
Eur. Phys. J. B 69, 219–227 (2009)
DOI: 10.1140/epjb/e2009-00141-4

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Energy structure of high-temperature superconductors
with the intersite Coulomb interaction

V.V. Val’kov1,2 and M.M. Korovushkin1,a

1 L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk, Russia
2 Siberian Federal University, 660041 Krasnoyarsk, Russia

Received 19 June 2008 / Received in final form 17 February 2009
Published online 22 April 2009 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2009

Abstract. The effect of the intersite Coulomb interaction of fermions on the ground state and energy
structure of high-temperature superconductors is considered within the three-band Emery model using an
extended basis of the irreducible operators orthogonal on Mori. The proposed theory allows prediction of
bands of the fluctuation states whose spectral intensity grows with an increase in the root-mean-square
fluctuations of the occupation numbers. The increase in these fluctuations in high-temperature supercon-
ductors upon doping plays a key role in redistribution of the integrated density of the Fermi states.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 74.72.-h Cuprate superconductors
– 71.28.+d Narrow-band systems; intermediate-valence solids

1 Introduction

Though the high-temperature superconductors (HTSC)
were discovered long ago [1] the study of their electronic
structure is one of the key directions in condensed mat-
ter physics. The description of the HTSC electronic prop-
erties is known to be nontrivial, which is caused by the
presence of strong intra-atomic correlations. For instance,
it requires careful consideration of these correlations to
describe the ground state of copper oxides following the
scenario for a Mott-Hubbard insulator [2].

An approach currently used for theoretical study of
the electronic properties of ensemble of strongly correlated
electrons is based on the known compromise, when a real
system is simulated by the simplified model. On the one
hand this model allows performing correct mathematical
calculations and on the other hand keeps the most signifi-
cant interactions of a real system under study. A classical
example of this compromise is the Hubbard model [3]. In
the first theoretical works dealing with HTSC this model
was used to describe a non-phonon formation mechanism
of the superconducting phase formation [4–6]. However,
being one-band the Hubbard model cannot help to inter-
pret experimental data on the electronic structure of cop-
per oxides. In particular, the attempts to use this model
for the description of angular resolved photoemission spec-
troscopy (ARPES) spectra taken from HTSC appear un-
successful.

A model more convenient for the description of the
HTSC electronic structure is the Emery model [7,8], which
takes into account the electronic states of copper and oxy-
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gen ions in an unit cell. In HTSC according to their chem-
ical composition there are one copper ion and two oxygen
ions per unit cell of the CuO2 plane (Fig. 1). Therefore,
even at the simplest consideration the energy spectrum of
the Emery model is three-band, which complicates ana-
lytical calculations. In this context investigations concern-
ing the possibility of obtaining the effective Hubbard-like
Hamiltonians by means the cluster perturbation theory
have been carried out [9–18]. Such an approach takes into
account the strong intra-atomic interactions, but the cor-
rect description of the intersite Coulomb interaction be-
tween fermions located on copper and oxygen ions is prob-
lematical. In particular, as has been mentioned in [19] it
is difficult to calculate the exchange integral within the
cluster approach when the intersite interaction of holes
on copper and oxygen ions is included into consideration.
Consideration of only a CuO4 cluster does not give cor-
rect results, since the effects of the interatomic Coulomb
interaction depends on configurations of holes out of such
a cluster. The situation is similar in the case when the
energy band structure of the Emery model is calculated
with account for the intersite correlations. Interest in the
effects of the intersite correlations has quickened in the
past few years, since was founded that an intersite charge
fluctuations capable to induce the Cooper pairing of the
fermions [20].

In view of the aforesaid, there is practical need in the
development of a method for calculation of the Emery
model energy structure that would make it possible to de-
scribe correctly not only the one-site interactions, but also
the interactions of fermions located on different sites. This
program may be realized by means of using an extended
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Fig. 1. CuO2 plane of high-temperature superconductor.

basis of the irreducible operators orthogonal on Mori. In
this work, we report the results of calculations of the en-
ergy band structure which have been obtained using the
developed method.

2 Emery model in the strongly correlated
regime

Let us consider a lattice of the HTSC CuO2 plane, shown
in Figure 1, where • – are Cu ions, ◦ – are O ions, a
denotes a lattice constant, x = (a, 0) and y = (0, a) are
lattice basis vectors. Each of the Cu ions has four adjacent
O ions, and each of the O ions has two adjacent Cu ions.
Without doping copper ions are in the divalent state Cu2+

(3d9 state) corresponds to unfinished d shell. At the same
time the oxygen ions O2− is in the electronic configuration
2p6 corresponds to filled p shell.

The Emery Hamiltonian [7,8] describing the dynam-
ics of electrons in CuO2 planes of HTSC in the second
quantized operators is given by

Ĥ = Ĥ0 + T̂pd + T̂pp, (1)

where

Ĥ0 = ε0
d

∑

f σ

n̂d
fσ + Ud

∑

f

n̂d
f↑n̂

d
f↓ +

ε0
p

2

∑

fδσ

n̂p
f+δ,σ

+
Up

2

∑

fδ

n̂p
f+δ,↑n̂

p
f+δ,↓ + Vpd

∑

fδσσ′
n̂d

fσn̂p
f+δ,σ′ ,

T̂pd =
∑

fδσ

tpd(δ)(d
†
fσpf+δ,σ + h.c.),

T̂pp =
1
2

∑

fδσ

tpp(Δ)p†f+δ,σpf+δ+Δ,σ.

Here d†fσ(dfσ) and p†f+δ,σ(pf+δ,σ) create (annihilate) d
and p electrons on copper site f and oxygen site f + δ
with spin projection σ = +1/2,−1/2, respectively. The
Hamiltonian is written in the electronic representation. In

accordance with this we will take into account only the
highest (with respect to the energy) orbitals for copper
and oxygen ions. The other four p electrons are situated
on the deeper orbitals and belong to the ion core. Similarly
the eight internal d electrons also belong to the copper ion
core and do not participate in the formation of the energy
structure in the vicinity of a chemical potential. Further,
in the equations δ denotes one of four vectors connecting a
copper ion with the oxygen ions in CuO2 plane, Δ is a vec-
tor connecting the oxygen ions; n̂d

fσ(n̂p
f+δ,σ) is an operator

of the d(p) electrons number; εd and εp are the Cu and
O energy levels; Ud, Up and Vpd are intra- and interatomic
Coulomb repulsion on Cu sites, O sites and between both
sites, respectively; tpd(δ) and tpp(Δ) are electron-hopping
integrals for hops from copper to oxygen ions and from
oxygen to the nearest and next nearest oxygen ions, re-
spectively. Signs of the hopping integrals are choosed so
that tpd(f ± x/2) = ∓tpd and tpd(f ± y/2) = ±tpd.

The Emery Hamiltonian is typical of the multiband
theory of metals in the tight binding representation. The
Hamiltonian is of a Hubbard type as it describes both
the intra-ionic Coulomb correlations and the processes of
hopping between the single-ion states in the Wannier rep-
resentation.

As is known, the strong intra-atomic correlations are
described simplest using the atomic representation. For
this description the Hubbard operators [21] built on the
basis of one-site (one-cell) states are used [22]. These states
are determined as eigenstates of the one-site Hamiltonian
which includes all the strong one-site interactions. For fur-
ther consideration it is convenient to rewrite the Emery
Hamiltonian (1) in the atomic representation:

Ĥ = Ĥ0 + T̂pd + T̂pp, (2)

Ĥ0 =
∑

f

(
ε0

d

∑

σ

Zσσ
f + (2ε0

d + Ud)Z22
f

)

+
1
2

∑

fδ

(
ε0

p

∑

σ

Xσσ
f+δ + (2ε0

p + Up)X22
f+δ

)

+Vpd

∑

fδ

(∑

σ

Zσσ
f + 2Z22

f

)(∑

σ′
Xσ′σ′

f+δ + 2X22
f+δ

)
,

T̂pd =
∑

fδσ

tpd(δ)

{(
Zσ0

f X0σ
f+δ + Z2σ̄

f X σ̄2
f+δ

+ η(σ)
(
Zσ0

f X σ̄2
f+δ + Z2σ̄

f X0σ
f+δ

))
+h.c.

}
,

T̂pp =
1
2

∑

fδΔσ

tpp(Δ)
(

Xσ0
f+δX

0σ
f+δ+Δ + X2σ̄

f+δX
σ̄2
f+δ+Δ

+ η(σ)
(
Xσ0

f+δX
σ̄2
f+δ+Δ + X2σ̄

f+δX
0σ
f+δ+Δ

))
,

where Zmn
f = |fm〉〈fn| and Xmn

f+δ = |f+δ, m〉〈f+δ, n| are
the Hubbard operators describing the transitions between
the one-ion states for copper and oxygen ions; η(σ) = ±1
at σ = ±1/2, respectively.

As was mentioned above, without doping the materi-
als under study are insulators despite the electronic d shell
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of copper ions is incomplete. Since the p shell of oxygen
ions in La2−xSrxCuO4 at x = 0 is complete and upon
weak doping (x < 0.3) only a small part of oxygen ions
undergo a transition to the 2p5 state, during the forma-
tion of actual electronic states of the Hilbert space of the
oxygen subsystem one can limit the consideration to the
states corresponding to the upper Hubbard subband. On
each oxygen ion the presence of the strong Coulomb re-
pulsion between two electrons in the upper p states with
the opposite projections of the spin moment is assumed.
In addition, during the description of the electronic states
of copper ions it is reasonable to use the concept of the
atomic representation. In the regime of the strong one-site
Coulomb repulsion between two electrons on copper ions
(Ud → ∞), only the lower Hubbard subband of the copper
d states will contribute to the Fermi excitation dynamics.
Reasoning from above and considering the conditions of
completeness of the diagonal Hubbard operators of the
copper and oxygen ion subsystems

Z00
f + Z↑↑

f + Z↓↓
f = 1, (3)

X00
l + X↑↑

l + X↓↓
l + X22

l = 1 (4)

and also taking into account that 〈X00
l 〉 = 0 upon weak

doping, we can rewrite the Emery Hamiltonian as follows:

Ĥ = E0 +
∑

fσ

(
ε0

d + 8Vpd − 4Vpdhp

)
Zσσ

f

+
1
2

∑

fδ

((
ε0

p − 2Vpd + 2Vpdhd

)
ĥf+δ

+ (2ε0
p + Up)X22

f+δ

)

+
∑

fδσ

tpd(δ)η(σ)
(
Zσ0

f X σ̄2
f+δ + X2σ̄

f+δZ
0σ
f

)

+
1
2

∑

fδΔσ

tpp(Δ)X2σ̄
f+δX

σ̄2
f+δ+Δ

+Vpd

∑

fδ

(
Z00

f − hd

)(
ĥf+δ − hp

)
, (5)

where ĥf+δ = X↑↑
f+δ + X↓↓

f+δ is the operator of the oxygen
holes number and

hd =
1
N

∑

f

〈Z00
f 〉, hp =

1
N

∑

f

〈ĥf+δ〉

are the average copper and oxygen holes numbers, respec-
tively.

Since upon doping the holes appear on oxygen ions,
between the seed parameters of the model the condition
ε0

p − ε0
d + Up − 6Vpd > 0 should be met.

Let us now consider some features of form (5) of the
Emery Hamiltonian. One can see that the one-site en-
ergies of electrons on copper and oxygen ions renormal-
ized by the mean-field effects became dependent of the
states of oxygen and copper ions, respectively. This well-
known effect was used previously, in particular, in the
Falicov-Kimball model [23] for investigation of the transi-
tions with the valency change. An energy shift depends on

the intensity of the intersite Coulomb interaction. With-
out doping (hd = 0, hp = 0) the renormalized energy of
the electron located on a copper ion is εd = ε0

d + 8Vpd.
The term 8Vpd has simple physical meaning: in the nom-
inal state of the system each electron on a copper ion in-
teracts with eight electrons on the adjacent oxygen ions.
Similarly, without doping each electron on an oxygen ion
experiences the Hubbard repulsion from the other electron
on the same site with the opposite spin projection and in-
teracts with electrons on the two adjacent copper ions.
Upon doping the one-site energies of d and p electrons
decrease as the average number of holes on the adjacent
oxygen and copper ions increase. This leads to a decrease
in energy of the Coulomb repulsion as compared to the
nominal energy.

The main reason for isolation of the obvious mean-
field effects is the need for presentation of the intersite
interaction in the form which explicitly reflects the cor-
relation effects. After some simple identical transforma-
tions the last Hamiltonian term describing the intersite
correlations is written in the desired form. One can see
that this term will contribute to the energy structure only
in the presence of noticeable fluctuations of the occu-
pation numbers of copper and oxygen ions. The energy
E0 = 4NVpdhp(1−hd) originates, as usual, from isolation
of the mean-field effects.

We would like to note that within this approach the
insulating state of the system is obtained in a natural way
as it is the exact solution of the Schrödinger equation in
the absence of doping, i.e. when the sum of holes in the
copper and oxygen subsystems is zero.

3 Energy structure

3.1 On consideration of the strong correlations

The method of the consideration of the intersite corre-
lations developed here is natural generalization of the
Hubbard’s concept of description of the strong one-
site correlations [3]. Below we recall the essence of this
concept.

Let us consider the Hubbard Hamiltonian

Ĥ = ε
∑

fσ

n̂fσ +
∑

fmσ

tfma†
fσamσ +

U

2

∑

fσ

n̂fσn̂fσ̄, (6)

and write the first exact equation of motion for the two-
time retarded anticommutator Green’s function:

(ω − ε)〈〈afσ |a†
gσ〉〉ω = δfg +

∑

m

tfm〈〈amσ|a†
gσ〉〉ω

+U〈〈afσn̂fσ̄|a†
gσ〉〉ω. (7)

It is seen that equation (7) contains the Green’s function
of higher order by the second quantized operators. It is im-
portant that the function is preceded by energy factor U
reflecting the Coulomb interaction between two electrons
with the opposite spin projections located on one site.
Under the condition of the strong correlations, factor U is
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the main energy parameter; therefore, in the operators de-
scribing the one-site processes decoupling cannot be used.
It means that the corresponding high Green’s function
needs in its own equation of motion:

(ω − ε − U)〈〈afσn̂fσ̄|a†
gσ〉〉ω = δfg〈n̂fσ̄〉

+
∑

m

tfm

{
〈〈amσn̂fσ̄|a†

gσ〉〉ω + 〈〈afσa†
fσ̄amσ̄|a†

gσ〉〉ω

− 〈〈afσa†
mσ̄afσ̄|a†

gσ〉〉ω
}

. (8)

This equation also contains the high-order Green’s func-
tions, but with small energy factor tfm. In these functions
decoupling is implemented only relative to the multisite
operators. It allows to describe correctly the one-site cor-
relations and characteristics of the Mott-Hubbard insula-
tor.

As is known the solution of the system of equa-
tions (7)–(8) in the quasi-momentum representation yields
an energy spectrum consisting of two Hubbard subbands.
The lower band corresponds to the motion of an electron
over the sites when other electrons on these sites are ab-
sent. The upper band is formed due to hopping over the
sites where electrons with opposite spin projections are
already located. Therefore, the energy of such a band in-
cludes the shift by a value of Coulomb repulsion U .

Having generalized the Hubbard’s concept for consid-
eration of the strong one-site correlations to the intersite
correlations we come to the conclusion that the high-order
Green’s functions which appear in the system of equa-
tions of motion with intersite Coulomb interaction pa-
rameter Vpd should not be reduced to simpler functions.
Consequently, these functions need in the corresponding
equations of motion which would make exact allowance for
all the contributions of the intersite correlations. Only the
terms containing no large energy factors can be simplified.

For the correct description of the intersite correlations
it appears the most effective to introduce an orthogonal
set of the irreducible operators with the subsequent use of
the Zwanzig-Mori projection technique [24,25] in other to
close the equations of motion for the extended set of the
Green’s function.

3.2 Orthogonal basis of the irreducible operators

We introduce the orthogonal set of the basis operators
{
Z0σ

f , X σ̄2
f+δ+ , Φ̂σ

f , Ψ̂σ
f+δ+

}
, (9)

where two last basis elements are determined as

Φ̂σ
f =

∑

δ

Z0σ
f

(
ĥf+δ − hp

)
,

Ψ̂σ
f+δ+ = X σ̄2

f+δ+

(
Z00

f + Z00
f+2δ+ − 2hd

)
. (10)

In this case the concept of orthogonality is based on the
following definition of the scalar product of two quasi-
Fermi operators:

(Â, B̂) = 〈{Â, B̂}+〉 = 〈ÂB̂ + B̂Â〉. (11)

In accordance with definition (11) the norms of the basis
elements are

〈{Z0σ
f , Zσ0

f }+〉 = 1 − nd

2
,

〈{X σ̄2
f+δ+ , X2σ̄

f+δ+}+〉 =
np

2
= 1 − hp

2
,

〈{Φ̂σ
f , (Φ̂σ

f )†}+〉 = 4hp(1 − hp)
(
1 − nd

2

)
,

〈{Ψ̂σ
f+δ+ , (Ψ̂σ

f+δ+)†}+〉 = 2hd(1 − hd)
(
1 − hp

2

)
. (12)

Let us consider the physical meaning of operators (10).
Operator Φ̂σ

f corresponds to the electron annihilation on
copper ion f when the intensity of the process depends
on the deviation of configurations of the nearest oxygen
ions from the average statistical configuration. Similarly,
operator Ψ̂σ

f+δ+ reflects the electron annihilation on oxy-
gen ion f + δ+ with transferring this ion from the double
occupied state to the single-electron state. The intensity
of this process depends on the deviation of the electronic
configurations of the two copper ions nearest to site f +δ+

from the average statistical configuration.
The site indices are recorded using the vectors δ+ ∈{(

a
2 , 0

)
,
(
0, a

2

)}
which relate a copper ion to merely two

of the four nearest oxygen ions. This limitation is obvious
as, otherwise, the introduced basis would make allowance
for operators Ψ̂σ

f+δ+ twice.
Basis (9) does not contain the operators describing

more than one hole on oxygen ions in the nearest neigh-
borhood of a copper ion. This simplification is justified,
because upon weak doping the condition hp 	 1 should
be met. Indeed, under the conditions when the number of
copper holes per unit cell of CuO2 plane hd 
 1 and the
number of oxygen holes per unit cell hp 	 1, the interac-
tion between oxygen holes can be disregarded. Actually,
the specific energy of this interaction ∼ Vpph

2
p is quadratic

in the small parameter hp. At the same time, due to condi-
tion hd 
 1, the interaction between the holes on Cu and
O ions ∼ Vpdhphd 
 Vpdhp becomes important, because it
is linear in hp. Thus, the problem of the energy structure
of the Emery model in the case of weak doping involves
the gas parameter hp 	 1. The number of the equations
of motion is significantly reduced due to the use of the gas
approximation.

3.3 The equations of motion and self-consistency
equations

The exact equation of motion in the Heisenberg represen-
tation is

i
d

dt
Z0σ

f = (εd − 4Vpdhp)Z0σ
f − VpdΦ̂

σ
f

+
∑

δ

tpd(δ)η(σ)
(
(Z00

f + Zσσ
f )X σ̄2

f+δ − Z σ̄σ
f Xσ2

f+δ

)
. (13)

It is seen that the intersite correlations lead to trapping
more complicated operator Φ̂σ

f which describes a corre-
lated process of the electron annihilation on a copper ion.
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This correlation is related to the possibility of changing
valency of the nearest oxygen ions. The obtained equa-
tion of motion evidences expediency of isolation of the
mean-field effects implemented in Section 2 via the inter-
site interactions.

The second exact equation of motion takes the form

i
d

dt

(
X σ̄2

f+δ+

)
= (εp − 2Vpdhd)X σ̄2

f+δ+ − Vpdη(σ)Ψ̂σ
f+δ+

+tpd(δ+) η(σ)
((

X σ̄σ̄
f+δ+ + X22

f+δ+

)(
Z0σ

f − Z0σ
f+2δ+

)

−X σ̄σ
f+δ+

(
Z0σ̄

f − Z0σ̄
f+2δ+

))

+
∑

Δ

tpp(Δ)
((

X σ̄σ̄
f+δ+ + X22

f+δ+

)
X σ̄2

f+δ++Δ

+X σ̄σ
f+δ+Xσ2

f+δ++Δ

)
. (14)

Again, as in equation (13), the intersite correlations lead
to trapping irreducible operator Ψ̂σ

f+δ+ . Two remaining
equations for the basis operators are

i
d

dt
Φ̂σ

f = (εd − 4Vpdhp)Φ̂σ
f +

∑

δδ1

tpd(δ1)η(σ)

×
((

Z00
f + Zσσ

f

)
X σ̄2

f+δ1
− Z σ̄σ

f Xσ2
f+δ1

)(
ĥf+δ − hp

)

+
∑

δ

tpd(δ)η(σ)Z00
f X σ̄2

f+δ

−
∑

δσ1

tpd(δ)η(σ1)Z0σ
f

(
Zσ10

f+2δX
σ̄12
f+δ − X2σ̄1

f+δZ
0σ1
f+2δ

)

+
∑

δΔσ1

tpp(Δ)Z0σ
f

(
X2σ̄1

f+δ+ΔX σ̄12
f+δ − X2σ̄1

f+δX
σ̄12
f+δ+Δ

)

−Vpd

∑

δδ1

Z0σ
f

(
ĥf+δ1 − hp

)(
ĥf+δ − hp

)
, (15)

and

i
d

dt
Ψ̂σ

f+δ+ = (εp − 2Vpdhd)Ψ̂σ
f+δ+ + tpd(δ+)

×
((

X σ̄σ̄
f+δ+ + X22

f+δ+

)(
Z0σ

f − Z0σ
f+2δ+

)

−X σ̄σ
f+δ+

(
Z0σ̄

f − Z0σ̄
f+2δ+

))(
Z00

f + Z00
f+2δ+ − 2hd

)

+
∑

Δ

tpp(Δ)η(σ)
((

X σ̄σ̄
f+δ+ + X22

f+δ+

)
X σ̄2

f+δ++Δ

+X σ̄σ
f+δ+Xσ2

f+δ++Δ

)(
Z00

f + Z00
f+2δ+ − 2hd

)

−Vpdη(σ)X σ̄2
f+δ+

(
Z00

f + Z00
f+2δ+ − 2hd

)

×(
Z00

f + Z00
f+2δ+ − 2hd

)

+
∑

σ1

tpd(δ+)η(σ)η(σ1)X σ̄σ̄1
f+δ+

(
Z0σ1

f − Z0σ1
f+2δ+

)

+
∑

δ(δ �=δ+)

∑

σ1

tpd(δ)η(σ)η(σ1)
(
X σ̄2

f+δ+X2σ̄1
f+δZ

0σ1
f

−X σ̄2
f+δ+Zσ10

f X σ̄12
f+δ

)
. (16)

In equations (13)–(16) the notations εd = ε0
d + 8Vpd and

εp = ε0
p + Up + 2Vpd for the one-site energies of electrons

on copper and oxygen ions renormalized by the intersite
correlations are used. Note that εd and εp should be con-
sidered as fitting parameters for comparison of the exper-
imental and theoretical data.

For closing the system of equations (13)–(16) we use
the Zwanzig-Mori projection technique [24,25], i.e. each
term of the right parts of the equations are projected onto
a subspace which represents a linear shell formed by ba-
sis operators (9). The algorithm of projection of arbitrary
operator Â onto basis vector e consists in calculation of
the scalar product (Â, e) and multiplication of the ob-
tained value by e/(e, e). For the basis introduced above
the aforesaid means that the procedure of decomposition
of arbitrary operator Â is reduced to the calculation of
the projection component as follows:

Â →
∑

g

(
〈{Â, Zσ0

g }+〉
〈{Z0σ

g , Zσ0
g }+〉Z

0σ
g +

〈{Â, X2σ̄
g }+〉

〈{X σ̄2
g , X2σ̄

g }+〉X
σ̄2
g

+
〈{Â, (Φ̂σ

g )†}+〉
〈{Φ̂σ

g , (Φ̂σ
g )†}+〉

Φ̂σ
g +

〈{Â, (Ψ̂σ
g )†}+〉

〈{Ψ̂σ
g , (Ψ̂σ

g )†}+〉
Ψ̂σ

g

)
. (17)

The linear approximation tolerates ignoring the kinetic
correlators appearing after projection and limiting the
consideration to spatially homogeneous solutions. Apply-
ing Fourier transformations to the Green’s functions

〈〈Z0σ
f |Zσ0

f ′ 〉〉ω =
1
N

∑

k

eik(Rf−Rf′ )〈〈Zkσ|Z†
kσ〉〉,

〈〈η(σ)X σ̄2
f+x/2|Zσ0

f ′ 〉〉ω =
1
N

∑

k

eik(Rf+Rx/2−Rf′ )〈〈Xkσ|Z†
kσ〉〉,

〈〈η(σ)Y σ̄2
f+y/2|Zσ0

f ′ 〉〉ω =
1
N

∑

k

eik(Rf +Ry/2−Rf′ )〈〈Ykσ|Z†
kσ〉〉,

〈〈Φσ
f |Zσ0

f ′ 〉〉ω =
1
N

∑

k

eik(Rf−Rf′)〈〈Φkσ|Z†
kσ〉〉,

〈〈Ψσ
f+x/2|Zσ0

f ′ 〉〉ω =
1
N

∑

k

eik(Rf +Rx/2−Rf′ )〈〈Ψx
kσ|Z†

kσ〉〉,

〈〈Ψσ
f+y/2|Zσ0

f ′ 〉〉ω =
1
N

∑

k

eik(Rf+Ry/2−Rf′ )〈〈Ψy
kσ|Z†

kσ〉〉,

(18)

we obtain the closed system of equations in the quasi-
momentum representation:

(ω − εd + 4Vpdhp)〈〈Zkσ|Z†
kσ〉〉 = Nd

−iNd

(
Sx〈〈Xkσ|Z†

kσ〉〉 − Sy〈〈Ykσ|Z†
kσ〉〉

)

− i

4

(
Sx〈〈Ψx

kσ|Z†
kσ〉〉 − Sy〈〈Ψy

kσ|Z†
kσ〉〉

)

−Vpd〈〈Φkσ|Z†
kσ〉〉, (19)
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(
ω − εp + 2Vpdhd − np

2
Cy

)
〈〈Xkσ|Z†

kσ〉〉 =

i
np

2
Sx〈〈Zkσ|Z†

kσ〉〉 +
np

2
Vxy〈〈Ykσ|Z†

kσ〉〉

− i

8
Sx〈〈Φkσ|Z†

kσ〉〉 − Vpd〈〈Ψx
kσ|Z†

kσ〉〉, (20)
(
ω − εp + 2Vpdhd − np

2
Cx

)
〈〈Ykσ|Z†

kσ〉〉 =

− i
np

2
Sy〈〈Zkσ|Z†

kσ〉〉 +
np

2
Vxy〈〈Xkσ|Z†

kσ〉〉

+
i

8
Sy〈〈Φkσ|Z†

kσ〉〉 − Vpd〈〈Ψy
kσ|Z†

kσ〉〉, (21)
(
ω − εd + 4Vpdhp + Vpd(1 − 2hp)

)
〈〈Φkσ|Z†

kσ〉〉 =

i(Ndhp − hd)
(
Sx〈〈Xkσ|Z†

kσ〉〉 − Sy〈〈Ykσ|Z†
kσ〉〉

)

+ i

(
hp

4
− 1

2

)(
Sx〈〈Ψx

kσ|Z†
kσ〉〉 − Sy〈〈Ψy

kσ|Z†
kσ〉〉

)

− 4Vpdhp(1 − hp)〈〈Zkσ|Z†
kσ〉〉, (22)

(
ω − εp + 2Vpdhd − np

2
Cy + Vpd(1 − 2hd)

)

× 〈〈Ψx
kσ|Z†

kσ〉〉 = −i

(
np

2
hd − hp

2

)
Sx〈〈Zkσ|Z†

kσ〉〉

− 2Vpdhd(1 − hd)〈〈Xkσ|Z†
kσ〉〉

+ i

(
hd

4
+

1
8

)
Sx〈〈Φkσ|Z†

kσ〉〉 +
np

2
Vxy〈〈Ψy

kσ|Z†
kσ〉〉, (23)

(
ω − εp + 2Vpdhd − np

2
Cx + Vpd(1 − 2hd)

)

× 〈〈Ψy
kσ|Z†

kσ〉〉 = i

(
np

2
hd − hp

2

)
Sy〈〈Zkσ|Z†

kσ〉〉

− 2Vpdhd(1 − hd)〈〈Ykσ|Z†
kσ〉〉

− i

(
hd

4
+

1
8

)
Sy〈〈Φkσ|Z†

kσ〉〉 +
np

2
Vxy〈〈Ψx

kσ|Z†
kσ〉〉. (24)

Here the following notations are used:

Sx = 2tpd sin
(kxa

2

)
, Sy = 2tpd sin

(kya

2

)
,

Vxy = 4tpp sin
(kxa

2

)
sin

(kya

2

)
, Nd = 1 − nd

2
,

Cy = −2t′pp1 cos(kxa) + 2t′pp cos(kya)

+4t′′pp cos(kxa) cos(kya) + 2t′′′pp cos(2kya),

Cx = −2t′pp1 cos(kya) + 2t′pp cos(kxa)

+4t′′pp cos(kxa) cos(kya) + 2t′′′pp cos(2kxa). (25)

Using the spectral theorem [26], it is easy to write the
system of self-consistency equations for obtaining the de-
pendence of the energy structure on doping:

nd

2
=

1
N

∑

k

6∑

i=1

Ai(Eik)f (Eik),

np
2 =

1
N

∑

k

6∑

i=1

Bi(Eik)f (Eik),

np = np
2 + 1,

nd + 2np = 5 − P, (26)

where f(x) = (exp(x−μ
T ) + 1)−1 is the Fermi-Dirac func-

tion, np
2 is the concentration of the double occupied oxy-

gen states, and P is the doping parameter. The spectral
intensities are

Ai(Eik) =
∑

i

ΔZ(Eik)∏
j �=i

(Eik − Ejk)
,

Bi(Eik) =
∑

i

ΔX(Eik)∏
j �=i

(Eik − Ejk)
. (27)

Here the notations are used:

ΔZ(Eik) = NdM11(Eik), ΔX(Eik) =
np

2
M22(Eik), (28)

where Mij is the subdeterminant obtained from the main
matrix of the system of equations (19)–(24) by deletion of
the i-th row and the j-th column.

3.4 Bands of the fluctuation states

It is known that calculation of the energy structure of the
Emery model in the Hartree-Fock approximation yields
a three-band picture (Fig. 2, on top). The calculation is
made for the set of parameters close to commonly used
(in terms of |tpd|):

ε0
d = −10.4, ε0

p = −7.1, tpp = 0.2, t′pp = −0.3,

t′pp1 = −0.2, t′′pp = 0.01, t′′′pp = −0.3,

Up = 5, Vpd = 1.3. (29)

In this case the lower band is formed mainly by the copper
d states, while the two upper bands with a maximum in
the vicinity of (π

2 , π
2 ) correspond to the hybridized px and

py oxygen states. Without doping the chemical potential
is located above the top of the upper band and the system
is a Mott-Hubbard insulator. Upon doping holes appear
in the system and the chemical potential drops falling in
the upper band. Thus, the system becomes metallic.

Figure 2 (bottom) depicts the energy spectrum of the
model under consideration. The spectrum was obtained
by solving the system of equations (19)–(24) at the same
parameter values and doping level. The qualitative differ-
ence between the band picture obtained and that typical
of the Hartree-Fock approximation is that the correct ac-
count for the intersite correlations leads to the appearance
of additional energy levels in the energy structure of the
Emery model.

The physical origin of three additional energy levels is
the following. Without our approach in the absence of dop-
ing there are two electrons on each oxygen ion. Thus, con-
sidering the intersite interaction, excitation energy εd of
an electron located on a copper ion consists of the seed en-
ergy and energy of the interaction with surrounding oxy-
gen electrons, i.e. εd = ε0

d + 8Vpd. The hopping processes
cause splitting of this energy level, so the latter turns into
an energy band.
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Fig. 2. Band picture of the Emery model in the limit of strong
one-site correlations with account for the intersite correlations
in the Hartree-Fock approximation (top) and with account for
the bands of the fluctuation states (bottom) for the set of pa-
rameters (29) at the doping level P = 0.27. Dashed lines show
the chemical potential.

If there are holes in the system, then there will be only
one, not two, electron on some oxygen ions. In this case
the one-site excitation energy of an electron located on the
copper ion adjacent to the mentioned oxygen ions will be
ε0

d +7Vpd instead of ε0
d +8Vpd. Thus, the additional energy

levels for d electrons ε̃d = εd − Vpd appear in the system;
they are fluctuation levels located below initial level εd by
Vpd. Similarly, for the oxygen states the fluctuation levels
will also appear as soon as holes get in the system upon
doping. Indeed, due to the hybridization processes some
copper ions lose one electron. Then the excitation energy
of an electron on an oxygen ion will be ε̃p = εp − Vpd in-
stead of the nominal value εp = ε0

p +Up +2Vpd. It will lead
to the formation of the fluctuation level. As there are two
oxygen ions in a unit cell of the CuO2 plane, two fluctu-
ation levels corresponding to the oxygen orbitals per unit
cell will occur. These circumstances determine the occur-

−3 −2 −1 0 1 2 3
0

0.5
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g(
E

) 
| t

pd
 |

E / | t
pd

 |

Fig. 3. Density of states of the Emery model in the limit
of strong one-site correlations with account for the bands of
the fluctuation states without doping for the set of parame-
ters (29). Vertical straight line shows the chemical potential.

rence of three additional energy levels in the energy struc-
ture of the Emery model. At a large value of the intersite
Coulomb interaction the fluctuation levels are noticeably
separated from the initial one-site energy levels.

Here we do not consider the case when each of two cop-
per ion adjacent to oxygen ions loses one electron. This ap-
proximation is justified as statistical weight of the consid-
ered configurations is relatively small. Otherwise we would
have to consider also the fluctuation levels ε̃p = εp−2Vpd.
The calculations we made to check the validity of this ap-
proximation showed that the contribution of the states
with the energy ε̃p = εp − 2Vpd at the doping levels at-
tainable experimentally is negligible.

Thus, the formation of the additional energy levels is
caused by changing energy of the electron located on a
site if near this site the electronic configurations deviate
from nominal ones. Consequently, the occurrence of the
new levels is related to the charge fluctuations. The hop-
ping processes lead to spreading the fluctuation levels into
energy bands, which we name the bands of the fluctuation
states (BFS).

We would like to emphasize that the occurrence of the
BFS in the Emery model due to the intersite correlations
is qualitatively similar to the occurrence of two Hubbard
subbands at the strong intra-atomic repulsion. Obviously,
upon weak doping the spectral intensity of the BFS will
be small and their contribution to the integrated energy
structure will be insignificant (Fig. 3). It is clear, that in
this case the energy structure is similar to that following
from the theory which takes into account the intersite cor-
relations in the Hartree-Fock approximation (Fig. 4, top).
However, if the concentration of holes in the system in-
creases, then at the doping levels P = 0.2÷0.3 the picture
becomes qualitative different. With an increase in number
of holes in the system or in intensity of the hopping pro-
cesses the spectral intensity of the BFS, determined by the
root-mean-square fluctuations of the occupation numbers
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Fig. 4. Density of states of the Emery model in the limit
of strong one-site correlations with account for the intersite
correlations in the Hartree-Fock approximation (top) and with
account for the bands of the fluctuation states (bottom) for the
set of parameters (29) at the doping level P = 0.27. Vertical
straight lines show the chemical potential.

increases and the new bands start playing an important
role. As a result, with an increase in doping level the spec-
tral weight is redistributed between the ordinary bands
and the BFS in favour of the latter. This induces the oc-
currence of an additional peak of the density of states of
the model determined as

g(ω) =
1
N

∑

k

∑

i

(
Ai(Eik) + Bi(Eik)

)
δ(ω − Eik) (30)

(δ(x) is the Dirac delta-function), in the vicinity of the
fluctuation band of the copper d states, as well as the
noticeable increase in the density of states near the oxy-
gen BFS (Fig. 4, at the bottom). The top plot calcu-
lated with allowance made for the intersite correlations in
the Hartree-Fock approximation shows that at the doping
level P = 0.27 the chemical potential of the system falls in
a dip of the density of states. When the BFS are taken into
account, the above-mentioned redistribution of the spec-
tral intensity between the ordinary bands and the BFS

occurs which favors the increase in the dip of the density
of states at the Fermi level (Fig. 4, at the bottom).

It must be noted that in the hypothetical limit when
there would be one hole strictly on each oxygen ion, the
fluctuation levels ε̃p = εp − Vpd would turn into the basic
ones with the formation of the corresponding band and
the spectral intensity of the latter would be the highest.

Let us now consider the physical meaning of the re-
quirement for smallness of electron-hopping integral tpd

(narrow band) as compared to the intensity of intersite
Coulomb correlations Vpd. As was mentioned above, when
Vpd is significant the energy spread between the ordinary
and fluctuation levels becomes large. Under these condi-
tions at relatively small tpd (small kinetic energy) an elec-
tron getting on the site in the vicinity of which there are
ions with other valency will be in the state with the mod-
ified energy for some time (until hopping to another site).
For this reason this modified energy will influence the for-
mation of the resulting energy structure.

In the opposite case, when kinetic energy of an electron
is large as compared to the energy of the intersite correla-
tions, an electron will continuously move over the lattice
sites having no time to follow the change in the one-site
energies caused by the formation of the electronic config-
urations with other valency of the nearest surrounding.
Therefore, the fluctuations of the one-site energies will
close and the statistically averaged picture of the band
states will form.

4 Conclusion

In the framework of the Emery model in the strongly
correlated regime without involving the cluster perturba-
tion theory the effect of the intersite Coulomb interaction
of fermions on the electronic energy structure of HTSC
has been studied. The method for the correct description
of the intersite correlations using the extended orthogo-
nal basis of the irreducible operators has been developed.
With a use of the Zwanzig-Mori projection technique, the
closed system of equations describing the dynamics of the
Fermi excitations has been obtained and solved for the
extended set of the Green’s functions.

The study of the energy structure carried out by the
developed method has shown that the inclusion of the
intersite correlations effects yields not only quantitative
changes but also a number of qualitatively new features.
We emphasize that we are speaking of the intersite cor-
relations and not of the intersite interaction. Indeed, the
most part of the interaction which is reduced to the mean-
field effects is easily described by the above-mentioned
renormalization of the one-site energies of the copper and
oxygen orbitals, whereas the description of the correla-
tion effects would demand the higher irreducible Green’s
functions.

The qualitatively new effects found are the following.
The first one is the occurrence of new energy bands due
to the charge fluctuations. The second effect is redistribu-
tion of the spectral intensity between the ordinary bands
and fluctuation bands, which is especially important as it
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can induce the pseudogap state of a strongly correlated
system upon doping. The final answer to the question
whether this redistribution of the integrated density of
states can induce the spectral intensity modulation on a
Fermi contour requires closer examination, which is be-
yond this study.

To conclude with, we note that the proposed method
of the account for the strong intersite Coulomb correla-
tions represents natural generalization of the approach
widely used in theory of strongly correlated systems with
the one-site correlations. The application of our method
shows that the strong intersite correlations induce quanti-
tative changes in the energy structure of the Emery model.
It means that the account for the intersite correlations is
important for interpretation of the low-energy properties
of the HTSC described by the three-band Emery model.
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