogeneities 

It is assumed that the correlations exponentially
decay for the exchange autocorrelation function Kαα(r),
the anisotropy autocorrelation function Kββ(r), and the
cross correlation function Kαβ(r) between the exchange
and anisotropy fluctuations; that is, 

 (19)
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where r = |x – x' |, kc is the correlation wave number (rc =
1/kc is the correlation length of inhomogeneities), and κ
is the dimensionless cross correlation coefficient lying
in the range –1 < κ < 1. For simplicity, we assume that
the correlation length rc is identical for all three corre-
lation functions. 

According to formula (15), at d = 1, to these corre-
lation functions there correspond the spectral densities 

 (20)

After the substitution of these expressions into Eq. (16),
this equation takes the form 

 (21)

where 

 

 (22)

 

The calculations of these integrals with the use of
the theory of residues lead to the relationships 

 

 (23)

 

We consider the complex dispersion law (19) in the first

order of the perturbation theory by setting  ≈ k on
the right-hand sides of expressions (21). By represent-
ing the quantity ν in the form ν = ν' + iν'', we obtain the
dispersion law for spin waves with allowance made for
the mutual correlations between inhomogeneities of the
exchange and magnetic anisotropy parameters in the
form 

 (24)
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and the damping of spin waves in the following form: 

 (25)

where we introduced the dimensionless quantities u =

k/kc and η = ηβ/ . 

3.2. Three-Dimensional Inhomogeneities 

It is assumed that the decay of correlations is charac-
terized by isotropic correlation functions dependent only
on the magnitude of the radius vector r = |r |; that is, 

 (26)

According to formula (15), to these correlation
functions there correspond the spectral densities 

 (27)

We substitute relationships (25) into Eq. (16) and
divide the integral in this equation into three integrals 

 (28)

where 
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By changing over to the spherical coordinate system;
integrating over the azimuthal angle ϕ; making the
replacement x = cosθ; and introducing the dimension-

less quantities u = k/kc, u1 = k1/kc, and uν = /kc, we
find 
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(30)

 

Here, we changed the limits of integration with the use

of the relationship    valid for the

above integrands. 
The integrals over the variable u1 were calculated by

the method of residues. This results in cumbersome
expressions, which in the first order of the perturbation
theory at uν ≈ u take the form 

 

(31)
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 + u2(1 – x2))3/2, C = ux –

 and D = ux + . 
By integrating over the variable x in relationships

(29), substituting them into Eq. (26), and separating the
real and imaginary parts, we obtain the dispersion law
ν'(k) and the damping law ν''(k) for spin waves with due
regard for the cross correlations between the three-
dimensional inhomogeneities of the exchange and
magnetic anisotropy parameters in the form 

 (32)
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(33)

In these expressions, the terms proportional to the
quantities γ2 and η2 were derived in our earlier works
[1–3] and the terms proportional to γη describing the
mutual correlations were included for the first time in
this work.1 

4. INVESTIGATION OF THE DISPERSION
AND DAMPING LAWS 

The dispersion and damping laws for the one-dimen-
sional inhomogeneities (relationships (22), (23)) and
three-dimensional inhomogeneities (expressions (30),
(31)) were investigated using the analytical and numer-
ical methods. 

4.1. One-Dimensional Inhomogeneities 

The modifications of the dispersion law due to the
one-dimensional exchange and anisotropy inhomogene-
ities (described by formula (22)) are shown in Figs. 1a
and 1b. 

The dotted line in Fig. 1a represents the dispersion
law ν' = k2 corresponding to a homogeneous ferromag-
net (γ = η = 0). Thin curve 1 corresponds to the pres-
ence of only exchange inhomogeneities (γ ≠ 0, η = 0),
and thin curve 2 corresponds to the presence of only
anisotropy inhomogeneities (γ = 0, η ≠ 0). In accor-
dance with expression (22), curve 1 has a bending in the
vicinity of the point (k/kc)2 = 1/4, which is poorly seen
on scales of Fig. 1a. As can be seen from curve 2, the
magnetic-anisotropy inhomogeneities lead to a shift in
the ferromagnetic resonance frequency corresponding
to k = 0 in addition to the modification of the depen-
dence ν'(k). The thick solid curve in Fig. 1a indicates
the total modification of the dispersion law due to the
presence of both the exchange and anisotropy inhomo-
geneities in the absence of their mutual correlations
(γ ≠ 0, η ≠ 0, κ = 0). 

Figure 1b illustrates effects of cross correlations
between the exchange and anisotropy inhomogeneities
on the dispersion law. The thick solid curve in this fig-
ure reproduces the same curve in Fig. 1a and corre-
sponds to the combined effect of mutually uncorrelated
exchange and anisotropy inhomogeneities (γ ≠ 0, η ≠ 0,
κ = 0). The dashed and dot-dashed curves indicate
effects of the positive (κ > 0) and negative (κ < 0) cross
correlations, respectively. Moreover, we studied the
analytical expressions corresponding to the expansion

1 The approximate formulas for the terms proportional to γ2 were
given in [1–3]. The complete expressions were published in the
preprint [9]. 

ν''/kc
2 γ 2

u
3 1

u
2

----- 2u
2

1 4u
2

+
----------------- 1 2u

2
+( ) 1 4u

2
+( )ln

4u
4

---------------------------------------------------–+⎝ ⎠
⎛ ⎞=

+ 2κγη u 1 2u
2

+( )
1 4u

2
+

-------------------------- 1 4u
2

+( )ln
4u

----------------------------–⎝ ⎠
⎛ ⎞ 2η2

u

1 4u
2

+( )
----------------------.+



PHYSICS OF THE SOLID STATE      Vol. 51      No. 5      2009

EFFECTS OF CROSS CORRELATIONS 945

of the exact relationship (22) into a series at k  0 and
the asymptote of this relationship at k  ∞; that is, 

 (34)

It can be seen from these expressions that, at 2u � 1, the
effective spin-wave stiffness (the coefficient of the
quantity u2) depends on both the exchange and anisot-
ropy inhomogeneities, as well as on the magnitude and
the sign of the correlation coefficient κ. 
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In the coordinate system (ν', k2), the straight lines
representing the tangents to the dashed and dot-dashed
curves in Fig. 1b correspond to expressions (32).
Despite a substantial difference between the exact
curves ν'(k2) corresponding to the positive and negative
cross correlations, the tangents to these curves and the
solid curve intersect in the vicinity of the same value
(k/kc)2 = 1/4. This is associated with the same form of
the denominator in all terms of relationship (22) that
describe the modification of the dispersion law. 

The damping ν''(k) determined by the one-dimen-
sional exchange and anisotropy inhomogeneities and
described by formula (23) is illustrated in Figs. 2a and
2b. In Fig. 2a, thin curve 1 corresponds to the damping
associated with the exchange inhomogeneities (γ ≠ 0, η =
0), and thin curve 2 indicates the damping due to the
anisotropy inhomogeneities (γ = 0, η ≠ 0). The thick
solid curves in Figs. 2a and 2b represent the combined
effect of both the exchange and anisotropy inhomogene-
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Fig. 1. Dispersion laws for spin waves in a ferromagnet with
one-dimensional exchange and anisotropy inhomogeneities
for κ = 0 (thick solid curves), 0.8 (dashed curve), and –0.8
(dot-dashed curve). Thin solid curves 1 and 2 correspond to
the dispersion laws in the case of only exchange and only
anisotropy inhomogeneities, respectively. The dotted line
represents the dispersion law in a homogeneous ferromag-
net. 
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Fig. 2. Damping of spin waves in a ferromagnet with one-
dimensional exchange and anisotropy inhomogeneities.
Designations of the curves are the same as in Fig. 1. 
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ities in the absence of their mutual correlations (γ ≠ 0,
η ≠ 0, κ = 0). The divergence of the damping at k  0
in the case of the one-dimensional anisotropy inhomo-
geneities indicates that the theory is inapplicable in the
range of small wave numbers k. This is natural because,
for waves in the presence of one-dimensional inhomo-
geneities, there exists a finite localization radius l and
the dispersion and damping laws can be approximately
investigated only for wavelengths smaller than this
localization radius l (k � l–1). 

Figure 2b shows effects of cross correlations
between the exchange and anisotropy inhomogeneities
on the damping of spin waves. The dashed and dot-
dashed curves correspond to κ > 0 and κ < 0, respec-

tively. It can be seen from Fig. 2b that the positive cross
correlations lead to an increase in the damping of spin
waves, whereas the negative cross correlations result in
a decrease in their damping. The approximate expres-
sions corresponding to the expansions of the exact for-
mula (23) into series at k  0 and k  ∞ have the
form 

 (35)

4.2. Three-Dimensional Inhomogeneities 

The modifications of the dispersion law due to the
three-dimensional exchange and anisotropy inhomoge-
neities (described by formula (30)) are shown in
Figs. 3a and 3b. 

The dotted lines in these figures represent the dis-
persion law ν' = k2 corresponding to a homogeneous
ferromagnet (γ = η = 0). Thin curve 1 corresponds to
the presence of only exchange inhomogeneities (γ ≠ 0,
η = 0), and thin curve 2 corresponds to the presence of
only anisotropy inhomogeneities (γ = 0, η ≠ 0). The thin
solid curves in these figures indicate the total modifica-
tion of the dispersion law due to the presence of both
the exchange and anisotropy inhomogeneities in the
absence of their mutual correlations (γ ≠ 0, η ≠ 0, κ =
0). It can be seen that the anisotropy inhomogeneities
lead to a shift in the ferromagnetic resonance frequency
corresponding to k = 0 in addition to the modification
of the dependence ν'(k). Unlike the case of one-dimen-
sional inhomogeneities (Fig. 1a), this shift corresponds
to a decrease in the ferromagnetic resonance frequency.
Effects of cross correlations between the exchange and
anisotropy inhomogeneities on the dispersion law are
illustrated in Fig. 3b. It can be seen from this figure that
the positive cross correlations (dashed curve, κ > 0)
result in a larger deviation of the dispersion law and, by
contrast, the negative cross correlations (dot-dashed
curve, κ < 0) decrease the modification of the disper-
sion law as compared to that associated with the com-
bined effect of the uncorrelated exchange and anisot-
ropy inhomogeneities. The approximate expressions
corresponding to the expansions of the exact formula
(30) into series at k  0 and k  ∞ are represented
in the form 

(36)

As for the one-dimensional inhomogeneities, the effec-
tive spin-wave stiffness for the three-dimensional inho-
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mogeneities at 2u � 1 depends on the quantities γ2, η2,
and κ. The intersection point for the limiting curves
described by expressions (34) is determined by the more
complex relationships as compared to the straight lines
represented by expressions (32). For some parameters,
this point for the curves described by expressions (34)
can be absent. However, it can be seen from the general
form of expressions (34) that the point (k/kc)2 = 1/4
(2u = 1) for both one-dimensional and three-dimen-
sional cases is the crossover point in the dispersion
curve, in the vicinity of which specific features corre-
sponding to small wave numbers k give way to specific
features characteristic of large wave numbers k. 

The damping ν''(k) associated with the three-dimen-
sional exchange and anisotropy inhomogeneities and
described by formula (31) is illustrated in Figs. 4a and
4b. The thick solid curves in these figures represent the
combined effect of the presence of both the exchange
and anisotropy inhomogeneities in the absence of their

mutual correlations (γ ≠ 0, η ≠ 0, κ = 0). Curve 1 corre-
sponds to the damping determined by the exchange
inhomogeneities (γ ≠ 0, η = 0), and curve 2 indicates the
damping due to the anisotropy inhomogeneities (γ = 0,
η ≠ 0). Figure 4b shows effects of cross correlations
between the exchange and anisotropy inhomogeneities
on the damping of spin waves. It can be seen from
Fig. 4b that, as for the case of one-dimensional inho-
mogeneities, the positive cross correlations (dashed
curve, κ > 0) lead to an increase in the damping of spin
waves, whereas the negative cross correlations (dot-
dashed curve, κ < 0) result in a decrease in their damp-
ing. A change in the damping due to the cross correla-
tions is a function of the wave number k or, correspond-
ingly, the frequency. For κ < 0, the damping should
decrease most strongly in the vicinity of k ~ kc. 

The approximate expressions corresponding to the
expansions of the exact formula (31) into series at
k  0 and k  ∞ take the form 

(37)

5. CONCLUSIONS 

Thus, in this work, we investigated effects of mutual
correlations (cross correlations) between inhomogene-
ities of the exchange and magnetic anisotropy parame-
ters on the modification of the dispersion law and the
damping of spin waves in a ferromagnet. We consid-
ered both one- and three-dimensional inhomogeneities.
The investigation was performed in the first nonvanish-
ing approximation of the perturbation theory to which
there correspond squares of the relative root-mean-
square deviations of the exchange (γ2) and magnetic
anisotropy (η2) inhomogeneities, as well as the product
of the root-mean-square deviations (γη) for the term
describing effects of cross correlations. The last term is
characterized by the dimensionless correlation coeffi-
cient lying in the range –1 < κ < 1. Specific values of
the correlation coefficient κ are determined by the
microscopic model of inhomogeneities (consideration
of this model is beyond the scope of our work). In this
respect, the general analytical expressions obtained for
the dispersion law ν'(k) and the damping law ν''(k) were
numerically investigated for three correlation coeffi-
cients κ = –0.8, 0, and 0.8. The correlation coefficient
κ = 0 corresponds to the combined effect of the mutu-
ally uncorrelated exchange and anisotropy inhomoge-
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neities on the spectrum and damping of spin waves. For
correlation coefficients κ = 0.8 and –0.8, the graphs of
the derived expressions illustrate the effects of positive
and negative mutual correlations, respectively. 

It was demonstrated that the positive cross correla-
tions lead to a larger deviation of the dispersion law
ν'(k) from the unperturbed dispersion law as compared
to the combined effect of mutually uncorrelated inho-
mogeneities. Moreover, the positive cross correlations
result in an increase in the damping of spin waves. The
negative cross correlations lead to the opposite effects: a
decrease in the modification of the dispersion law and the
damping. Furthermore, the behavior of the dependence
of a decrease in the damping ν'' on the wave number k
also changes: there appears a specific “window” with a
considerably lower damping in the vicinity of k ~ kc. 

The correlations between inhomogeneities of differ-
ent parameters of the ferromagnet arise, in particular, in
the case where there is a common origin of these inho-
mogeneities. For example, both the exchange and
anisotropy inhomogeneities in amorphous alloys are
associated, to a considerable extent, with the inhomo-
geneities of interatomic distances in these materials.
Therefore, the existence of correlations (κ ≠ 0) between
the exchange and magnetic-anisotropy inhomogene-
ities can be expected in these alloys. Since the amor-
phous alloys upon annealing transform into the nanoc-
rystalline state, the above factor responsible for the
cross correlations disappears. Consequently, it can be
expected that, upon annealing of amorphous alloys, the
magnitude of the cross correlation coefficient should
decrease or even vanish. This will lead to a change in
the dispersion and damping laws for spin waves. 

Therefore, a comparison of the specific features
revealed in this work with the results of the targeted
experimental investigations of modifications of the
dispersion and damping laws in inhomogeneous mag-
nets would make it possible to determine the contribu-
tion of cross correlations to the formation of the sto-

chastically inhomogeneous ground state in amor-
phous magnetic alloys. 
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