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PREFACE

The objective of this NATO Advanced Research Workshop on “Recent
Advances in Nonlinear Dynamics and Complex System Physics” was to
bring together researchers working in different areas of nonlinear dynamics
and its application to various topics such as nanoscale physics, cold atoms,
Bose-Einstein condensates, quantum information, non-equilibrium systems
and econophysics. Most of the talks were concentrated on quantum trans-
port and nonlinear phenomena in nanostructures and cold atom systems,
including quantum dots, graphene and trapped cold atoms. Special attention
was brought to possible practical applications in nano-scale physics and
engineering. A special feature of the meeting was the fact that most of the
speakers and participants were young researchers who presented interesting
talks in different areas. Over a total of 55 talks, 28 were 50-min talks by well
known scientists while the other talks were half-hour ones, mostly by young
researchers.

Panel discussions have attracted a broad audience of theoretical and ex-
perimental physicists interested in a deeper understanding of various partic-
ular aspects and recent progress on the topics of the meeting. A round table
discussion has been organized on the final day of the conference in order to
comment on the conference talks and to present concluding remarks.

The workshop has been wonderfully and efficiently organized by the local
committee chaired by P.K. Khabibullaev and with K. Nakamura, A.A. Saidov,
Kh.Yu. Rakhimov, U. Salomov, G. Milibaeva as members. A group of PhD
students from the Heat Physics Department helped for several and important
organizational matters. Our special thanks go to Olga Karpova for her help
with the secretarial duties before, during and after the conference. We would
like to thanks also Khakim Butanov, Nurmukhammad Iskandarov and Hamid
Yusupov for their valuable assistance in the preparation of the proceedings of
the conference.

Finally, we wish to thank NATO Science for Peace and Security Program
for the financial support. Additional support was provided by the Heat
Physics Department of the Uzbek Academy of Sciences and Physical Society
of Uzbekistan.

Como, Italy Giulio Casati
Tashkent, Uzbekistan Davron Matrasulov
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TUNING THE SUPERCONDUCTING PROPERTIES

OF NANOMATERIALS

M.D. Croitoru, A.A. Shanenko, and F.M. Peeters*
Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, 2020
Antwerpen, Belgium; francois.peeters@ua.ac.be

Abstract. Electron confinement and its effect on the superconducting-to-normal phase tran-
sition driven by a magnetic field and/or a current is studied in nanowires. Our investigation
is based on a self-consistent numerical solution of the Bogoliubov–de Gennes equations. We
find that in a parallel magnetic field and/or in the presence of a supercurrent the transition
from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in
the superconducting order parameter for diameters D < 10 ÷ 15 nm at T = 0. The critical
magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements as
a function of the wire radius.

Key words: Quantum confinement; Bogoliubov–de Gennes equations; Nano-superconduc-
tivity

1. Introduction

Our understanding of the superconducting properties in nanostructures has
experienced a notable development in the last few years (von Delft 2001;
Han and Crespi 2004; Grigorenko et al. 2008; Gladilin et al. 2004; Shanenko
and Croitoru 2006; Shanenko et al. 2006a). This has been partly propelled by
the recent developments in fabrication techniques of high-quality nanoscopic
metallic structures (Guo et al. 2004; Özer et al. 2006, 2007; Eom et al. 2006;
Zgirski et al. 2005; Tian et al. 2005; Jankovič et al. 2006; Gournis et al. 2008;
Altmore et al. 2006). For example, in Zgirski et al. (2005) it was shown that
the application of low energy (∼1 keV) Ar+ ion sputtering allows one to re-
duce an Al or Sn nanowire width down to 10 nm. The electron mean free path
in such structures was estimated to be about or larger than the specimen thick-
ness and, therefore, such nanowires can be considered to be in the clean limit
for the transverse (confined) electron motion. That means that nonmagnetic
impurities can only influence the electron motion parallel to the nanowire.
Within this method the resistance R (T ) of the same nanowire before and
after sputtering sessions was obtained. The authors reported a clear, grad-
ual increase of the superconductor critical temperature with decreasing wire

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 1
NATO Science for Peace and Security Series B: Physics and Biophysics,
c© Springer Science+Business Media B.V. 2009



2 M.D. CROITORU ET AL.

thickness. This is the opposite behavior as found earlier for sufficiently disor-
dered nano-samples where a suppression of the superconducting temperature
with decreasing wire width is observed.

Studies of superconducting properties of quasi low-dimensional struc-
tures (films, wires, dots, etc.) have a long history. Most of these studies
referred to strongly disordered or granular structures (Altshuler et al. 1980;
Altshuler 1985; Lee 1985; Skvortsov and Feigel’man 2005; Oreg and
Finkelstein 1999). The main purpose of those earlier investigations was to
explain the suppression of superconductivity in such high-resistive structures.
Many of these studies have ignored the effect of confinement of the itinerant
carriers, because in such strongly disordered structure this effect is not of
primary importance.

In Shanenko et al. (2006a) it was found that recent experimental obser-
vations of the width-dependent increase of the superconducting-transition
temperature of high quality nanowires (Zgirski et al. 2005; Tian et al. 2005;
Savolainen et al. 2004) is a manifestation of size-dependent superconducting
resonances as a consequence of quantum confinement. Such a size resonance
superconducting quantity occurs when an electron subband passes through
the Fermi surface (Shanenko and Croitoru 2006; Shanenko et al. 2006a; Blatt
and Thompson 1963; Shanenko et al. 2006b). Effects of nanowire topology on
superconductivity have been investigated and it was shown that quantum-size
oscillations are accompanied by quantum-shape variations in all supercon-
ducting properties (Croitoru et al. 2007). These theoretical works not only
helped to clarify the physics behind the observed results, but they also show
the way towards possible tuning of the superconducting characteristics by
changing the cross section of the structures.

One can expect that quantum confinement should also influence the
superconducting-to-normal phase transition driven by a magnetic field or a
supercurrent. Indeed, according to the Ginzburg–Landau theory, the critical
magnetic field is expected to increase as 1/D in the Meissner state, with D the
diameter of the mesoscopic wire. Moreover, the superconducting-to-normal
phase transition in a magnetic field is of second order for such mesoscopic
wires while being of first order in bulk type I superconductors. In this
paper we present an overview of our recent theoretical results on the critical
magnetic field and on the critical current in superconducting nanowires.

2. Theoretical Model and Numerical Approach

To study the interplay of superconductivity and quantum confinement in high-
quality metallic nanowires, we investigate a superconducting nanocylinder
with diameter D and length L in the clean limit. In the presence of quantum
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confinement the translational invariance in the confined directions is bro-
ken and the superconducting order parameter depends on the position Δ =
Δ(r). To investigate equilibrium superconductivity in this case the use of the
Bogoliubov–de Gennes (BdG) equations (Bogoliubov 1959; de Gennes 1966)
is required. These equations can be written as

εi|ui〉 = ̂He|ui〉 +̂Δ|vi〉, (1)

εi|vi〉 = ̂Δ∗|ui〉 − ̂H∗e |vi〉, (2)

where εi stands for the Bogoliubov-quasiparticle (bogolon) energy, |ui〉 and
|vi〉 are the particle-like and hole-like ket vectors and the single-electron
Hamiltonian, shifted by the chemical potential μ, is given by

̂He(r) =
̂P2

2me
+ V(r) − μ, (3)

with ̂P = p̂ + mevs. For the sake of simplicity, the confining interaction is
taken as: V(r) = VB θ(R−ρ) with the barrier potential VB → ∞ (R = D/2 and
ρ is the transverse coordinate from the cylindrical set ρ, ϕ, z). In (1) and (2),
̂Δ stands for the gap operator whose matrix element are given by 〈r|̂Δ|r′〉 =
Δ(r)δ(r − r′), with δ(x) the Dirac δ-function. The BdG equations should be
solved in a self-consistent manner together with the relation

̂Δ = g
∑

i

(1 − 2 fi)δ̂i, (4)

with i = ( j,m, k) due to the cylindrical symmetry and 〈r|̂δi|r′〉 = 〈r|ui〉〈vi|r′〉
δ(r − r′),where g is the coupling constant [for a delta-function effective
electron–electron interaction −gδ(r1 − r2)], and fi = 1/(eβEi + 1) is the Fermi
distribution for the bogolons. The sum in (4) runs over the states with the
single-electron energy

ξi =
[

〈ui|̂He|vs=0|ui〉 + 〈vi|̂H∗e |vs=0|vi〉
]

∈ [−�ωD, �ωD], (5)

with ωD the Debye frequency and vs = |vs|. Equation (5) introduces the
cut-off over the single-electron momentum p, to remedy the delta-function
approximation for the effective electron–electron interaction. Such an approx-
imation neglects the complex structure of the Fourier transform of the pair
interaction. The problem is cured by the cutoff in the canonical-momentum
space. In addition, notice that there are two branches for a solution of the
BdG equations: (i,+) and (i,−) (see de Gennes 1966; Swidzinsky 1982).
For them we have Ei,+|vs=0 > 0 and Ei,−|vs=0 < 0. The sum in (4) should
be taken over the physical states [the (i,+) branch], i.e. Ei = Ei,+. It is of
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importance to remark that some of Ei can become negative at vs � 0. This
is a signature of the reconstruction of the ground state due to the current- or
magnetic field-induced depairing of electrons.

For a given mean electron density ne the chemical potential μ is deter-
mined from

ne =
2

πR2L

∑

i

[

fi〈ui|ui〉 + (1 − fi)〈vi|vi〉]. (6)

Expanding |ui〉 and |vi〉 in terms of the eigenfunctions of ̂He, one can convert
(1) and (2) into a matrix equation. Then, the numerical problem is solved by
means of diagonalizing the relevant matrix and invoking iterations, in order
to account for the self-consistency relation given by (4).

3. Quantum-Size Oscillations and Resonances

The physics behind the quantum-size superconducting resonances is as fol-
lows. The superconducting order parameter is not simply the wave function
of an ordinary bound state of two fermions but the wave function of a bound
fermion pair in a medium (Bogoliubov 1959; Gor’kov 1958). In the ho-
mogeneous case the Fourier transform of the Cooper-pair wave function is
suppressed for wavenumbers less than the Fermi one due to the presence of
the Fermi sea (Cooper 1956). Therefore, the Fourier transform of the Cooper-
pair wave function appears to be essentially nonzero only in the vicinity of the
Fermi wavenumber. Generally, the superconducting order parameter strongly
depends on ND, the number of single-electron states (per spin projection)
situated in the Debye window around the Fermi level (ξi ∈ [−�ωD, �ωD]).
More precisely, the mean energy density of these states taken per unit volume
nD = ND/(2�ωDV) is the key quantity. In the presence of quantum confine-
ment the band of single-electron states in a clean nano-sample is split up in a
series of subbands. While the specimen thickness increases (decreases), these
subbands move down (up) in energy. Note that the position of the bottom
of any subband scales as 1/D2, with D the specimen thickness. Each time
when the bottom of a parabolic subband passes through the Fermi surface,
the density nD increases abruptly. As an example in Fig. 1a, b, single-electron
subbands are schematically plotted vs. the wave vector of the quasi-free elec-
tron motion along the nanowire. The single-electron states located in the
Debye window (making a contribution to the superconducting characteristics)
are highlighted by the broken lines. In Fig. 1a the bottoms of all subbands
1, 2 and 3 are situated outside the Debye window, and we are in the off-
resonance regime. However, when increasing the thickness of the sample,
the bottom of subband 3 moves down so that it enters the Debye window
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a

c d

b

Figure 1. (a) Single-electron subbands vs. the wave vector for motion parallel to the
nanowire for the off-resonant case. (b) The same as in panel (a) but for the resonant situation.
(c) The 1D energy density of states at the Fermi level ρ1(EF ) vs. the wire thickness D, when
the EF = EF,bulk . The red curve is the density of states per unit length, the green curve is the
density of states averaged over the Debye window. (d) The mean energy density of states in
the Debye window nD vs. d: the green curve is for a constant Fermi level, the blue curve results
from taking account of a change in EF for narrow nanofilms

(as shown in Fig. 1b), the mean density of states nD increases and a super-
conducting resonance develops. This leads to a sequence of peaks in nD as a
function of the sample thickness d (see Fig. 1d) and, as a consequence, any
superconducting quantity exhibits quantum-size oscillations with remarkable
resonant enhancements. Such superconducting resonances are significant in
nanoscale samples but smoothed out with an increase in D (see Fig. 1d), when
nD slowly approaches its bulk limit N(0) = mkF/(2π2

�
2), with kF the bulk

Fermi wavenumber.
In the case of a nanowire the density of states per unit length is given by

ρ1(E) =

√
m/2
π�

∞
∑

j=0

θ
(

E − E j

)

/
√

E − E j, (7)

where θ(x) is the Heaviside function. Here E j is the bottom of the j-subband
due to the quantization of the electron motion in the confined direction. The
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red curve in Fig. 1c displays schematically quantum-size oscillations of the
nanowire density of states per unit length when the Fermi level is pinned to
its bulk value, while the green one is the same quantity but averaged over the
Debye window. The blue and green curves in Fig. 1d correspond to the aver-
aged (over the Debye window) density of states per volume nD ∼ ρ1(EF)/S ,
when the Fermi level fluctuates to keep the electron density of the system
constant (blue curve) and when the Fermi level is constant (green curve).

Notice that on the average nD is near its bulk value. However, as shown
below, the superconducting characteristics are enhanced at the resonant points
as compared to their bulk values and these resonances are correlated with
the resonances in the single-particle density of states. The reason is that the
single-electron wave functions are no longer three-dimensional plane waves,
and this change plays a significant role on the nanoscale.

4. Results and Discussion

Below we investigate how the quantum size resonances influence the critical
magnetic field and the critical supercurrent in superconducting nanowires. We
restrict ourselves to Al nanowires whose material parameters are: �ωD/kB =

375 K, gN (0) = 0.18 (de Gennes 1966). To investigate the quantum-size
variations of physical properties of nanoscale systems within the parabolic
band approximation (based on the use of the band mass me), one should use
an effective Fermi level rather than the true Fermi level (for more details,
see Shanenko et al. 2006b; Wei and Chou 2002). In the present work EF =

0.9 eV. This value of EF for Al is justified from the good agreement with
the experimental data found in Shanenko et al. (2006a). In the present work
we restrict ourselves to a cylinder nanowire with diameter D and length L =
5μm�λF .

4.1. PARALLEL CRITICAL MAGNETIC FIELD IN NANOWIRES

The formation of single-electron subbands as a consequence of quantum con-
finement strongly influences the superconducting-to-normal phase transition
driven by a magnetic field. According to the Ginzburg–Landau theory this
transition is of second order for mesoscopic wires, while being of first order
in bulk type I superconductors. This critical magnetic field increases as 1/D
in mesoscopic wires (Silin 1951; Lutes 1957). Recent calculations within the
BdG formalism for wires with D= 20–200 nm (Han and Crespi 2004) has
confirmed the GL conclusion about the second order transition, which is in
agreement with recent experimental data for Sn (Tian et al. 2005; Jankovič
et al. 2006) and Zn (Kurtz et al. 2007) nanowires with D � 20 nm.



TUNING THE SUPERCONDUCTING PROPERTIES 7

a b c

Figure 2. (a) Critical parallel magnetic field Hc,|| vs. the nanowire diameter D and (b)
spatially averaged order parameter Δ as function of H|| for the resonant diameters D = 3.1,
4.4, 4.5, and 5.2 nm. (c) Spatially averaged order parameter vs. H for the resonant diameters
D = 8.2, 10.2, 10.3, 10.5, 11.8, and 13.2 nm

However, the situation changes significantly for narrower wires. In
Fig. 2a, we show over calculated critical field Hc,|| for zero temperature as a
function of the nanowire diameter D. At the resonances Hc,|| exhibits huge en-
hancements as compared to the bulk critical magnetic field (Hc,bulk  0.01 T).
According to Shanenko and Croitoru (2006) at a resonance the main con-
tribution to the superconducting quantities comes from the subband whose
bottom passes through the Fermi surface. Due to quantum size oscillations in
the pair-condensation energy, we get corresponding oscillations in the critical
magnetic field whose resonances, therefore, can be labeled by the quantum
numbers of the subband ( j,m) that passes through the Fermi level. From
this figure we notice, that the resonances in Hc,|| dependent strongly on the
diameter D and the azimuthal quantum number m of the subband.

The states with large m are strongly influenced by the magnetic field and,
so the resonances in Hc,|| governed by large m are, as a rule, less pronounced.
In contrast, the resonances controlled by m = 0 have a weak magnetic field
dependence. Figure 2b shows several typical examples of how the spatially
averaged order parameter Δ, calculated at the resonance diameters, depends
on the external parallel magnetic field. We find the very interesting result that
the superconducting-to-normal phase transition driven by a magnetic field
parallel to the nanowire occurs as a cascade of discontinuous jumps in the
mean value of the order parameter (see Shanenko et al. 2008).

The physics underlying this cascade behavior is as follows. Within
Anderson’s approximate solution of the BdG equations (Anderson 1959), the
excitation energies E jmk can be approximated by the following expression

E jmk =

√

ξ2
jmk +

∣

∣

∣Δ jm

∣

∣

∣

2 − μBmH||, (8)
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where ξ jmk is given by (5), μB stands for the Bohr magneton, and

Δ jm =

R
∫

0

dρρΔ (ρ)
[

∣

∣

∣uj,m,k (ρ)
∣

∣

∣

2
+

∣

∣

∣v j,m,k (ρ)
∣

∣

∣

2
]

(9)

is the averaged value of the order parameter as seen by jmk-quasiparticles.
From this expression it is clear, that the quasi-particle states with m > 0
move down in energy with increasing magnetic field H||, and that the larger
the relevant azimuthal quantum number m, the faster the decrease in the ex-
citation energy. To be more specific, let us consider a nanowire with diameter
D = 1.94 nm. In Fig. 3a the quasiparticle energies as a function of wave vector
k are given for three cases. The left panel displays the quasi-particle energy
dispersion in the absence of a magnetic field H|| = 0, the middle panel shows

a

b c

Figure 3. (a) The quasi-particle energies Ejmk vs. k for the four relevant branches
( j,m) = (0, 0) ; (0, 1) ; (0, 2) and (1, 0) at H = 0, H = 33.5 T and H = 55.8 T for the
resonant diameter D = 1.94 nm. (b) Superconducting energy gap vs. H, and (c) the mean
order parameter vs. H
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this quantity for the magnetic field H|| = 33.5 T, at which the first small jump
occurs in Δ, and the right panel shows the energy dispersion for the magnetic
field H|| = 55.8 T, at which the second jump occurs in Δ. Comparing this
figure with Fig. 3c one can see, that each time when a quasi-particle branch
specified by j,m > 0 touches the Fermi surface, a discontinuous jump in
Δ occurs. Or, introducing the energy gap for the ( jm) quasi-particle branch
Δ

( jm)
E , a jump in Δ appears when one of the energy gap Δ( jm)

E = 0. The in-
sets of Fig. 3c show details of such jumps in the mean order parameter with
clear signatures of a hysteretic behavior, characteristic for a first-order phase
transition. For m = 0 the second term in (8) is switched off and, the mean
order parameter slowly decreases with magnetic field H||, exhibiting only a
sequence of weak discontinuous jumps, as seen from Fig. 3c. If one takes a
look at Fig. 3b, where we show the total excitation energy gap, defined as
ΔE = minΔ( jm)

E , as a function of applied field, one can see that the energy
gap decays linearly with the magnetic field, which reflects the linear depen-
dence of the excitation energies of the quasi-particles on the external parallel
magnetic field. Figure 3b illustrates that for the magnetic field H|| > 33.5 T a
gapless superconductivity is realized. When an energy branch that controls a
resonant enhancement approaches the Fermi surface, Δ jumps down to zero
and the superconducting solution disappears. Other quasi-particle branches
are less important due to the smaller density of states and are responsible for
small, sometimes almost insignificant, jumps.

Signatures of the cascade behavior in the superconducting-to-normal
phase transitions driven by a magnetic field can be observed even for larger
diameters up to 15 nm. For instance, Fig. 2c displays the mean order parame-
ter as a function of the parallel magnetic field for several resonant thicknesses
(8.2, 10.2, 10.3, 10.5, 11.8, and 13.2 nm). It is remarkable that only jumps to
zero in mean order parameter are clearly seen for large diameters: a cascade of
preceding small jumps has nearly degenerated into a continuous curve. When
the thickness of the wire becomes larger than 20 nm the superconducting-to-
normal phase transition driven by a magnetic field becomes of the second
order in agreement with Han and Crespi (2004).

In our approach we have neglected Pauli paramagnetism and included
only the orbital effect. This is justified when the paramagnetic Pauli limiting
field is larger than the orbital value of Hc,||. Pauli paramagnetism is important
for those resonances that are governed by states with m = 0, and it can lead
to corrections to the resonances governed by m = 1 or m = 2. However, most
of the resonant enhancements for D > 5 nm are produced by the states with
m > 2. Thus, our numerical results are not very sensitive to the spin-magnetic
interaction for D > 5 nm.
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4.2. CURRENT-CARRYING STATE IN NANOWIRES

Now we investigate the destruction of the superconducting condensate by a
supercurrent. One can expect that quantum confinement should also have a
strong impact on the transition from a superconducting to a normal state but
now driven by a supercurrent.

Figure 4a, b display the spatially averaged order parameter Δ and the
superconducting energy gap ΔE , calculated at zero temperature for three res-
onant wire sizes D = 4.2, 4.8, and 5.3 nm, as a function of the normalized
superfluid velocity vs = �q/m. The normalization is performed with respect
to the Landau bulk depairing velocity vL,bulk = Δbulk/�kF,bulk (Landau 1941).
The resonant enhancement of the superconducting energy gap at these three
diameters is illustrated in the inset of the right figure. From the left figure
one can see, that the destruction of the superconducting state occurs in the
same way as in the presence of a magnetic field, namely, as a cascade of
discontinuous jumps in the mean order parameter. The hysteretic transition
near vs = 54 vL,bulk for the resonant thickness D = 4.2 nm is enlarged in the
inset of Fig. 4a.

The superconductor energy gap ΔE = ΔE
(

vs/vL,bulk
)

shown in Fig. 4b vs.
the superfluid velocity exhibits an almost linear dependence. We can under-
stand this dependence from the Bogoliubov equations within the Anderson
approximation. Within this approximation, in the presence of supercurrent
flow the quasi-particle energies in a cylindrical nanowire are given by the
following dispersion relation

Eq
jmk =

√

(

ξ jmk +
�2q2

2m

)2

+
∣

∣

∣Δ jm

∣

∣

∣

2
+ Eq

D (k) , (10)

a b

Figure 4. (a) The mean value of the order parameter Δ (the insets are enlargements of the
parts of the curves) and (b) the superconducting energy gap ΔE at T = 0 vs. the normal-
ized superfluid velocity (the inset shows the superconductivity energy gap vs. the nanowire
diameter)
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a b c

Figure 5. (a) Dispersion relation for the superconducting nanowire with D = 4.2 nm (only
k > 0 are shown) and for vs/vL,bulk = 0. Dispersion relation for the superconducting nanowire
with D = 4.2 nm and for (b) vs/vL,bulk = 55 and (c) vs/vL,bulk = 80. Only the resonant subbands
are presented

where the energy gap Δ jm is introduced for each quasi-particle branch. Due
to the Doppler shift term Eq

D (k) = �2kq/m, part of the quasi-particle energies
(k < 0) moves down with increasing superfluid velocity. Moreover, since the
relevant states of each single-electron subband (within the Debye window)
occupy only a narrow domain in the 1D k-space, we may assume that each

subband has its own Doppler shift Eq
D

(

kF
jm

)

, where kF
jm = ±

√

2m
(

μ − ξq=0
jmk=0

)

.
This approximation is certainly valid for those subbands, whose bottoms sit-
uate far from the Debye window. As seen from Fig. 5a, where the dispersion
relation for the quasiparticles in a nanowire with D = 4.2 nm is plotted,
at vs = 0 the superconducting gap ΔE is defined by the smallest quasi-
particle branch gap Δ10

E . Hence at small values of the superfluid velocity the
slope of the function ΔE (vs) is determined by the wavevector kF

10. However,
kF

10 < kF
00 (see Fig. 5a) and at a certain value of the superfluid velocity, when

Δ10
E (vs) = Δ00

E (vs), a kink occurs in the plot of ΔE (vs). After that the slope of
the function ΔE (vs) is determined by the wave-vector kF

00.
The physics behind these jumps in the mean order parameter is the same

as in the previous case of the magnetic field. However, the mechanism of the
destruction of the superconducting condensate by a supercurrent possesses
some peculiarities. Figure 5b, c display the dispersion relation for small wave
vectors in case of a nanowire with D = 4.2 nm, when vs = 54 vL,bulk and vs =

80 vL,bulk, respectively. As seen from these figures, in the current-carrying
state the whole band structure of the superconducting wire is tilted with
respect to the k = 0 point due to the superfluid flow. This tilting reflects
the displacement of the entire distribution of electrons, including pairs, by
an amount q in momentum space. Each time when a quasi-particle branch
touches the Fermi surface, a discontinuous jump in the mean value of the
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order parameter Δ = Δ (vs) curve occurs. This can be inferred by noticing that
the snapshots of Fig. 5b, c correspond to the superfluid velocities, at which
the two last discontinuities in Δ occur (see Fig. 4). Figure 5b, c illustrate the
branches of quasiparticles with the largest contribution to the order parameter,
responsible for these discontinuities. When a branch controlling the resonant
enhancement of the order parameter (in this case Δ j=0,|m|=7) approaches the
Fermi surface we get the largest depairing transition. As seen from (10) the
resonant subband has the smallest Doppler shift coefficient kF

j,m, since it situ-
ates close to the point k = 0. Other quasi-particle branches produce only small
kinks in the Δ = Δ (vs) curve due to a smaller density of states at the Fermi
surface (see inset of Fig. 4a). Moreover, these branches have a large value
for kF

j,m, so they are more sensitive to nanowire imperfections. Consequently,

the kinks in the Δ-curve obtained for a nanowire with uniform cross-section
would be smeared out, if one takes into account such imperfections.

We identify the maximum supercurrent in a nanowire as the critical
current density. In bulk samples depairing limits the maximum supercur-
rent to only about 1% above the current at the Landau depairing velocity
(Swidzinsky 1982). Figure 6a shows the calculated critical current density
as a function of the nanowire diameter. This result shows that quantum-size
effects play a very important role in the size-dependent increase of the critical
current. Real samples exhibit inevitable cross-section fluctuations that will
smooth those quantum-size oscillations in the critical current. However, the
average increase of the order parameter and, hence, of the critical current,
is due to the resonance controlling quasi-particle branch. These states are
characterized by small values of the vector k and, consequently, they are

a b

Figure 6. (a) Critical current and (b) critical superfluid velocity vs. the nanowire diameter
calculated for T = 0.1 K
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insensitive to nanowire imperfections. So the critical current at the resonant
diameters are rather stable with respect to such fluctuations. For anti-resonant
diameters the contributions to the order parameter from different subbands in
the Debye window are more or less equal and the vectors k are characterized
by sufficiently larger values. Therefore, such states are more sensitive to
nanowire imperfections, so the anti-resonant peaks seen in the figure would
be smeared out if one takes into account these imperfections. Therefore,
this results in an overall enhancement of the critical current density with
decreasing wire thickness. Figure 6b displays the critical superfluid velocity
vs,c as a function of the wire diameter. This quantity defined as the velocity at
which complete destruction of the condensate occurs exhibits the same trend.

5. Conclusion

Quantum confinement plays a corner-stone role in high-quality metallic su-
perconductors with nanoscale dimensions. Interplay of quantum confinement
and superconductivity results in important qualitative changes in the super-
conductor characteristics. Based on a numerical self-consistent solution of
the Bogoliubov–de Gennes equations, we showed that at zero temperature
the superconducting-to- normal phase transition driven by a parallel mag-
netic field or by a supercurrent occurs as a cascade of discontinuous jumps
in the order parameter. At the same time the critical magnetic field exhibits
quantum-size oscillations with pronounced resonant enhancements. There-
fore, nano-samples allow one to tune its superconducting characteristics (like
critical magnetic field or supercurrent) by varying e.g. the nanowire radius.
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OPTICAL MICROCAVITIES OF SPIRAL SHAPE:

FROM QUANTUM CHAOS TO DIRECTED LASER EMISSION

M. Hentschel* and T.-Y. Kwon
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Abstract. Optical microcavities are open billiards for light in which electromagnetic waves
can, however, be confined by total internal reflection at dielectric boundaries. These resonators
enrich the class of model systems in the field of quantum chaos and are an ideal testing ground
for the correspondence of ray and wave dynamics that, typically, is taken for granted. Using
phase-space methods we show that this assumption has to be corrected towards the long-
wavelength limit. We also discuss the issue of achieving directional emission from optical
microcavity lasers, highly desired concerning applications in photonic devices, with a focus
on cavities of spiral shape.

Key words: Optical microcavity; Billiard; Quantum chaos

1. Introduction

Research in the field of quantum chaos has closely accompanied the de-
velopments in mesoscopic physics that started about 20 years ago when
micrometer-scale samples with very high-mobility for electrons in two
dimensions, so-called quantum dots, were fabricated in semiconductor
heterostructures for the first time (Sohn et al. 1997). Very soon, mesoscopic
systems for light instead of electrons – optical microcavites and microlasers –
were also fabricated (Vahala 2004). Up to now they are a topic of intensive
research since, on the one hand, they extent the field of quantum chaos
to intrinsically open systems, and on the other hand, they provide the
opportunity to build microlasers that emit light in just one direction.

Let us highlight these two points in some more detail. First, one has to
realize an intrinsic difference between electronic and optical mesoscopic and
nanoscopic systems, namely the mechanism that confines the electrons and
light, respectively. Electrons carry a charge, and they are easily manipulated
and confined on quantum dots by means of gate voltages. Light, in contrast,
has no charge, and the confinement mechanism is indeed very different from
that of electrons: It is the principle of total internal reflection at the optically
thinner medium.

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 15
NATO Science for Peace and Security Series B: Physics and Biophysics,
c© Springer Science+Business Media B.V. 2009
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The presence of light refraction (for angles of incidence below the critical
angle χc = arctan 1/n, where n is the refractive index of the cavity and we
assume air (n0 = 1) outside) and evanescent waves (even in the regime of total
internal reflection) makes optical cavities intrinsically open systems. Note
furthermore that electrons are described by the Schrödinger equation whereas
light is governed by the Helmholtz equation (that follows, of course, from
Maxwell’s equations). Remarkably, these two equations are formally equiv-
alent in two dimensions (up to polarization-dependent boundary conditions
for the Helmholtz equation) which motivates a direct comparison between the
resulting billiards for electrons and light, respectively. Consequently, optical
microcavities enrich the class of model systems in the field of quantum chaos.

Another aspect that drives optical microsystems into the focus of in-
terest is to a large extent application motivated. With the miniaturisation
of optical (and electronic) devices, the fabrication limits of lasers based on
Fabry–Perot resonators are reached. Since the need for highly unidirectional,
coherent light sources of course nonetheless remains, alternative realizations
and construction schemes have to be identified. The starting point have been
microdisk resonators (McCall et al. 1992) where very high Q-factors were
realized. They lack, however, the property of directional emission due to
their rotational invariance. It was shown in the last years that deformation
of the ideal disk can enhance the directionality of the light emission. Ex-
amples where this was demonstrated are the bow-tie mode in microlasers
of quadrupolar shape (Gmachl et al. 1998), annular resonators with carefully
tuned frequencies and geometry parameters (Wiersig and Hentschel 2006), or
microcavities of Limacon shape (Wiersig and Hentschel 2008) where it was
shown that engineering the farfield output characteristics via the so-called
unstable manifold of the system is a promising and very robust approach that
was, meanwhile, also confirmed experimentally (Yan et al. 2009).

One of the earlier, yet still popular attempts to achieve directional emis-
sion was to employ microcavities and microlasers of spiral shape (Chern et al.
2003; Chern et al. 2004; Ben-Messaoud and Zyss 2005; Fujii et al. 2005;
Tulek and Vardeny 2007; Kim et al. 2008; Audet et al. 2007). These systems
are characterized by an offset in the system’s curved boundary, a so-called
notch, cf. Fig. 1. Its size is parametrized by the geometry parameter ε and
given as εR0 where R0 is the minimal radius of the cavity. Naively, one can
think of the motivation to generate directional emission from spiral micro-
lasers in a way as to excite so-called whispering-gallery modes (WGMs,
i.e. modes that travel close to system boundary) as they are known from
circular cavities. The idea was then that WGMs that travel clockwise and
therefore do hit the notch, must leave the cavity through the notch, and hence
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a b

Figure 1. (a) Shape of the spiral microcavity with a schematically illustrated whispering–
gallery mode that travels clockwise and would, therefore, hit the notch. If such modes could
be realized in microlasers, the hope is that they would lead to directional emission originating
from the notch region as indicated by the smaller arrows. (b) Typical ray trajectory in the spiral
reflecting the characteristic chaotic dynamics of rays in such a geometry (ε = 0.1). Clearly,
the trajectory does not favor WGM-type orbits. It results in a structureless phase space (not
shown) without regular islands. According to the principle of ray-wave correspondence, no
directional emission can be expected in such a situation

in a unidirectional way. This is illustrated in Fig. 1a. We shall see below to
what extent this idea holds and what the true mechanism behind directional
emission from spiral mircolasers is.

A classic and practically approved way to study, and predict, the far-field
characteristics of optical microcavities are ray-simulations. The principle be-
hind is, of course, ray-wave correspondence and there are numerous examples
where ray model simulations agreed very well with both experimental re-
sults and wave simulations (Lee et al. 2007; Schwefel et al. 2004; Shinohara
and Harayama 2007; Tanaka et al. 2007; Hentschel and Vojta 2001; Wiersig
et al. 2008). The correspondence holds not only in the semiclassical limit
but, despite known semiclassical corrections to the ray picture (Goos and
Hänchen 1947; Schomerus and Hentschel 2006), even down to wavelengths
comparable to the system size (Wiersig and Hentschel 2008). This finding
is to a certain extent surprising, and, at the moment, attributed to the impor-
tance of the so-called unstable manifold (Lee et al. 2005). Note, however,
that (slight) deviations from ray-wave correspondence have been observed in
several systems including spiral cavities (Unterhinninghofen et al. 2008; Lee
et al. 2004; Altmann et al. 2008).

Motivated by these successes, we start this paper with a discussion of
spiral cavities in terms of the ray picture and compare our far-field results with
those of wave simulations. We then turn to a comparison with experimental
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results and report both experiments supporting our findings of no directional
far-field emission and those experiments where directional emission was
observed. The origin of these differences is discussed, and we explain the
mechanism to be used in order to achieve directional emission from spiral
microlasers that we revealed performing wave simulations of the active cavity
(Hentschel and Kwon 2009).

2. Far-Field Characteristics of Spiral Microcavities: Ray and Wave
Simulation Results

Ray simulation results for a sample trajectory are shown in Fig. 1b. The
chaotic character of the orbit is clearly visible. It represents itself also in the
far-field emission characteristics that is provided in Fig. 2 for spiral micro-
cavities of both TM (transverse magnetic, i.e. electric field perpendicular to
the cavity plane) and TE (transverse electric) polarization and for various
geometries as well as two different refractive indices n. The emission occurs
in a number of directions, and no directionality of the far-field pattern can
be expected based on ray-picture simulations. Rather, emission occurs in a
“spiky” fashion into a number of directions that sensitively depend on the
geometry and reflect the chaotic character of the ray dynamics. This is espe-
cially apparant in the TM case. For TE polarization, one of the spikes seems
to be singled out to be a preferred radiation direction. The reason behind is
the existence of the Brewster angle: It corresponds to the angle of incidence
where the reflection coefficient drops to zero, just before the regime of total
internal reflection is reached. This results in a sort of “all-or-nothing” escape
characteristics in the TE case (that would strictly speaking correspond to a
step-like Fresnel law) that leads to the better radiations characteristics that
was confirmed in many examples (Wiersig and Hentschel 2008; Gmachl et al.
2002).

Wave simulation results fully confirm the ray-picture based findings, see
Figs. 3 and 4. In particular, the wave calculations reveal the origin of the
far-field spikes. The configuration space presentation in the upper part of
Fig. 4 suggests a WGM-type character of the resonances with elements rem-
iniscent of quasiscar modes (Lee et al. 2004). At certain points along the
cavity boundary the confinement of the modes by total internal reflection is
violated, resulting in leakage. Light emerging from those regions forms the
spikes visible in the far-field. We point out that the way that the light leaves
the cavity (its “sense of rotation”) clearly indicates that the supported WGMs
travel counterclockwise – that is, opposite to the direction needed to realize
emission of WGMs from the notch. The calculations based on the bound-
ary elements method (Wiersig 2003) presented here (for TM polarization
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Figure 2. Far-field pattern of spiral microcavities from ray simulations of a Fresnel billiard
based on the unstable manifold. Compared are the two possible polarizations of light (TM, left
panels and TE, right panels) for different geometries (characterized by the parameter ε) and
refractive indices n = 3.15 corresponding to the one used in Audet et al. (2007) and n = 2.6
as in Chern et al. (2003). No directional emission can be expected based on ray simulations
results, although directionality is improved in the TE case due to the existence of the Brewster
angle. The upper two panels on the left correspond, qualitatively, very well to the experimental
results reported in Audet et al. (2007). The inset at the bottom indicates how the far-field angle
is measured

and n = 3.2) show that the high-Q modes that can be expected to start
lasing near the threshold (cf. their characteristics in Fig. 3) are dominantly
counterclockwise modes that actually do not see and do not hit the notch.

The agreement between ray and wave simulation is of special importance
because of the possibility of diffraction effects related to the sharp corners
associated with the notch. Diffraction effects were made responsible for the
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Figure 3. Resonances of a spiral microcavity (ε = 0.909, TM polarization) as computed
with the boundary element method. Resonances are characterized by a complex wave number
Ω from which the Q-factor is derived as Q = ReΩ/(2 ImΩ). The upper panel shows Q vs.
the wavenumber ReΩ for wavenumbers that were realized in the experiments in Audet et al.
(2007). The lower panel shows a number of high-Q modes in configuration space

directional emission from microcavities in Chern et al. (2003). In the present
study we find, however, no supporting material for this statement. Rather,
the ray-wave agreement (where the wave model naturally contains diffraction
effects whereas the ray model does not) indicates that diffraction effects are, at
least, not crucial (and in particular not responsible for the directional output,
see below).

Experimental results reported in Audet et al. (2007) agree well with ray
and wave simulation as we already mentioned. These experiments were per-
formed with quantum cascade lasers that were uniformly pumped and used
TM-polarized light (both conditions cannot be changed for technical reason).
Most other experiments were performed with TE-polarized light and/or ap-
plied non-uniform pumping along the cavity boundary (Chern et al. 2003;
Chern et al. 2004; Ben-Messaoud and Zyss 2005; Fujii et al. 2005; Tulek and
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Figure 4. Resonances of a spiral microcavity (as in Fig. 3) in configuration space (upper
panels). Note that the openness of the optical cavity leads to leakage of light in form of
pronounced spikes that leave clear signatures in the far-field patterns. The resulting far-field
patterns are shown in polar representation as in Fig. 2 in the lower panels. They correspond
qualitatively very well to the ray simulation results shown in the upper two panels on the left
in Fig. 2 and to the experimental findings reported in Audet et al. (2007)

Vardeny 2007; Kim et al. 2008) and the importance of the pumping scheme
was realized already in Chern et al. (2003). It is therefore straightforward to
assume that the emission properties, for the case of non-uniform pumping,
are closely related to the pumping scheme applied. We investigate this issue
in detail in the following section.

3. Towards Directional Emission from Spiral Microlasers

In order to study the characteristics of non-uniformly pumped devices, the
spatial distribution of the active material has to be taken into account. This
is possible within the Schrödinger-Bloch model (Harayama et al. 2005),
the state-of-the-art instrument to describe active microcavities (Kwon et al.
2006). The results are shown in Fig. 5 where the far-field and configuration
space patterns of uniformly and boundary pumped spiral microlasers are
compared. The advantage of a boundary pumping scheme, leading to a
dominant emission into a 45◦ far-field direction (measured from the notch) is
clearly visible (Hentschel and Kwon 2009).

We have found that the directionality depends on the resonator geom-
etry, i.e. on the size of the notch. The best performance is achieved when
the notch length is about twice the cavity wavelength (Hentschel and Kwon
2009). In other words, the geometry must neither be too close to the disk
(which would capture all light in WGMs and lead to uniform emission from
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Figure 5. Comparison of uniformly pumped (left panels) and selectively boundary-pumped
spiral microcavities. The pumped area is indicated in red in the insets in panels (c) and (d). The
upper panels (a) and (b) show the far-field characteristics for increasing pumping strengths
close to the lasing threshold, the far-field angle is measured as indicated in Fig. 2. Emission
in a direction of approximately 45◦ is clearly visible in the boundary-pumped scheme. These
far-field patterns were obtained by time-averaging after passing through a transient regime.
The configuration space plots in (c) and (d) nicely illustrate the differences in the cavity wave
patterns that, eventually, cause the very different far-field characteristics

evanescent waves) nor too far away from the disk geometry (in which case
the system becomes too open and amplification cannot balance the radiation
losses). Concerning the pumping scheme, pumping as close to the boundary
as possible turned out to be the most favorable, but pumping a ring of about
one tenth of the cavity radius gives still very reasonable results (Hentschel
and Kwon 2009).
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But what is the reason that makes the boundary pumping scheme so suc-
cessful? In short (and we would like to refer the reader to Hentschel and
Kwon 2009 for details), the boundary pumping makes possible the existence
of WGMs of the type sketched in Fig. 1a. Recall that these clockwise traveling
modes were missing in the simulations of the passive cavity, cf. Figs. 3 and
4 in the sense that their Q-factor was too low to allow for a lasing activity.
The boundary pumping changes precisely this feature: It supports (pumps)
especially those clockwise traveling WGMs and effectively increases their
Q-factor. It turns out, however, that the true mechanism is somewhat more
complicated. It involves an interaction that is reminiscent of mode beating
between these (boundary-pumping supported) clockwise traveling WGMs
and the “normal” counterclockwise traveling WGMs that we know from the
passive cavity. This interaction is made possible by the boundary pumping
scheme, otherwise the difference in the Q-factors of the counterpropagating
WGMs would be too large. As a result, the light intensity inside the cavity
flows between the clockwise and counterclockwise propagating whispering-
gallery type states. This also implies that the light emission occurs in a pulsed
fashion (Hentschel and Kwon 2009), and Fig. 5d shows a snapshot with the
clockwise traveling state.

4. Conclusions

Optical microcavities and microlasers receive a strong interest as model sys-
tems for quantum chaos in open systems that are rather easily fabricated in the
laboratory and as future optical devices with unidirectional emission proper-
ties. We have focused here on spiral microcavities where the desired direc-
tional far-field characteristics had been realized in a number of experiments
and was now also theoretically understood for the case of TM-polarized light
(Hentschel and Kwon 2009). It is crucial to pump the microlaser only along
its spiral-shaped boundary and to use resonators with a certain geometry
(notch size about twice the wavelength).

For the uniformly pumped case and TM polarization we showed that
ray and wave simulations agree well with experimental results (Audet et al.
2007) and show no signatures of a directional emission characteristics. This
confirms the big versatility of the simple ray model in yet another example.
What remains open at this point is a deeper study of the ray-wave-experiment
correspondence for TE-polarized spiral microcavities. We already mentioned
that the unidirectionality is generally improved for TE devices due to the exis-
tence of the Brewster angle. To what extent the Brewster angle may influence
boundary-pumping schemes and the resulting conditions for unidirectional
emission will be the subject of further studies.
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Abstract. We review the effects of electron–electron interactions on the ground-state spin
and the transport properties of ultra-small chaotic metallic grains. Our studies are based on an
effective Hamiltonian that combines a superconducting BCS-like term and a ferromagnetic
Stoner-like term. Such terms originate in pairing and spin exchange correlations, respec-
tively. This description is valid in the limit of a large dimensionless Thouless conductance.
We present the ground-state phase diagram in the fluctuation-dominated regime where the
single-particle mean level spacing is comparable to the bulk BCS pairing gap. This phase
diagram contains a regime in which pairing and spin exchange correlations coexist in the
ground-state wave function. We discuss the calculation of the tunneling conductance for an
almost-isolated grain in the Coulomb-blockade regime, and present measurable signatures of
the competition between superconductivity and ferromagnetism in the mesoscopic fluctuations
of the conductance.

Key words: Metallic grains; Superconductivity; Ferromagnetism

1. Introduction

Superconductivity and ferromagnetism compete with each other. Pairing cor-
relations lead to Cooper pairs of electrons with opposite spins and thus tend
to minimize the total spin of the grain, while ferromagnetic correlations tend
to maximize the total spin.

Nevertheless, it is well known that superconducting and ferromagnetic
order can be present simultaneously in bulk systems when ferromagnetism
is caused by localized paramagnetic impurities (Abrikosov and Gorkov
1960, 1961; Clogston 1962; Chandrasekhar 1962; Fulde and Ferrell 1964;
Larkin and Ovchinnikov 1964, 1965). Recently, it was observed that both
states of matter can coexist in high-Tc superconductors (Tallon et al. 1999;
Bernhard et al. 1999) and in heavy fermion systems (Saxena et al. 2000;
Pfleiderer et al. 2001; Aoki et al. 2001) even when the electrons that are
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responsible for superconductivity and ferromagnetism are the same. This
surprising observation led to the search of new theoretical models that can
describe this coexistence.

In ultra-small metallic grains, in which the bulk pairing gap Δ is com-
parable to the single-particle mean level spacing δ, a coexistence regime of
superconductivity and ferromagnetism was predicted (Falci et al. 2003; Ying
et al. 2006; Schmidt et al. 2007). The ground state of the grain is described by
a state where a few single-particle levels around the Fermi energy are singly
occupied while all other electron are paired. This coexistence regime is char-
acterized by spin jumps and its size can be tuned by an external Zeeman field.

However, it is difficult to measure the ground-state spin of a grain, and a
more directly measurable quantity is the tunneling conductance through the
grain (von Delft and Ralph 2001). In addition, one has to take into account the
mesoscopic fluctuations that are typical for chaotic grains (Alhassid 2000).
Effects of exchange correlations on the conductance statistics in quantum
dots, in which pairing correlations are absent, were studied in Alhassid
and Rupp (2003). In Schmidt and Alhassid (2008) we identified signatures
of the coexistence of pairing and exchange correlations in the mesoscopic
fluctuations of the conductance through a metallic grain that is weakly
coupled to leads.

The fabrication and control of nano-size metallic devices is a challeng-
ing task. The first conductance measurements in ultra-small metallic grains
were carried out in the mid-nineties (Ralph et al. 1995; Ralph et al. 1997;
Black et al. 1996). The grains were produced by breaking nanowires and
their size was difficult to control. Coulomb blockade, discrete levels and
pairing effects were observed in a single grain by measuring the tunneling
conductance (von Delft and Ralph 2001). During the last decade numer-
ous technological advances led to an increase in control and tunability of
ultra-small metallic grains. Break junction techniques (Park et al. 1999) and
electromigration (Bolotin et al. 2004) were used for gating and establishing
precise contact between leads and grain. A particularly important recent de-
velopment has been the use of monolayers of organic molecules as tunnel
barriers, enabling control of the size and shape of the grain (Kuemmeth et
al. 2008). New materials have been tested as well. Cobalt nanoparticles were
used to investigate the effect of ferromagnetism (Deshmukh et al. 2001; Kleff
et al. 2001). Spin-orbit coupling and non-equilibrium excitations were studied
in gold grains (Bolotin et al. 2004; Kuemmeth et al. 2008; Gueron et al. 1999).
The recent discovery of superconductivity in doped silicon at atmospheric
pressure and critical temperatures of a few hundred millikelvin (Bustarret
et al. 2006) might further facilitate the development of mesoscopic supercon-
ducting devices. However, the competition between superconductivity and
ferromagnetism has not been investigated so far.
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Here we review the effects of electron–electron interactions on the
ground-state spin and transport properties of ultra-small metallic grains.
Our analysis is based on an effective Hamiltonian for chaotic or disordered
systems that combines a BCS-like pairing term and a Stoner-like spin
exchange term. This so-called universal Hamiltonian (Kurland et al. 2000;
Aleiner et al. 2002) is valid in the limit of a large Thouless conductance. This
universal Hamiltonian and its solution are described in Sect. 2. In Sect. 3 we
present the phase diagram of the ground-state spin and discuss a regime in
which superconductivity and ferromagnetism coexist. In Sect. 4 we review
the mesoscopic fluctuations of the tunneling conductance through an almost-
isolated metallic grain. In particular, we discuss signatures of the coexistence
of pairing and exchange correlations in the conductance peak height and
peak spacing statistics. We also propose specific materials for which such
mesoscopic coexistence might be observed experimentally.

2. Model

We consider a chaotic metallic grain with a large dimensionless Thouless
conductance. The low-energy excitations of such a grain are described by an
effective universal Hamiltonian (Kurland et al. 2000; Aleiner et al. 2002)

Ĥ =
∑

kσ

εkc†kσckσ −GP̂†P̂ − JsŜ2, (1)

where c†kσ is the creation operator for an electron in the spin-degenerate
single-particle level εk with spin up (σ = +) or spin down (σ = −). The
first term on the r.h.s. of (1) describes the single-particle Hamiltonian of an
electron in the grain (i.e. kinetic energy plus confining single-particle po-
tential). The second term is the pairing interaction with coupling constant G
and the pair creation operator P† =

∑

i c†i+c†i−. The third term is an exchange

interaction where Ŝ =
∑

kσσ′ c†kστσσ′ckσ′ is the total spin operator (τi are Pauli
matrices) and Js is the exchange coupling constant. Estimated values of Js for
a variety of materials were tabulated in Gorokhov and Brouwer (2004). In (1)
we have omitted the charging energy term e2N̂2/2C (C is the capacitance of
the grain and N̂ is the number of electrons) since it is constant for a grain with
a fixed number of electrons.

The universal Hamiltonian equation (1) conserves the total spin of the
grain, i.e. [Ĥ, Ŝ] = 0. Consequently, each eigenstate has a well-defined total
spin S and spin projection M. The pairing interaction scatters pairs of spin
up/down electrons from doubly occupied to empty orbitals. Therefore the
pairing interaction does not affect the singly occupied levels. This is known
as the blocking effect and the singly occupied levels are also referred to as
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“blocked levels.” On the other hand, these singly occupied levels are the only
levels that contribute to the exchange interaction. Thus, each eigenstate of
(1) factorizes into two parts. The first part |U〉 is a zero spin eigenstate of
the reduced BCS Hamiltonian

∑

kσ εkc†kσckσ − GP†P, and is described as
a superposition of Slater determinants that are constructed from the subset
U of empty and doubly occupied levels. The second part of the eigenstate,
|B, γ, S , M〉, is obtained by coupling the set of singly occupied levels B, each
carrying spin 1/2, to total spin S and spin projection M (Alhassid and Rupp
2003; Tureci and Alhassid 2006). Here, γ denotes a set of quantum numbers
distinguishing between eigenstates with the same spin and singly occupied
levels. For a given set B of b singly occupied levels, the allowed spin values
vary between S = 0 (S = 1/2) for even (odd) number of electrons and
S = b/2. Each of these spin values has a degeneracy of

db(S ) =

(

b
S + b/2

)

−
(

b
S + 1 + b/2

)

. (2)

The complete set of eigenstates is then given by

|i〉 = |U,B, γ, S , M〉. (3)

The reduced pairing Hamiltonian is characterized by a coupling con-
stant G. However, the physical parameter that determines the low-energy
spectrum of the grain (for Js = 0) is Δ/δ, where Δ is the bulk pairing gap and
δ the single-particle mean level spacing. We can truncate the total number of
levels from No to Nr < No, and renormalize G such that the low-energy
spectrum of the grain remains approximately the same. For a picketfence
spectrum, the renormalized coupling constant is given by

Gr

δ
=

1

arcsinh
(

Nr+1/2
Δ/δ

) . (4)

The exchange interaction only affects the singly occupied levels, and we ex-
pect the renormalization (4) to hold as long as the number of singly occupied
levels is small compared with Nr. In practice, we study the relevant observ-
able as a function of truncated bandwidth Nr and make sure that its value has
converged for the largest bandwidth Nr we can calculate.

3. Ground-State Phase Diagram

In this section we study the ground-state spin of the grain as a function of Js/δ
and Δ/δ. We find the lowest energy E(S ) for a given spin S and then minimize
E(S ) with respect to S . The ground-state spin of the grain is determined by
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Figure 1. Ground-state phase diagram of a grain with picketfence single-particle spectrum
in the Js/δ–Δ/δ plane for an even (left panel) and odd (right panel) number of electrons.
Numbers denote the spin values in the corresponding sectors. We observe an intermediate
regime (SC-FM) in which the ground state is partly polarized and partly paired. Taken from
Schmidt et al. (2007)

the competition between various terms in the Hamiltonian equation (1). The
one-body part and pairing interaction favor minimal spin, while exchange
interaction favors a maximally polarized state.

The ground-state phase diagram in the Δ/δ–Js/δ plane of a grain with
a picketfence single-particle spectrum is shown in Fig. 1. We find three dif-
ferent phases: a superconducting phase (SC) where the number of pairs is
maximal and S is minimal, a ferromagnetic phase (FM) where the system
is fully polarized S = N/2, and an intermediate regime (SC-FM) where
exchange and pairing correlations coexist. The ground-state wave function
with spin S in the coexistence regime is described by b = 2S singly occupied
levels closest to the Fermi energy while the remaining electrons are paired.

The coexistence regime is bounded by two critical values J(1)
s /δ and J(2)

s /δ
of the exchange interaction that are function of Δ/δ. The lower value J(1)

s /δ is
a monotonically increasing function of Δ/δ (stronger exchange is required to
polarize a grain with stronger pairing correlations), while the higher value
J(2)

s /δ depends only weakly on Δ/δ.
It is interesting to follow the dependence of the ground-state spin as a

function of the exchange coupling constant Js/δ for a fixed value of Δ/δ. In
the absence of pairing (Δ = 0), this dependence follows a stepwise behavior
known as the mesoscopic Stoner staircase (Kurland et al. 2000), where a
transition from spin S to spin S + 1 occurs for an exchange coupling of

Js

δ
=

2S + 1
2S + 2

at Δ = 0. (5)



30 S. SCHMIDT AND Y. ALHASSID

The first step occurs at Js/δ = 0.5 (where the ground-state spin increases
from S = 0 to 1) and continues up to Js = 0.75 (where the S = 1 to 2
transition takes place). In the presence of pairing, the first step is shifted to
higher values of the exchange and the Stoner staircase is compressed. For
Δ/δ < 0.6, all steps have a height of ΔS = 1. However, for 0.6 < Δ/δ < 0.8,
the first step has a height of ΔS = 2, describing a spin jump from S = 0 to
S = 2. This first step starts at Js/δ ≈ 0.87 and ends at Js/δ ≈ 0.9. The height
of the first-step spin jump increases at larger values of Δ/δ. All subsequent
steps are of height one.

Spin jumps also occur when superconductivity in metallic grains breaks
down in the presence of a sufficiently large external Zeeman field (Braun
et al. 1997). This “softened” first-order phase transition from a supercon-
ductor to a paramagnet was explained qualitatively using a finite-spin BCS
approximation.

In the presence of exchange correlations, spin jumps are predicted to oc-
cur at Js/δ > 0.87. Such exchange coupling values are significantly larger
than the exchange coupling values of most metals (see Fig. 9 in Gorokhov
and Brouwer 2004). Moreover, the exchange strength is an intrinsic material
property and is difficult to tune experimentally. In Schmidt et al. (2007) we
have shown that the coexistence regime can be tuned to experimentally ac-
cessible values of the exchange interaction by applying an external Zeeman
field.

4. Conductance

The determination of the ground-state spin of a grain is a difficult measure-
ment. It is then desirable to identify signatures of coexistence of supercon-
ductivity and ferromagnetism in a quantity that is directly measurable, e.g.
the conductance. Furthermore, the universal Hamiltonian equation (1) is only
valid for chaotic (or disordered) grains, in which mesoscopic fluctuations are
generic. Therefore, in order to make quantitative predictions for the experi-
ment it is necessary to include the effect of mesocopic fluctuations. In this
section we discuss the mesoscopic fluctuations of the tunneling conductance
for an almost-isolated metallic grain in the Coulomb blockade regime. We
find signatures of the coexistence of pairing and exchange correlations in the
conductance statistics. Since the tunneling conductance can be measured in a
single-electron transistor that uses the metallic grain as an island, our results
are directly relevant for the experiment.

We consider grains that are weakly coupled to external leads. In the
regime of sequential tunneling δ, T � Γ (Γ is a typical tunneling width). As-
suming the charging energy to be much larger than temperature (e2/2C � T ),
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the conductance displays a series of sharp peaks as a function of gate voltage.
The N-th conductance peak describes a tunneling event in which the number
of electrons in the dot changes from N to N + 1. and is determined by
the many-body energies and transition rates between eigenstates of the N
and N + 1 electrons. The conductance peak height and peak position are
determined by solving a system of rate equations (Alhassid et al. 2004).

Here we present results for the conductance peak spacing and peak height
statistics for an experimentally accessible temperature of T = 0.1 δ (Ralph
et al. 1997). In the absence of an external magnetic field, the single-particle
Hamiltonian is described by the Gaussian orthogonal ensemble (GOE) of
random matrices. For each random matrix realization of the one-body Hamil-
tonian, we use the Lanczos method to find the five lowest eigenstates of the
many-body Hamiltonian equation (1). The calculations are carried out for
a truncated bandwidth Nr = 8 and electron numbers N = 16, 17, 18 and 19.
Using the many-body energies and wave functions, we calculate the tunneling
matrix elements for the corresponding three tunneling events. We then solve
the system of rate equations and determine the conductance as a function of
gate voltage. The peak position and height are determined numerically. To
ensure good statistics, the above procedure is repeated for 4, 000 realizations
of the one-body Hamiltonian.

4.1. PEAK SPACING STATISTICS

The peak spacing distribution is shown in Fig. 2, where the spacing is mea-
sured relative the constant charging energy. For Δ = Js = 0 and at low
temperatures, this distribution is bimodal because of the spin degeneracy of
the single-particle levels (Alhassid 2000). The exchange interaction induces
mesoscopic spin fluctuations and suppresses this bimodality (see top left
panel of Fig. 2). This is known from the case of semiconductor quantum dots.

Pairing correlations can restore bimodality. For a moderate exchange
value of Js = 0.3 δ, bimodality is restored for a relatively weak pairing
strength of Δ = 0.25 δ. For Js = 0.6 δ, this bimodality is suppressed but
reappears at Δ/δ = 0.5 (see bottom left panel of Fig. 2). The left part of the
peak spacing distribution describes even-odd-even (E-O-E) tunneling events
(the parity refers to the number of electrons), and its right part describes
odd-even-odd (O-E-O) transitions.

The bimodality of the peak spacing distribution in the presence of strong
pairing correlations can be understood qualitatively in the T = 0 fixed-spin
BCS approximation (Schmidt et al. 2007). For an E-O-E transition, the first
conductance peak corresponds to the blocking of an additional single-particle
level, while the second conductance peak corresponds to the removal of this
blocked level by creating an additional Cooper pair. This leads to the estimate
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Figure 2. Peak spacing distributions at T = 0.1 δ for several values of Δ/δ. Results are shown
for both Js = 0 (dashed, grey-filled histograms) and Js = 0.6 δ (solid histograms). For Δ = 0
we also compare with the analytic result (Jalabert et al. 1992) at T � δ and Js = 0 (solid line).
The bimodality of the distribution at Δ = Js = 0 is suppressed at finite exchange (Js = 0.6 δ)
but is restored for Δ/δ = 0.5. Taken from Schmidt and Alhassid (2008)

ΔEOE
2 ≈ −2Δ + 3

2 J. In a O-E-O tunneling sequence, these two events are
reversed and we find ΔOEO

2 ≈ 2Δ − 3
2 J. The contribution of the exchange

interaction in these estimates is straightforward because, in the limit of strong
pairing, the ground-state spin is always S = 0 (S = 1/2) for an even (odd)
number electrons. The difference of these two peak spacing values is

δΔ2 = Δ
OEO
2 − ΔEOE

2 ≈ 4Δ − 3J , Δ � δ, (6)

and bimodality becomes more pronounced when Δ/δ increases. Since the
exchange interaction strength for most metals is smaller or comparable to
Js ∼ 0.6 δ, exchange correlations are insufficient to suppress the bimodality
in the presence of strong pairing correlations.

4.2. PEAK HEIGHT STATISTICS

The peak height distribution is shown in Fig. 3. For Δ = Js = 0, this dis-
tribution is known analytically at T � δ (Jalabert et al. 1992), and, in
the absence of an external magnetic field (GOE statistics), diverges at small
values of the conductance. Finite temperature and exchange interaction have
a similar effect on the peak height distribution; they both reduce the occur-
rence of small conductance values. While thermal fluctuations open an energy
window in which states become available for tunneling and thus can con-
tribute to the conductance, the exchange interaction increases the many-body
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Figure 3. Peak height distributions at T = 0.1 δ for several values of Δ/δ. We show results
for Js = 0 (dashed, grey-filled histograms) and Js = 0.6 δ (solid histograms). The solid line is
the analytic distribution at T � δ and Js = 0 (Jalabert et al. 1992). Since the conductance peak
height gmax fluctuates over several order of magnitude, we show the distributions as a function
of ln(gmax/ḡmax) where ḡmax is the average conductance peak height. Taken from Schmidt and
Alhassid (2008)

density of states around the Fermi energy and makes otherwise high-lying
non-zero spin states available for tunneling. This effect is shown in Fig. 3.
For Δ = 0 we clearly observe that a finite exchange interaction suppresses the
peak height distribution at small conductance values. The same behavior was
observed for the Gaussian unitary ensemble (GUE) ensemble in semiconduc-
tor quantum dots, where the pairing interaction can be ignored and a closed
solution for the conductance is available (Alhassid and Rupp 2003). There,
the suppression of probability at small conductance values by the inclusion of
exchange interaction leads to better agreement with the experimental results.
Another signature of exchange correlations is the suppression of peak height
fluctuations as described by σ(gmax)/ḡmax (the ratio between is the standard
deviation and average value of the peak height) (Schmidt and Alhassid 2008).

However, it is important to note that at very low temperatures, e.g. T =
0.01 δ, the small conductance values are no longer suppressed by an exchange
interaction. For such very low temperatures, the increase in the density of
states near the Fermi energy by the exchange interaction does not affect the
conductance since only the ground state contributes significantly to transport.

The pairing interaction leads to an excitation gap that pushes states with
large spin to higher energies. Thus, already for Δ = 0.5 δ we observe less
suppression of the small conductance values by an exchange of J = 0.6 δ.
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When the pairing interaction is strong enough to suppress all spin polarization
of low-lying states (e.g. Δ ≥ 1.0 δ for Js < 0.6 δ), the peak height distribution
becomes essentially independent of the exchange interaction and diverges
again for small conductance values.

For Δ/δ = 0.5 and Js/δ = 0.6, we observe a signature of pairing cor-
relations in the peak spacing distribution (bimodality) and a signature of
exchange correlations in the peak height distribution (suppression of the prob-
ability of small conductance values). We can interpret these results to de-
scribe the mesoscopic coexistence of pairing and exchange correlations. A
candidate for this mesoscopic coexistence is vanadium, which has Js/δ ∼
0.57–0.63 (Gorokhov and Brouwer 2004) and is superconducting in the bulk.
Another candidate is platinum, which has Js/δ ∼ 0.59–0.72 and is supercon-
ducting in granular form.

5. Conclusion

We reviewed the competition between superconductivity and ferromagnetism
in ultra-small metallic grain. In particular, we presented the ground-state
phase diagram in the Js/δ−Δ/δ plane, and discussed a coexistence regime of
superconductivity and ferromagnetism. This regime is characterized by spin
jumps that are greater than unity. We also discussed the transport properties of
the grain in its Coulomb blockade regime of weak coupling to leads and de-
scribed the statistics of the conductance peaks in the presence of both pairing
and exchange correlations. Of particular interest is a regime in which pairing
and ferromagnetic correlations coexist. Such a regime is defined by the simul-
taneous occurrence of bimodality in the peak spacing distribution (caused by
pairing correlations) and the suppression of the peak height distribution at
small conductance values (caused by ferromagnetic correlations).

The exchange interaction strength is a material constant and might be
difficult to tune experimentally. Alternatively, the coexistence regime can be
controlled by an external Zeeman field while measurements are carried out at
a fixed exchange interaction strength.
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Abstract. We study time-reversal mirrors in chaotic cavities using a semiclassical approach.
We present calculations of the reconstructed signal under various conditions. The refocused
signal is shown to build up in the region of the source, by multiple interference, in the form of
a reversed wave. We demonstrate that the optimal reconstruction is achieved at the refocusing
time and at the point of the original emission. This refocused signal scales linearly with the
recording interval and inversely with the area of the cavity. We stress the importance of the
underlying dynamics, and its role in the signal reconstruction when the time-reversal mirror
operates under an external perturbation.

Key words: Quantum chaos; Time-reversal mirror; Loschmidt echo

1. Introduction

The time-reversal mirror is an experimental technique allowing to focus var-
ious kinds of waves in a desired region of space and time (Derode et al.
1995; Fink 2001; Draeger and Fink 1997; Catheline et al. 2008; Negreira
and Fint 2007). The protocol starts with an initially localized excitation that
propagates and is registered by a set of transducers surrounding the emission
region. The recorded signals are then played-back in the inverse temporal
sequence and the pulse is reconstructed around the initial point. Albeit not
perfect (Pastawski et al. 2007), the pulse reconstruction can be done quite
faithfully, and with an arbitrary level of amplification. Various applications
of this technique in the fields of medical physics, oceanography and telecom-
munications are underway and envisioned (Fink 1997; Ribay et al. 2005;
Heinemann et al. 2002).

Surprisingly, the focalization signal improves when the wave propagation
occurs in a disordered media or inside a chaotic cavity, as compared with
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the homogeneous or integrable cases. In closed chaotic cavities, the focal-
ization was successfully performed even with a single transducer (Draeger
and Fink 1997). The underlying classical dynamics of the wave-problem
appears as a crucial factor for the quality of the refocusing and its stability
against external perturbations or the use of partial information. This observa-
tion renders the problem of time-reversal focusing particularly interesting for
quantum-chaology studies (Casati et al. 2000).

In this work we present a detailed calculation of the focalization am-
plitude for times close to refocalization and positions near the source point
where the recovering takes place. We use the semiclassical approach and fol-
low the lines of Calvo et al. (2008) to evaluate the scaling of the focalization
amplitude with the temporal re-emission interval and the parameters of the
cavity in order to compare with the experimental and numerical results of
Draeger and Fink (1997) for time reversal of elastic waves in a chaotic cavity
by using a single transducer. We stress the similarities with the related case of
the Loschmidt echo, where the reconstruction of an initially localized quan-
tum state is obtained by inversion of the dynamics after some propagating
time, and where the underlying classical dynamics was shown to play an
important role (Jalabert and Pastawski 2001; Cucchietti et al. 2004).

2. Semiclassical Theory

A time-reversal mirror experiment starts with a high frequency excitation
emitted by a source located at a point r0. Such an excitation can be viewed
as an initial wave packet ψp0(r′), centered around r0 and with momentum
p0, that propagates through the cavity reaching the transducer at position
ri. We consider only one transducer, but the generalization to an array is
straightforward. The recording begins at time t1 and the signal detected by
the transducer for later times t > t1 is

ψ(ri, t) =
∫

dr′G(ri, r′, t) ψp0(r′), (1)

where G(ri, r′, t) is the propagator describing the wave propagation from r′
to ri in the time t. The recording process takes place until a time t2 = t1 +ΔT .
After a waiting time tW > t2, the registered signal is time-reversed and emitted
between the subsequent times t′2 = 2tW − t2 and t′1 = 2tW − t1. These waves
propagate from the transducer into the system and interfere in the cavity,
eventually giving rise to the focusing. Once the emission has finished (t > t′1),
the signal detected in the source region can be computed as

Fp0(r, t) =
∫ t′1

t′2
dτ G(r, ri, t − τ)

∫

dr′ G∗(ri, r′, 2tW − τ) ψ∗p0
(r′). (2)
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Performing the change of variables τ′ = 2tW − τ, redefining the focalization
time 2tW as the new time origin (t′ = t − 2tW ), and dropping the primes in
order to simplify the notation, we have (Tanner and Søndergaard 2007)

Fp0(r, t) =
∫ t2

t1
dτ G(r, ri, t + τ)

∫

dr′ G∗(ri, r′, τ) ψ∗p0
(r′). (3)

Working with two-dimensional systems, the initial excitation can be faith-
fully represented by a Gaussian wave packet

ψp0(r′) =
1√
πσ

exp

[

i
�

p0 · (r′ − r0) − (r′ − r0)2

2σ2

]

, (4)

centered around r0 and with dispersion σ. The momentum p0 gives the main
energy and direction of the excitation. The choice of a quantum formalism
to represent the ray picture is motivated by convenience, as we are leaving
aside the delicate issue concerning a quantal recording-emission process. In
the semiclassical approximation, the propagator can be expanded as a sum
over classical trajectories s(r′, r, τ) linking the points r′ and r in a time τ
(Brack 1997),

G(r, r′, τ) =
∑

s(r′,r,τ)
Gs(r, r′, τ), (5)

according to the Van Vleck’s formula

Gs(r, r′, τ) =
1

2πi�
C1/2

s exp

[

i
�

S s(r, r′, τ) − i
2
πμs

]

. (6)

Here, S s(r, r′, τ) denotes the action integral over the classical path s, while μs

is the Maslov index accounting for the number of conjugates points along
s, and the stability factor Cs =

∣

∣

∣det(−∂S 2
s/∂r′∂r)

∣

∣

∣ sets the weight of the
trajectory. Since the initial wave packet is focused on r0 we can expand the
action integral in terms of those trajectories s̃ departing from the center of
the wave packet and reaching ri in a time τ as

S s(ri, r′, τ)  S s̃(ri, r0, τ) − ps̃ · (r′ − r0) , (7)

with ps̃ the initial momentum of the trajectory s̃. Therefore, the detected
signal at the transducer point takes the form (Jalabert and Pastawski 2001;
Goussev et al. 2008)

ψ(ri, τ) =
(

4πσ2
)1/2 ∑

s(r0 ,ri,τ)

Gs(ri, r0, τ) exp

[

− σ
2

2�2
(ps − p0)2

]

. (8)
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We evaluate the focalization signal for times t close to the refocusing one
and positions r near r0. Thus, the action integral in the propagator of the
returning waves can be expanded as

S s(r, ri, t + τ)  S s̃(r0, ri, τ) + Es̃ t + ps̃ · (r − r0). (9)

Notice that the sign of the momentum becomes opposite as compared to
(7) since we are dealing with trajectories arriving to r0. Furthermore, the
expansion around the focalization time gives an additional term that accounts
for the energy Es̃ of the trajectory. Hence, the focalization signal writes as a
double sum involving trajectories going from r0 to ri and back

Fp0(r, t) =
(

4πσ2
)1/2

∫ t2

t1
dτ

∑

s′(ri,r0 ,τ)

∑

s(r0 ,ri,τ)

Gs′(r0, ri, τ) G∗s(ri, r0, τ)

× exp

[

− σ
2

2�2
(ps − p0)2 +

i
�

Es′ t +
i
�

ps′ · (r − r0)

]

. (10)

The main contribution comes from the diagonal term in which only the
same trajectories are kept (s = s′). Reciprocity in the propagators leads to a
focalization signal given by

Fp0(r, t) =
σ

2π3/2�2

∫ t2

t1
dτ

∑

s(ri ,r0 ,τ)

Cs exp

[

− σ
2

2�2
(ps − p0)2 (11)

+
i
�

Es t +
i
�

ps · (r − r0)

]

. (12)

In billiards the same path ŝ(r0, ri) can correspond to different traveling
times, depending on the magnitude of the momentum. The energy and mo-
mentum can be expressed in terms of the length Lŝ and the traveling time τ
as Es = p2

s/2m and ps = mLŝ/τ respectively. The stability factor Cs decreases
for long times as exp(−λsτ), with λs the largest Lyapunov exponent, whereas
for the short time limit, it presents a ballistic behavior. Assuming a uniformly
hyperbolic dynamics (Goussev et al. 2008), and using λsτ = λ̂Lŝ (with λ̂ an
inverse length), we can write

Cs =
2m2λ̂Lŝ

τ2
exp(−λ̂Lŝ). (13)

The sum over trajectories can be converted into an integral over lengths
by introducing the density (Sieber 1999)

dN(L)
dL

=
π

λ̂A exp(hL), (14)
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with A the area of the cavity. For closed systems h = λ̂, and the long paths
linking r0 to the transducer can be considered uniformly distributed along all
directions. The sum over trajectories can then be replaced by a double integral
over lengths and initial angles leading to

Fp0(r, t) =
m2σ√
π�2A

∫ t2

t1

dτ
τ2

∫ 2π

0

dϕ
2π

∫ ∞

Ld

dL L exp

[

− σ
2

2�2

(mL
τ

e(ϕ) − p0

)2

+
i
�

mL2

2τ2
t +

i
�

mL
τ

e(ϕ) · (r − r0)

]

, (15)

where e(ϕ) is an unitary vector that gives the direction of the initial momen-
tum and Ld is the length of the shortest trajectory linking r0 and ri.

3. Focalization in the Optimal Condition

As a first step in the evaluation of the focalization, we start with the optimal
condition given by t = 0 and r = r0. Defining ϕ as the angle of e(ϕ) with p0,
we have e(ϕ) · p0 = p0 cos ϕ, and the argument in the exponential of (15) can
be written as

− σ
2

2�2

(

p2
0 sin2 ϕ +

(mL
τ
− p0 cos ϕ

)2)

. (16)

The corresponding τ-integral of (15) is then obtained as

I1(L, ϕ) =
∫ t2

t1

dτ

τ2
exp

[

− σ
2

2�2

(mL
τ
− p0 cos ϕ

)2]

=

√
π�√

2mσL
(erf(η1) − erf(η2)) , (17)

where erf(x) stands for the error function, ηi = η(ti) for i = {1, 2}, and

η(τ) =
σ√
2�

(mL
τ
− p0 cos ϕ

)

. (18)

The next step is to calculate the integral over length given by

I2(ϕ) =
∫ ∞

Ld

dL L I1(L, ϕ). (19)

Defining Li = νti, li = L/Li, and lϕ = σp0 cos ϕ/
√

2� with mean spreading
velocity of the wave packet

ν =

√
2�

mσ
, (20)
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the integral over length writes

I2(ϕ) =

√
π�2

(mσ)2

[

t2

∫ ∞

Ld/L2

dl2
[

1 − erf(l2 − lϕ)
]

− t1

∫ ∞

Ld/L1

dl1
[

1 − erf(l1 − lϕ)
]

]

=

√
π�2

(mσ)2

[

(t2 − t1)
∫ ∞

Ld/L2

dl
[

1 − erf(l − lϕ)
]

− t1

∫ Ld/L1

Ld/L2

dl
[

1 − erf(l − lϕ)
]

]

. (21)

Regardless of the value of p0, the recording process is supposed to start once
the wave packed have been spread out on the whole cavity. This means that
the involved lengths satisfy Ld � L1 < L2 and I2 can be approximated as

I2(ϕ) 
√
π�2ΔT

(mσ)2

∫ ∞

0
dl

[

1 − erf(l − lϕ)
]


√
π�2ΔT

(mσ)2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

exp(−l2ϕ)√
π
+ lϕ

[

1 + erf(lϕ)
]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

The optimal focalization then writes

Fp0(r0, 0) =
ΔT
σAe−σ

2p2
0/2�

2
[

1√
π

+

∫ 2π

0

dϕ
2π

K cos ϕ eK2 cos2 ϕ [

1 + erf (K cos ϕ)
]

]

, (23)

where K = σp0/
√

2�. Because of the periodic behavior in the arguments, the
first term of the angular integral vanishes. In the Appendix we show that

I3 =

∫ 2π

0

dϕ
2π

K cos ϕ exp
[

K2 cos2 ϕ
]

erf (K cos ϕ) =
eK2 − 1√

π
, (24)

allowing us to write

Fp0(r0, 0) = Fmax =
ΔT√
πσA . (25)

This result has been obtained for the case p0 = 0 in Calvo et al. (2008).
The linear scaling with the temporal window of re-emission is a natural result
observed in Draeger and Fink (1997), while the scaling with A has not been
systematically tested so far.
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4. Focalization as a Function of Time and Space

Having evaluated the focalization signal at the optimal condition, we now
analyze the more general situation in which the time and position are not
fixed. In this case the argument of the exponential of (15) can be written as

− σ
2

2�2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p2
0 −

(

p′0 cos ϕ
)2

γ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ γ

(

mL
τ
− p′0 cos ϕ

γ

)2
⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (26)

where we have defined

γ = 1 − i
�t

mσ2
, p′0 = p0 + i

�

σ2
(r − r0), (27)

and e(ϕ) · p′0 = p′0 cos ϕ. The focalization amplitude takes the form

Fp0(r, t) =
m2σe−σ2p2

0/2�
2

√
π�2A

∫

dϕ
2π

exp

[

σ2

2�2γ

(

p′0 cos ϕ
)2

] ∫ ∞

Ld

dL L I1(L, ϕ),

(28)
with

I1(L, ϕ) =
∫ t2

t1

dτ
τ2

exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− σ
2

2�2
γ

(

mL
τ
− p′0 cos ϕ

γ

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

.

The only difference with the previous case (17) is that the argument in the
exponential has been extended into the complex domain. We take γ = eiα |γ|
and

η(τ) =
σeiα/2

√
2�
|γ|1/2

(

mL
τ
− p′0 cos ϕ

γ

)

, (29)

leading to the resulting integral

I1(L, ϕ) =

√
2π�

2mσL
e−iα/2

|γ|1/2 (erf(η1) − erf(η2)) . (30)

In analogy with (19) we write

I2(ϕ) =
∫ ∞

Ld

dL L I1(L, ϕ)

=

√
2π�

2mσ
e−iα/2

|γ|1/2
∫ ∞

Ld

dL (erf(η1) − erf(η2)) . (31)

Defining Li = ν
′ti, li = L/Li, and lϕ = σ |γ|1/2 p′0 cos ϕ/

√
2�γ with

ν′ =
√

2�

mσ |γ|1/2 (32)
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we have

I2(ϕ) =

(

�

mσ

)2 √
πe−iα/2

|γ|
[

(t2 − t1)
∫ ∞

Ld/L2

dl
(

1 − erf
[

eiα/2(l − lϕ)
])

+ t1

∫ Ld/L1

Ld/L2

dl
(

1 − erf
[

eiα/2(l − lϕ)
])

]

. (33)

Assuming again Ld � L1 < L2, the first term, proportional to ΔT , dominates
and can be calculated as

I2(ϕ) =

(

�

mσ

)2 √
πe−iα/2

|γ| ΔT

[

e−iα/2

√
π

exp(−eiαl2ϕ) + lϕ
[

1 + erf
(

eiα/2lϕ
)]

]

.

(34)
Therefore, we obtain for the focalization

Fp0(r, t) =
ΔTe−σ2p2

0/2�
2
e−iα

|γ|σA
[

1√
π

+

∫

dϕ
2π

eiα/2lϕ exp
(

eiαl2ϕ
) [

1 + erf
(

eiα/2lϕ
)]

]

. (35)

Defining

I4 =

∫ 2π

0

dϕ
2π

eiα/2lϕ exp
(

eiαl2ϕ
) [

1 + erf
(

eiα/2lϕ
)]

, (36)

noticing that

eiα/2lϕ =
e−iα/2

|γ|1/2
σ√
2�

p
′
0 cos ϕ = K cos ϕ, (37)

and that the angular integration over the first term in the integrand of (36)
vanishes, we have I4 = I3. Therefore

Fp0(r, t) =
ΔTe−σ2p2

0/2�
2
e−iα

√
π |γ|σA exp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

σ2

2�2

p
′2
0

γ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (38)

where

p
′2
0 = p2

0 + 2i
�

σ2
p0 · (r − r0) − �

2

σ4
(r − r0)2. (39)

The focalization then becomes

Fp0(r, t) =
Fp0(r0, 0)eiα

√

1 +
(

�t/mσ2)2
exp

[

− (r − r0)2

2σ2γ
+

i
�

p0

γ
·
[p0t
2m
+ (r − r0)

]

]

,

(40)
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which has the form of a reversed wave respect to the original one. The mag-
nitude of the focalization amplitude is thus given by

∣

∣

∣Fp0(r, t)
∣

∣

∣ =
Fmax

√

1 +
(

�t/mσ2)2
exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− (r − r0 + p0t/m)2

2σ2

1

1 +
(

�t/mσ2)2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(41)
This result was obtained in Calvo et al. (2008) using the ergodic approach

(Argaman 1996) of trading the actual dynamics by phase-space averages. The
procedure presented in this work is more laborious than the ergodic approach,
but allows to establish the necessary conditions for the refocalization and
it has the advantage of being generalizable to the case where we introduce
perturbations between the recording and injection phases.

5. Focalization Under External Perturbations

The time-reversal mirror technique has been shown to be robust against ex-
ternal perturbations. These perturbations may be due to uncontrollable evo-
lution of the environment, unavoidable errors in the reversal protocol, but
also intentional changes in the setup between the recording and injection
phases (Derode et al. 1995; Fink 2001). In the spirit of the Loschmidt echo
studies (Jalabert and Pastawski 2001), we can model the effect of a generic
perturbation by writing the reconstructed signal as

Fp0(r, t) =
∫ t2

t1
dτ G̃(r, ri, t + τ)

∫

dr′ G∗(ri, r′, τ) ψ∗p0
(r′). (42)

G∗(ri, r′, τ) describes, like in (3), the propagation of the recording process,
which is governed by a Hamiltonian H. We assume that the emission process
is governed by a slightly different Hamiltonian H̃, leading to the modified
propagator G̃(r, ri, t + τ). Within a semiclassical approach the effect of the
perturbation H̃ − H can be accounted by affecting the contribution of each
trajectory s with an additional factor 〈exp [iΔS s/�]〉, where ΔS s represents
the action difference for traveling along s under each of the Hamiltonians. The
angular brackets represent an average that depends on the kind of perturba-
tion chosen. A particularly useful choice is that of fictitious static impurities

characterized by an effective elastic mean-free-path l̃ = �2v2
0

(∫

dqC(q)
)−1

,
where v0 = p0/m and C(q) is the correlation function describing the disorder
(Jalabert and Pastawski 2001). Taking the accumulated action as a Gaussian
random variable, the previous average can be expressed as exp [−Lŝ/2l̃] =

exp [−γτ2/Lŝ], with γ = (1/2�2)
(∫

dqC(q)
)−1

giving the strength of the
perturbation (and independent of the parameters of the trajectories).
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Under the optimal focalization condition we now have

Fmax(γ) =
m2σ√
π�2A

∫ t2

t1

dτ

τ2

∫ ∞

Ld

dL L exp

[

−
( L
ντ

)2

− γτ
2

L

]

=
2ν√
πσAγ

{∫ Ld/L1

Ld/L2

dξ ξ2e−ξ
2
(

exp

[

− γLd

ξ2ν2

]

− exp

[

− γL1

ξ2ν2

])

+

∫ ∞

Ld/L2

dξ ξ2 e−ξ
2
(

exp

[

−γL1

ξν2

]

− exp

[

−γL2

ξν2

])}

. (43)

For the second equality we have made the change of variables ξ = L/ντ and
then exchanged the order of the L and ξ integrals. Since we work in the case
Ld � L1 < L2 only the last term of (43) is relevant, and furthermore its lower
integration limit can be taken to be 0.

In the limit of γ → ∞ we trivially recover Fmax as in (25). The char-
acteristic time defined by the perturbation is τ̃ = ν/(2

√
πγ). For very weak

perturbations such a time is larger than the maximum recording time, and we
simply have

Fmax(γ) = Fmax

(

1 − t2 + t1
4τ̃

)

for t2 � τ̃. (44)

For larger perturbations the previous approximation is not valid, but if we
stay in the regime where the recording interval is small compared with τ̃
we see that the contributions of all trajectories are affected by almost the
same reduction factor. We thus have

Fmax(γ) = Fmax exp
[

− t2 + t1
4τ̃

]

for t2 − t1 � τ̃. (45)

When the perturbation is strong enough to differentiate trajectories in the
recording interval, the focalization will be dominated by the smallest time t1,
and we lose the proportionality between the refocused signal and the record-
ing interval. Writing exp

[

−γL1/ξν
2
]

as a Gaussian integral over the variable
ρ, we can cast the L1-dependent contribution in the last term of (43) as

Fmax(γ) =
2ν√
πσAγ

∫ ∞

0
dξ ξ2

∫ ∞

−∞
dρ exp

[

−ξ2 − ξρ2 +
2i
√
γL1

ν
ρ

]

. (46)

Exchanging the order of the integrals, and assuming a strong perturbation, we
have

Fmax(γ) =
2ν√
πσAγ

[Γ(7/4)]3/2

2[Γ(9/4)]1/2
exp

[

−Γ(7/4)
Γ(9/4)

γt1
ν2

]

=
cτ̃√
πσA exp

[

−c′t1
2τ̃

]

for t2 > τ̃. (47)
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In the last expression we have defined the numerical constants c = 2.94 and
c′ = 0.46. Leaving aside the trivial case of (44), we will go from the regime
of (45) to that of (47) while increasing the strength of the perturbation. The
most important change is the breakdown of the linearity of Fmax(γ) with ΔT
when going from one regime to the other. For current experiments the regime
of (47) is the most relevant one. In this case the exponential suppression of
the signal with the typical recording times appears as a stringent limitation.
Depending on the model chosen for the perturbation, the dependence of the
typical time τ̃ on the parameters of the system might be quite different. For in-
stance, choosing as a perturbation the mass distortion in a system represented
by a Lorentz gas would lead to a different scaling of τ̃ than the above pre-
sented (Jalabert and Pastawski 2001) such that it increases with the chaoticity
of the system, which would result in an improved focusing. The role of the
perturbation in limiting the refocalization is an important aspect that deserves
further study.

6. Conclusion

In conclusion, we have presented detailed semiclassical calculations of the
refocalization signal for the time-reversal mirror procedure. The chaotic na-
ture of the underlying classical dynamics appears as a key ingredient of the
reconstruction. Our calculations are valid for the chaotic regime and agree
quite accurately with the corresponding numerical simulations (Calvo et al.
2008). Our semiclassical calculations cannot be directly applied to the case
of integrable geometries, where the experimental and numerical results show
a poorer signal reconstruction with lower signal compression, the appear-
ance of focalization satellites, and an important sensitivity with respect to the
position of the transducers.

Appendix

In this appendix we calculate the integral I3 of (24). The expansion of the
exponentials in the corresponding integrand leads to

I3 =
1

π3/2

∞
∑

n=0

∞
∑

m=0

(−1)m

n!m!(2m + 1)

∫ 2π

0
dϕ

[

K cos ϕ
]2(n+m+1) .

Performing the replacement l = n + m, we have

I3 =
1

π3/2

∞
∑

l=0

1
l!

l
∑

m=0

(

l
m

)

(−1)m

2m + 1

∫ 2π

0
dϕ

[

K cos ϕ
]2(l+1) .
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The sum over m can be obtained from

l
∑

m=0

(

l
m

)

(−1)m

2m + 1
=

∫ 1

0
(1 − x2)ldx =

∫ π/2

0
dφ cos2l+1 φ =

√
π

2
Γ(l + 1)
Γ(l + 3/2)

.

On the other hand, the remaining integral takes the value

∫ 2π

0
dϕ cos2(l+1) ϕ = 2

√
π
Γ(l + 3/2)
Γ(l + 2)

,

yielding

I3 =
1√
π

∞
∑

l=0

K2(l+1)

l!
Γ(l + 1)
Γ(l + 2)

=
1√
π

∞
∑

l=0

K2(l+1)

(l + 1)!
=

1√
π

(

eK2 − 1
)

,

in agreement with (24) of the text.
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ENTANGLEMENT AND LOCALIZATION OF WAVEFUNCTIONS
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Abstract. We review recent works that relate entanglement of random vectors to their
localization properties. In particular, the linear entropy is related by a simple expression
to the inverse participation ratio, while next orders of the entropy of entanglement contain
information about e.g. the multifractal exponents. Numerical simulations show that these
results can account for the entanglement present in wavefunctions of physical systems.

Key words: Quantum information; Entanglement; Random vectors; Localization;
Multifractals

1. Introduction

Quantum mechanics has always seemed puzzling since its first construction
in the first half of the twentieth century. Many properties are different from
the world of classical physics in which our intuition is built. The develop-
ment of quantum information science in the last decades has exemplified this
aspect. Indeed, it was realized that it is in principle possible to exploit the
features of quantum mechanics to treat information in a different way from
what a classical computer would do. In this context, the specific properties of
quantum mechanics are put forward as new resources which enable to treat
information in completely new ways.

One of the most peculiar properties of quantum mechanics is entangle-
ment, that is the possibility to construct quantum states of several subsystems
that cannot be factorized into a product of individual states of each subsys-
tem. Such entangled states are the most common in quantum mechanics,
and they display correlations which cannot be seen in a classical world, ex-
emplified by e.g. the Einstein–Podolsky–Rosen “paradox.” Entanglement is
also a resource for quantum information (see Nielsen and Chuang 2000 and
references therein), and has been widely studied as such in the past few years.

Despite intensive work, entanglement remains a somewhat mysterious
property of physical systems. The structure of entanglement of systems even
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NATO Science for Peace and Security Series B: Physics and Biophysics,
c© Springer Science+Business Media B.V. 2009
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with small numbers of particles is hard to characterize. Even properly mea-
suring the entanglement present in a system is difficult for mixed states. This
is all the more important since recent results have shown that (at least for
pure states) if a process creates a sufficiently low level of entanglement, it
can be simulated efficiently by a classical computer (Jozsa and Linden 2003;
Vidal 2003). This gives a limit on the speedup over classical computation a
quantum computer can achieve, and also gives rise to interesting proposals for
building classical algorithms simulating weakly entangled quantum systems
(Verstraete et al. 2004).

In this paper, we review recent results we obtained (details can be found
in Giraud et al. 2007, 2009), which concern the relationship of entanglement
to localization properties of a quantum state. Our strategy is to consider
n-qubit systems, and to study entanglement of quantum states relative to their
localization properties in the 2n-dimensional Hilbert space in the computa-
tional basis. We obtain analytical results for random states, that is ensemble
of quantum states sharing some properties. Such random states have been
recently studied in the literature. They are interesting in themselves, since it
has been shown for example in quantum information that they are useful in
various quantum protocols (Harrow et al. 2004; Hayden et al. 2004; Bennett
et al. 2005; Cappellaro et al. 2005). This motivated a recent activity in the
quantum information community to try and produce efficiently such random
vectors or random operators through quantum algorithms (Emerson et al.
2003; Weinstein and Hellberg 2005), and to characterize their entanglement
properties (Scott 2004; Sommers and Zyczkowski 2004; Giraud 2007a, b;
Zindaric 2007; Zindaric et al. 2007; Facchi et al. 2008). In addition to their
intrinsic usefulness, random states are important since they can describe typ-
ical states of a “complex” system. For example, it has been known for some
times now that random vectors built from Random Matrix Theory (RMT)
can describe faithfully the properties of quantum Hamiltonian systems whose
classical limit is chaotic, and more generally of many complex quantum
systems (Giannoni et al. 1991). Such random vectors are ergodic, and the
entanglement they contain has been calculated some time ago (Lubkin 1978;
Page 1993). However, in many quantum systems, the wavefunctions are not
ergodic but localized. This can correspond to electrons in a disordered po-
tential, which are exponentially localized due to Anderson localization. It
can also be seen in many-body interacting systems, where the presence of
a moderate interaction can lead to states partially localized in energy. Some
systems are in a well-defined sense neither ergodic neither localized: they
correspond to e.g. states at the Anderson transition between localized and
delocalized states, and can show multifractal properties (Mirlin 2000; Evers
and Mirlin 2007).
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In this paper, we calculate the amount of entanglement present in en-
sembles of random vectors displaying these various degrees of localization.
Besides generalizing the result for RMT-type random vectors, this gives the
entanglement present in a “typical state” of such localized or partially lo-
calized systems. This enables to estimate the complexity of simulating such
systems on classical computers, but also sheds light on the entanglement it-
self, since in these cases it is related through simple formulas to quantities
characterizing the degree of localization of the system.

Our results show that for random vectors which are localized on the
computational basis, the linear entropy which approximates the amount of
entanglement in the vector is simply related to the Inverse Participation Ratio
(IPR), a popular measure of localization. The next term in the approximation
is related to higher moments, and in particular to the multifractal exponents
for multifractal systems. In order to assess the usefulness of these results to
physical systems, we compare them to the entanglement numerically com-
puted for several models. After a general discussion on entanglement of ran-
dom vectors (Sect. 2), we consider the entanglement of one qubit with the
others (Sect. 3), and give explicitly the first and second order of the expansion
of the entropy of entanglement around its maximum. Section 4 generalizes
these results to other bipartitions, and Sect. 5 compares the formula obtained
with the numerical results for two physical systems. Section 6 considers the
physically important case of vectors localized not on a random subset of the
basis vectors, but on a subset composed of adjacent basis vectors (that is
the states are localized on computational basis states which are adjacent when
the basis vectors are ordered according to the number which labels them).
showing that the results become profoundly different. Section 7 presents the
conclusions.

2. Entanglement of Random Vectors

Random vectors are ensembles of vectors whose components are distributed
according to some probability distribution. If for example the system con-
sidered is composed of n qubits, the Hilbert space is of dimension N = 2n,
and random vectors distributed according to the uniform measure on the
N-dimensional sphere describe typical quantum states of the n qubits.
Such states are ergodically distributed in the computational basis, and
their entanglement has been already studied in Lubkin (1978) and Page
(1993). In this paper, we are interested in random vectors which are not
ergodically distributed. Ensembles of such states will be characterized by
localization properties. The simplest example of such localized random
vectors can be constructed by taking M components (M < N) with equal
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amplitudes and uniformly distributed random phases, and setting all the
others to zero. The random vectors will all be exactly localized on M basis
states. A more physically relevant example consists in still choosing M < N
nonzero components, and giving them the distribution of column vectors of
M × M random unitary matrices drawn from the Circular Unitary Ensemble
of random matrices (CUE vectors). In general our result will be averaged
both over the distribution of the nonzero components and the position of
these nonzero components in the computational basis. This corresponds to
classes of random vectors sharing the same localization length. Our results
will in fact generalize to any such distribution of random vector whose
localization properties are fixed. In addition, we shall see that if we impose
that the distribution of the position of nonzero components is such that there
are always adjacent in the computational basis, the results change drastically.

The localization properties of the random vectors can be probed using the
moments of the distribution

pq =

N
∑

i=1

|ψi|2q (1)

The second moment is p2 = 1/ξ where ξ is the Inverse Participation Ratio
(IPR) which is often used in the mesoscopic physics literature to measure the
localization length. Indeed, for a state uniformly spread on exactly M basis
vectors, one has ξ = M. The scaling of p2 and higher moments with the size
also probes the multifractal properties of the wavefunction.

The random states we consider are built on the N-dimensional Hilbert
space of a n-qubit system with N = 2n. We are interested in bipartite entan-
glement between subsystems defined by different partitions of the n qubits
into two sets. In general, bipartite entanglement of a pure state belonging to
a Hilbert space HA ⊗ HB is measured through the entropy of entanglement,
which has been shown to be a unique entanglement measure (Popescu and
Rohrlich 1997). We consider pure states belonging to HA ⊗ HB where HA

is a set of ν qubits and HB a set of n − ν qubits. If ρA is the density matrix
obtained by tracing out subsystem B, then the entropy of entanglement of the
state ρ with respect to the bipartition (A, B) is the von Neumann entropy of
ρA, that is S = −tr(ρA log2 ρA).

3. Entanglement of One Qubit with All the Others

To obtain an approximation for the entropy, one can expand S around its
maximal value. In the case of the partition of the n qubits into 1 and n − 1
qubits, the entropy can be written as a function of τ, with

τ = 4 det ρA (2)
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(in the case of 2 qubits this quantity is called the tangle and corresponds to
the square of the generalized concurrence, Rungta and Caves 2003). One has

S (τ) = h

⎛

⎜

⎜

⎜

⎜

⎝

1 +
√

1 − τ
2

⎞

⎟

⎟

⎟

⎟

⎠
, (3)

where h(x) = −x log2 x− (1 − x) log2(1 − x). The series expansion of S (τ) up
to order m in (1 − τ) reads

S m(τ) = 1 − 1
ln 2

m
∑

n=1

(1 − τ)n

2n(2n − 1)
. (4)

The first order corresponds to τ itself up to constants and its average
over the choice of the (1, n − 1) partition is known as the linear entropy or
Meyer–Wallach entropy Q (Meyer and Wallach 2002; Brennen 2003). Our
results show that for our class of random vectors, the average linear entropy
is given by

〈τ〉 = N − 2
N − 1

(1 − 〈p2〉) = N − 2
N − 1

(1 − 〈1/ξ〉). (5)

This formula was obtained first by considering a random vector which
is nonzero only on M basis vectors among N, and summing explicitly the
combinatorial terms. It can also be obtained in a more general setting by
taking M = N and summing up all the localization properties of the vector in
the IPR ξ alone. For any (1, n−1) partition of the n qubits, the components of
the vector can be divided in two sets according to the value of the first qubit.
Assuming no correlation among these sets enables to get (5) (details on the
calculations can be found in Giraud et al. 2007).

It is interesting to compare this formula with a similar one obtained in
Viola and Brown (2007) and Brown et al. (2008) using different assumptions,
in particular without average over random phases. The formula obtained re-
lates entanglement to the mean inverse participation ratio calculated in three
different bases, a quantity that is often delicate to evaluate. In our case, the
additional assumption of random phases enables to obtain a formula which
involves only the IPR in one basis, a quantity that can be easily evaluated
in many cases. For example, it enables to compute readily the entanglement
for localized CUE vectors. However there are instances of systems (e.g. spin
systems) where these different formulas give the same results.

In particular, our formula (5) allows to compute 〈τ〉 e.g. for a CUE vector
localized on M basis vectors; in this case ξ = (M + 1)/2, and we get

〈τ〉 = M − 1
M + 1

N − 2
N − 1

. (6)
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In Lubkin (1978), 〈τ〉 was calculated for non-localized CUE vectors of length
N, giving 〈τ〉 = (N − 2)/(N + 1). Consistently, our formula yields the same
result if we take M = N. For a vector with constant amplitudes and random
phases on M basis vectors, ξ = M and

〈τ〉 = M − 1
M

N − 2
N − 1

. (7)

The next order in the expansion (4) can be obtained by similar methods
that we do not detail here (see Giraud et al. 2009 for details); summing up all
terms involved in τ2 we get

〈τ2〉 = N(N−2)(N2−6N+16)c1111+4N(N−2)(N−4)c211+4N(N−2)c22. (8)

with

c22 =
〈p2

2〉 − 〈p4〉
N(N − 1)

, c211 =
〈p2〉 − 〈p2

2〉 − 2〈p3〉 + 2〈p4〉
N(N − 1)(N − 2)

,

c1111 =
1 − 6〈p2〉 + 8〈p3〉 + 3〈p2

2〉 − 6〈p4〉
N(N − 1)(N − 2)(N − 3)

. (9)

This gives the next order of the entropy of entanglement in terms of the
moments up to order 4 of the vector. What this means is that at this order,
the average entanglement of random vectors with fixed moments will be re-
lated to them through (8). Although more complicated than (5), the formula
indicates that e.g. for states having multifractal properties, since moments
scale with system size according to quantities called multifractal exponents,
the behavior of the entanglement at this order will be also controlled by these
multifractal exponents.

The nth order of the expansion (4) can similarly be obtained and has been
derived in Giraud et al. (2009). It is interesting to note that in the case of
a CUE random vector of size N, resummation of the whole series for S (τ)
yields, after some algebra,

〈S (τ)〉 = 1
ln 2

N−1
∑

k=N/2+1

1
k
, (10)

which has been obtained earlier by a different method (Page 1993).
A general conclusion obtained from these formulas is that the entangle-

ment associated to such bipartition goes to the maximal value for large N and
large ξ, even if ξ remains smaller than N. For fixed ξ, it tends for large N to
a constant nonzero value which depends on ξ. We will see in Sect. 6 that this
result can change drastically if we impose a localisation on fixed locations in
Hilbert space.
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4. Entanglement of Random Vectors: Other Partitions

Up to now we have considered the entanglement of one qubit with all the
others, i.e. the (1, n − 1) partition of n qubits. What about bipartite entangle-
ment relative to other bipartitions (ν, n − ν), where ν is any number between
1 and n − 1? In this case, it is convenient to define the linear entropy as
S L =

d
d−1 (1 − trρ2

A), where d = dimHA ≤ dimHB. The scaling factor is such
that S L varies in [0, 1].

A similar calculation as above enables then to obtain the first order of the
mean von Neumann entropy, given by

〈S 〉 ≈ ν − 2ν − 1
2 ln 2

(

1 − N − 2ν

N − 1

〈1
ξ

〉

)

, (11)

with p2 = 1/ξ, which generalizes (5).
Higher-order terms can be obtained as well, although the calculations

become tedious. To this end, the entropy S = −tr(ρA log2 ρA) is expanded
around the maximally mixed state ρ0 = 1/2ν, as

S = ν +
1

ln 2

∞
∑

n=1

(−2ν)n

n(n + 1)
tr((ρA − ρ0)n+1). (12)

We remark that again the linear entropy 11 tends to the maximal possible
value when N and ξ become large, as for the (1, n − 1) partition.

5. Entanglement of Random Vectors: Application to Physical Systems

In order to test these results on physical systems, we compared them to
numerical results obtained from different models.

The first one corresponds to a diagonal Hamiltonian matrix to which a
two-body interaction is added.

H =
∑

i

Γiσ
z
i +

∑

i< j

Ji jσ
x
i σ

x
j (13)

This system can describe a quantum computer in presence of static disor-
der (Georgeot and Shepelyansky 2000a, b). Here the σi are the Pauli matrices
for the qubit i, energy spacing between the two states of qubit i is given by
Γi are randomly and uniformly distributed in the interval [Δ0 − δ/2,Δ0 +

δ/2], and Ji j uniformly distributed in the interval [−J, J] represent a random
static interaction. Entanglement of eigenvectors of this Hamiltonian was al-
ready considered in a different context in Mejia-Monasterio et al. (2005). It is
known (Georgeot and Shepelyansky 2000a) that in this model a transition to
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quantum chaos takes place for sufficiently large coupling strength J. In this
regime, eigenvectors of (13) are spread among all noninteracting eigenstates,
which correspond to the computational basis, but in a certain window of
energy, and are distributed according to the Breit–Wigner (Lorentzian) dis-
tribution. Thus these wavefunctions are distributed among a certain subset
of the computational basis, although they are not strictly zero outside it, and
the distribution is not uniform, but rather Lorentzian. Nevertheless, our data
show (see Figs. 1 and 2) that the behavior of the bipartite entanglement of
eigenvectors of this model is well described by the results derived for random
vectors. The agreement becomes very accurate if the eigenvector components
are randomly shuffled to lower correlations.

We also considered another model, based on N × N matrices of the form

Ukl =
eiφk

N
1 − e2iπNγ

1 − e2iπ(k−l+Nγ)/N
, (14)

where φk are random variables independent and uniformly distributed in
[0, 2π[. This model introduced in Bogomolny and Schmit (2004) is the
randomized version of a simple quantum map introduced in Giraud et al.
(2004). The eigenvectors of (14) have multifractal properties in the momen-
tum representation (Martin et al. 2008) for rational γ, although again the
components are nonzero everywhere. The results of Figs. 2 and 3 shows that
again the results for random vectors describes very well the entanglement for
this system for randomly shuffled components, and that even the first order is
already a good approximation.
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Figure 1. Scaled mean linear entropy 〈τ〉(N − 2)/N = 〈Q〉(N − 2)/N of (13) vs. mean IPR
for δ = Δ0, n = 10 (blue circles) and n = 11 (green squares). Red line is the theory, crosses
the data for n = 10 with random shuffling of components. Inset: scaled correlator between
the two sets of components (see Sect. 3), with same parameters; red line is the result when no
correlations are present (from Giraud et al. 2007)
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Figure 2. Mean entropy of entanglement S for different bipartitions (ν, n − ν) as a function
of the mean IPR. Left: eigenvectors of (14) with γ = 1/3; the average is taken over 106

eigenvectors. Right: eigenvectors of (13) with δ = Δ0 and J/δ = 1.5; average over ≈ 3 × 105

vectors. Triangles correspond to ν = 1, squares to ν = 2 and circles to ν = n/2, with n = 4−10.
Black symbols are the theoretical predictions for the mean value of S (obtained from (11) and
green (gray) symbols are the computed mean values of the von Neumann entropy (from Giraud
et al. 2009)
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Figure 3. Relative difference of the entropy of entanglement (3) and its successive approxi-
mations S m (m = 1, 2) with respect to the number of qubits for eigenvectors of (14) for (left)
γ = 1/3 and (right) γ = 1/7. The average is taken over 107 eigenvectors, yielding an accuracy
� 10−6 on the computed mean values. Green triangles correspond to the first order expansion
S 1, blue squares and red circles to the second order expansion S 2. The difference between the
latter two is that for blue squares 〈p2

2〉 appearing in (9) has been replaced by 〈p2〉2 yielding
a less accurate approximation. Dashed line is a linear fit yielding 1 − 〈S 1〉/〈S 〉 ∼ N−0.84 for
γ = 1/3 and N−1.58 for γ = 1/7 (from Giraud et al. 2009)

6. Entanglement of Adjacent Random Vectors

In the preceding sections we discussed formulas for entanglement of ensem-
bles of random vectors where the components over each basis vector are
independent. If we relax this assumption, the result may change. A particular
important case corresponds e.g. to random vectors localized on M compu-
tational basis states which are adjacent when the basis vectors are ordered
according to the number which labels them (if the two states of a qubit are



60 O. GIRAUD ET AL.

denoted |0〉 and |1〉, each state in the computational basis corresponds to a
sequence of 0 and 1 and thus can be labelled naturally by a number between
0 and 2n − 1). In this case, we had to use combinatorial methods; summing
all contributions together we get for the linear entropy of (1, n − 1) partitions

〈τ〉 =
[(

M − 2
M − 1

r0 +
2(2r0 − 1)
M(M − 1)

+
4
3

(M + 1)(2n − 2r0)
2n+r0

− 1
M(M − 1)

r0−1
∑

r=0

χr(mr)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

1 − 〈1
ξ
〉
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1
n
, (15)

where r0 is such that 2r0−1 < M ≤ 2r0 and χr(x) = χr(2r+1− x) = x2− 2
3 x(x2−

1)/2r for 0 ≤ x ≤ 2r. Equation (15) is an exact formula for M ≤ N/2. For
fixed M and n → ∞, n〈Q〉 converges to a constant C which is a function of
M and ξ. For M = 2r0 , r0 < n, (15) simplifies to

〈τ〉 =
⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(r0 +
4
3 )M2 − 2(r0 − 1)M − 10

3

M(M − 1)
− 4(M + 1)

3N

) (

1 − 〈1
ξ
〉
)]

1
n
. (16)

Numerically, this expression with r0 = log2 M gives a very good approxima-
tion to (15) for all M.

Equation (15) is exact for e.g. uniform and CUE vectors, and can be
applied even if the vector is not strictly zero outside a M-dimensional sub-
space. Indeed, for N-dimensional CUE vectors with exponential envelope
exp(−x/l), 〈Q〉 is in excellent agreement with (15) with ξ = l and M = 2ξ
(stars in inset of Fig. 4).

In order to compare these findings to those of a physical system with
such property of localization on adjacent basis vectors, Fig. 4 shows the the-
ory (15) together with the entropy for the one-dimensional Anderson model.
This model corresponds to a one-dimensional chain of vertices with nearest-
neighbour coupling and randomly distributed on-site disorder, described by
the Hamiltonian H0+V . Here H0 is a diagonal operator whose elements εi are
Gaussian random variables with variance w2, and V is a tridiagonal matrix
with non-zero elements only on the first diagonals, equal to the coupling
strength, set to 1. It is known that eigenstates of this system, which modelizes
electrons in a disordered potential, have envelopes of the form exp(−|x −
x0|/l), where l is the localization length. It was shown in Pomeransky and
Shepelyansky (2004) and Giraud et al. (2005) that this model can be simu-
lated efficiently on a quantum computer, and the wavefunction of the com-
puter during the algorithm will be localized on adjacent basis vectors, which
correspond to the position of vertices. Figure 4 shows that the asymptotic
behavior of the linear entropy of the eigenstates (with all correlations left
between components, i.e. no random shuffling) is well captured by (15).
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Figure 4. Mean linear entropy 〈τ〉 = 〈Q〉 of partitions (1, n − 1) vs. number of qubits for the
one-dimensional Anderson model with disorder from top to bottom w = 0.2 (blue), 0.5 (red),
1.0 (green), 1.5 (magenta), 2.0 (cyan), and 2.5 (orange). Average is over 10000 eigenstates.
Solid lines are the C/n fits of the tails. Inset: Value of C = limn→∞ n〈Q〉 as a function of IPR
ξ (green dots) for the values of w above and w = 0.4, together with analytical result of (15)
(red line, top) and by 26

9 − 4
M − 8(3r0+1)

9M2 for M = 2ξ (blue line, bottom). Stars are the C values
resulting from a C/n fit of the numerical data for CUE vectors of size N with exponential
envelope exp(−x/l) (from Giraud et al. 2007)

Thus random vectors localized on adjacent basis vectors correspond to a
drastically different behavior compared to the vectors of Sect. 3: indeed, for
fixed ξ the entanglement (at least the linear entropy) always tends to zero for
large N, even if it does it rather slowly (as ∼ 1/ ln N).

7. Conclusion

The results above indicate that the entanglement of random vectors can be
directly related to the fact that they are localized, multifractal or extended.
The numerical simulations for different physical systems show that these
results obtained for random vectors describe qualitatively the entanglement
present in several physical systems, and reproduce it accurately if correlations
are averaged out.

Thus the results are interesting to predict the amount of entanglement
present in random vectors, and also can be applied to physical systems
for which such random vectors describe typical states. This gives insight
on the difficulty to simulate classically such systems, since systems with
low amounts of entanglement can be simulated classically efficiently. This
also can be applied to estimate the changes in entanglement at a quantum
phase transition (Amico et al. 2008), in particular for the Anderson transition
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between localized and extended states (see Giraud et al. 2009 for more
details). Additionally, this gives also insight on the nature of entanglement
itself by relating it to simple physical properties of the system.

Acknowledgements

We thank CalMiP for access to their supercomputers. This work was sup-
ported by the Agence Nationale de la Recherche (project ANR-05-JCJC-0072
INFOSYSQQ) and the European program EC IST FP6-015708 EuroSQIP.

References

Amico L., Fazio R., Osterloh A. and Vedral V.: 2008. Rev. Mod. Phys., 80, 517
Bennett C.H., Hayden P., Leung D., Shor P. and Winter A.: 2005. IEEE Trans. Inf. Theory,

51, 56
Bogomolny E. and Schmit C.: 2004. Phys. Rev. Lett., 93, 254102
Brennen G.K.: 2003. Quant. Inf. Comp., 3, 619
Brown W.G., Santos L.F., Starling D.J. and Viola L.: 2008. Phys. Rev. E, 77, 021106
Cappellaro P., Emerson J., Boulant N., Ramanathan C. and Cory D.G.: 2005. Phys. Rev. Lett.,

94, 020502
Emerson J., Weinstein Y.S., Saraceno M., Lloyd S. and Cory D.S.: 2003. Science, 302, 2098
Evers F. and Mirlin A.D.:2007. arXiv:0707.4378
Facchi P., Marzolino U., Parisi G., Pascazio S. and Scardicchio A.: 2008. Phys. Rev. Lett.,

101, 050502
Georgeot B. and Shepelyansky D.L.: 2000a. Phys. Rev. E, 62, 3504
Georgeot B. and Shepelyansky D.L.: 2000b Phys. Rev. E 62, 6366
Giannoni M.-J., Voros A. and Zinn-Justin J. (Eds.): 1991. Proceedings of the 52th Les Houches

Summer School, North-Holland, Amsterdam
Giraud O.: 2007a. J. Phys. A, 40, 2793
Giraud O.: 2007b. J. Phys. A, 40, F1043
Giraud O., Marklof J. and O’Keefe S.: 2004. J. Phys. A., 37, L303
Giraud O., Georgeot B. and Shepelyansky D.L.: 2005. Phys. Rev. E, 72, 036203
Giraud O., Martin J. and Georgeot B.: 2007. Phys. Rev. A, 76, 042333
Giraud O., Martin J. and Georgeot B.: 2009. Phys. Rev. A, 79, 032308
Harrow A., Hayden P. and Leung D.: 2004. Phys. Rev. Lett., 92, 187901
Hayden P., Leung D., Shor P. and Winter A.: 2004. Commun. Math. Phys., 250, 317
Jozsa R. and Linden N.: 2003. Proc. R. Soc. London Ser. A, 459, 2011
Lubkin E.: 1978. J. Math. Phys., 19, 1028
Martin J., Giraud O. and Georgeot B.: 2008. Phys. Rev. E, 77, R035201
Mejia-Monasterio C., Benenti G., Carlo G.G. and Casati G.: 2005. Phys. Rev. A, 71, 062324
Meyer A.D. and Wallach N.R.: 2002. J. Math. Phys., 43, 4273
Mirlin A.D.: 2000. Phys. Rep., 326, 259
Nielsen M.A. and Chuang I.L.: 2000, Quantum computation and quantum information.

Cambridge University Press, Cambridge
Page D.N.: 1993. Phys. Rev. Lett., 71, 1291
Pomeransky A.A. and Shepelyansky D.L.: 2004. Phys. Rev. A, 69, 014302



ENTANGLEMENT OF LOCALIZED WAVEFUNCTIONS 63

Popescu S. and Rohrlich D.: 1997. Phys. Rev. A, 56, R3319
Rungta P. and Caves C.M.: 2003. Phys. Rev. A, 67, 012307
Scott A.J.: 2004. Phys. Rev. A, 69, 052330
Sommers H.-J. and Zyczkowski K.: 2004. J. Phys. A, 37, 8457
Verstraete F., Porras D. and Cirac J.I.: 2004. Phys. Rev. Lett., 93, 227205
Vidal G.: 2003. Phys. Rev. Lett., 91, 147902
Viola L. and Brown W.G.: 2007. J. Math. Phys., 43, 8109
Weinstein Y.S. and Hellberg C.S.: 2005. Phys. Rev. Lett., 95, 030501
Znidaric M.: 2007. J. Phys. A, 40, F105
Znidaric M., Prosen T., Benenti G. and Casati G.: 2007. J. Phys. A, 40, 13787



EXACT ANALYSIS OF ADIABATIC INVARIANTS IN TIME

DEPENDENT HARMONIC OSCILLATOR

M. Robnik* and V.G. Romanovski
CAMTP – Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia;
robnik@uni-mb.si

Abstract. The theory of adiabatic invariants has a long history, and very important implica-
tions and applications in many different branches of physics, classically and quantally, but is
rarely founded on rigorous results. Here we treat the general time-dependent one-dimensional
linear (harmonic) oscillator, whose Newton equation q̈ + ω2(t)q = 0 cannot be solved in gen-
eral. We follow the time-evolution of an initial ensemble of phase points with sharply defined
energy E0 at time t = 0 (microcanonical ensemble) and calculate rigorously the distribution of
energy E1 after time t = T , which is fully (all moments, including the variance μ2) determined
by the first moment Ē1. For example, μ2 = E2

0[(Ē1/E0)2−(ω(T )/ω(0))2]/2, and all higher even
moments are powers of μ2, whilst the odd ones vanish identically. This distribution function
does not depend on any further details of the function ω(t) and is in this sense universal, it
is a normalized distribution function given by P(x) = π−1(2μ2 − x2)−

1
2 , where x = E1 − Ē1.

Ē1 and μ2 can be calculated exactly in some cases. In ideal adiabaticity Ē1 = ω(T )E0/ω(0),
and the variance μ2 is zero, whilst for finite T we calculate Ē1, and μ2 for the general case
using exact WKB-theory to all orders. We prove that if ω(t) is of class Cm (all derivatives up
to and including the order m are continuous) μ2 ∝ T−2(m+1), whilst for class C∞ it is known
to be exponential μ2 ∝ exp(−αT ). Due to the positivity of μ2 we also see that the adiabatic
invariant I = Ē1/ω(T ) at the average energy Ē1 never decreases.

Key words: Nonlinear dynamics; Nonautonomous Hamiltonian systems; Adiabatic invari-
ants; Energy evolution; Statistical mechanics; Microcanonical ensemble

1. Introduction

This paper considers the adiabatic invariants and the energy evolution as well
as its statistical properties in the time-dependent linear oscillator, with the
oscillation frequency being an arbitrary function of time, and also allow-
ing for arbitrary external forcing. It comprises a series of four papers so far
(Robnik and Romanovski 2006a, b; Robnik et al. 2006; Kuzmin and Robnik
2007), although not much will be presented about external forcing analyzed
in Kuzmin and Robnik (2007). We omit many details due to lack of space,
but they can be found in our review paper (Robnik and Romanovski 2008).
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In time-independent (autonomous) Hamiltonian systems the total energy
of the system is conserved by construction, i.e. due to the Hamilton equations
of motion, and the Liouville theorem applies, because the phase flow velocity
vector field has vanishing divergence. In time-dependent (nonautonomous)
Hamilton systems the total energy is not conserved, whilst the Liouville the-
orem still applies (the phase space volume is preserved). If (some parameter
of) the Hamilton function varies in time, the energy of the system generally
also changes. But, if the changing of the parameter is very slow, on the typical
time scale T , there might be a quantity I, a function of the said parameter,
of the energy E and of other dynamical quantities, which is approximately
conserved. It might be even exactly conserved if T → ∞, i.e. if the variation
is infinitely slow, to which case we refer as the ideal adiabatic variation. Such
a conserved quantity is called adiabatic invariant, and it plays an important
role in the dynamical analysis of a long-time evolution of nonautonomous
Hamilton systems.

The theory of adiabatic invariants is aimed at finding the adiabatic in-
variants I and analyzing the error of its preservation at finite T . Namely, the
statement of exactness in preservation of I is asymptotic in the sense that
the conservation is exact in the limit T → ∞, whilst for finite T we see
the deviation ΔI = I1 − I0 of final value of I1 from its initial value I0 and
would like to calculate ΔI. Thus for finite T the final values of I1, like the
final values of the energy E1, will have some distribution with nonvanishing
variance. Indeed, for one-dimensional harmonic oscillator it is known since
Lorentz and Einstein (Einstein 1911) that the adiabatic invariant for T = ∞ is
I = E/ω, which is the ratio of the total energy E = E(t) and the frequency of
the oscillator ω(t), both being a function of time. Of course, 2πI is exactly the
area in the phase plane (q, p) enclosed by the energy contour of constant E,
i.e. I is the classical action (variable). A general introductory account of the
theory of adiabatic invariants can be found in Robnik (2005) and references
therein, especially Landau and Lifshitz (1996) and Reinhardt (1994).

However, in the literature this I and ΔI are not even precisely defined.
It turns out that I must be generally considered as a function of the initial
conditions, and then it turns out that it is conserved for some initial conditions
but not for some others. As a consequence of that there is a considerable con-
fusion about its meaning. Let us just mention the case of periodic parametric
resonance (see the relevant section below), with otherwise arbitrarily slowly
changing ω(t), in one-dimensional harmonic oscillator, where the total energy
of the system can grow indefinitely for certain (almost all) initial conditions,
and since ω(t) is bounded, I = E(t)/ω(t) simply cannot be conserved for the
said initial conditions for all times, but only for sufficiently small times. In
this paper we consider I as a function of the initial conditions, and give a
precise meaning to these and similar statements.
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Therefore to be on rigorous side we must carefully define what we mean
by I and ΔI. This can be done by considering an ensemble of initial conditions
at time t = 0 just before the adiabatic process starts. Of course, there is a
vast freedom in choosing such ensembles. Let us consider the one degree of
freedom systems, which is the topic of this paper. If the initial conditions are
on a closed contour K0 in the phase space at time t = 0, then at the end of
the adiabatic process at time t = T they are also on a closed contour KT

which in general is different from K0, but due to the Liouville theorem the
area inside the contour is constant for all T . If K0 is a contour of constant
energy at time t = 0, then KT generally is not a contour of constant energy of
the Hamiltonian at time T . The final energies of the system, depending on the
initial conditions, are spread and thus distributed between some minimal and
maximal energy, Emin and Emax, respectively. In the said case of periodic ω(t)
and parametric resonance in a harmonic oscillator the contourKT is squeezed
in one direction and expanded in the other one (the transformation is a linear
map), and this contraction and expansion is exponential in time. Therefore,
I = E(T )/ω(T ) can not be conserved.

Thus we must always study I as a function of initial conditions, by look-
ing at the ensembles of initial conditions. There is a considerable multitude
of possibilities in choosing such ensembles, but usually we do not know very
much about the system except e.g. just the energy.

Therefore in an integrable conservative Hamiltonian system the most nat-
ural and the most important case (choice) is taking as the initial ensemble all
phase points uniformly distributed on the initial N-torus, i.e. uniform w.r.t. the
angle variables. We call it uniform canonical ensemble of initial conditions.
Such an ensemble has a sharply defined initial energy E0. Then we let the
system evolve in time, not necessarily slowly, and calculate the probability
distribution P(E1) of the final energy E1, or of other dynamical quantities.
Typically E1 is distributed on an interval (Emin, Emax), and P(E1) can be
universal there, as it does not depend on any further properties of ω(t) except
for Ē1, like in one-dimensional linear oscillator. More general ensembles of
initial energies w(E0) can be described in terms of the uniform canonical
ensembles, as explained in the last section.

To describe P(E1) is in general a difficult problem, but in this work we
confine ourselves to the one-dimensional general time-dependent harmonic
oscillator, so N = 1. We do not consider the external forcing any further,
but the details can be found in Kuzmin and Robnik (2007). The system is
described by the Newton equation

q̈ + ω2(t)q = 0 (1)
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and we work out rigorously P(E1). Given the general dependence of the os-
cillator’s frequency ω(t) on time t the calculation of q(t) is already a very
difficult, in fact unsolvable, problem.1 Nevertheless, we can calculate P(E1)
and it turns out to be surprisingly simple and universal (independent of ω(t)),
namely we find the so-called arc sine density (or distribution) (Feller 1971)

P(x) =
1

π
√

2μ2 − x2
, (2)

where x = E1 − Ē1.
In performing our analysis, we shall answer the questions as to when is

I = E(T )/ω(T ) conserved, and if it is not conserved, what is the spread or
variance μ2 of the energy, and the higher moments etc. Then (the not sharply
defined) ΔI in the literature is proportional to μ, namely ΔI ≈ μ/ω. After
performing the exact analysis, we provide a powerful technique based on
the WKB method (Robnik and Romanovski 2000) to calculate μ2, and show
that it gives exact leading asymptotic terms when T → ∞, and moreover,
generally we can do the expansion to all orders, exactly. We treat several
exactly solvable cases, and compare them with the WKB results, and finally
prove the theorem as for how μ2 behaves when ω(t) is of class Cm, which
means having m continuous derivatives.

We give a brief historical review of contributions to this field. After
Einstein (1911), Kulsrud (1957) was the first to show, using a WKB-type
method, that for a finite T , I is preserved to all orders, for harmonic oscillator,
if all derivatives of ω vanish at the beginning and at the end of the time
interval, whilst in case of a discontinuity in one of the derivatives he estimated
ΔI but did not give our explicit general expressions (42) and (43). Hertweck
and Schluter (1957) did the same thing independently for a charged particle in
slowly varying magnetic field for infinite time domain. Kruskal, as reported
in Gardner (1959) and Lenard (1959) studied more general systems, whilst
Gardner (1959) used the classical Hamiltonian perturbation theory. Courant
and Snyder (1958) have studied the stability of synchrotron and analyzed I
employing the transition matrix. The interest then shifted to the infinite time
domain. Littlewood (1963) showed for the harmonic oscillator that if ω(t) is
an analytic function, I is preserved to all orders of the adiabatic parameter
ε = 1/T . Kruskal (1962) developed the asymptotic theory of Hamiltonian
and other systems with all solutions nearly periodic. Lewis (1968), using the

1 In the sense of mathematical physics (1) is exactly equivalent to the one-dimensional
stationary Schrödinger equation: the coordinate q appears instead of the probability amplitude
ψ, time t appears instead of the coordinate x and ω2(t) plays the role of E − V(x) = energy
– potential. If E is greater than any local maximum of V(x) then the scattering problem is
equivalent to our 1D harmonic oscillator problem.
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Kruskal’s method, discovered a connection between I of the 1-dim harmonic
oscillator and another nonlinear differential equation. Later on Symon (Lewis
1970) used the Lewis’es results to calculate the (canonical) ensemble average
of the I and its variance, which is the analogue of our Ē1 and μ2. Finally,
Knorr and Pfirsch (1966) proved ΔI ∝ exp(−const/ε). Meyer (1973a) relaxed
some conditions and calculated the constant const. Exponential preservation
of I for an analytic ω on (−∞,+∞) with constant limits at t → ±∞, is thus
well established (Landau and Lifshitz 1996).

Due to the limited space we cannot present all the details of our deriva-
tions and calculations, some of which are quite extensive, but most of them
can be found in Robnik and Romanovski (2008).

2. Transition Map and Exact Results

We begin our discussion by defining the system by giving its Hamilton func-
tion H = H(q, p, t), whose numerical value E(t) at time t is precisely the
total energy of the system at time t, and for the general time-dependent one-
dimensional harmonic oscillator this is

H =
p2

2M
+

1
2

Mω2(t)q2, (3)

where q, p, M, ω are the coordinate, the momentum, the mass and the fre-
quency of the linear oscillator, respectively. The dynamics is linear in q, p, as
described by (1), but nonlinear as a function of ω(t) and therefore is subject
to the nonlinear dynamical analysis. By using the index 0 and 1 we denote
the initial (t = t0) and final (t = t1) value of the variables, and by T = t1 − t0
we denote the length of the time interval of changing the parameters of the
system.

We consider the phase flow map (we shall call it transition map)

Φ :

(

q0

p0

)

�→
(

q1

p1

)

. (4)

Because equations of motion are linear in q and p, and since the system is
Hamiltonian, Φ is a linear area preserving map, that is,

Φ =

(

a b
c d

)

, (5)

with det(Φ) = ad − bc = 1. Let E0 = H(q0, p0, t = t0) be the initial energy
and E1 = H(q1, p1, t = t1) be the final energy, that is,

E1 =
1
2

(

(cq0 + dp0)2

M
+ Mω2

1(aq0 + bp0)2
)

. (6)
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Introducing the new coordinates, namely the action I = E/ω and the angle φ,

q0 =

√

2E0

Mω2
0

cos φ, p0 =
√

2ME0 sin φ (7)

from (6) we obtain

E1 = E0(α cos2 φ + β sin2 φ + γ sin 2φ), (8)

where

α =
c2

M2ω2
0

+ a2ω
2
1

ω2
0

, β = d2 + ω2
1M2b2, γ =

cd
Mω0

+ abM
ω2

1

ω0
. (9)

Given the uniform probability distribution of initial angles φ equal to 1/(2π),
which defines our initial uniform canonical ensemble (microcanonical en-
semble) at time t = t0, we can now calculate the averages. Thus

Ē1 =
1

2π

∮

E1dφ =
E0

2
(α + β). (10)

That yields E1 − Ē1 = E0(δ cos 2φ + γ sin 2φ) and

μ2 = (E1 − Ē1)2 =
E2

0

2

(

δ2 + γ2
)

, (11)

where we have denoted δ = (α − β)/2. It follows from (9), (10) that we can
write (11) also in the form

μ2 = (E1 − Ē1)2 =
E2

0

2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

Ē1

E0

)2

−
(

ω1

ω0

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

. (12)

As we shall see, in an ideal adiabatic process μ = 0, and therefore E1 = Ē1 =

ω1E0/ω0, and consequently P(E1) is a delta function,

P(E1) = δ(E1 − ω1E0/ω0). (13)

Now we calculate higher moments of P(E1). We can show that in general
for arbitrary positive integer m

(E1 − Ē1)2m−1 = 0 (14)

and

(E1 − Ē1)2m =
(2m − 1)!!

m!

(

(E1 − Ē1)2
)m
. (15)
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Knowing all the moments of our distribution function (2) we can derive it by
calculating first its characteristic function (which is nothing but the Fourier
transform of P(E1), and the coefficients in its Taylor expansion are just
the moments times powers of the imaginary unit), and then take its inverse
Fourier transform (Gradshteyn and Ryzhik 1994), resulting in (2).

Another way is the direct algebraic derivation of the energy distribution
function (2). By definition we have (see the expression before (11))

P(E1) =
1

2π

4
∑

i=1

∣

∣

∣

∣

∣

dφ
dE1

∣

∣

∣

∣

∣

φ=φ j(E1)
, (16)

where we have to sum up contributions from all four branches of the function
φ(E1). Let us denote x = E1 − Ē1, so that we have

x = E0 (δ cos(2φ) + γ sin(2φ)) = μ
√

2 sin(2φ + ψ), (17)

where δ = (α − β)/2, and α, β and γ are expressed in terms of a, b, c, d

as shown in (9), the variance is as in (11), namely μ2 =
E2

0
2 (δ2 + γ2), and

tanψ = δ/γ, so that φ = 1
2 arcsin x

μ
√

2
− ψ

2 . Therefore |dφi
dx | = 1

2
√

2μ2−x2
for all

four solutions i = 1, 2, 3, 4 and from (16) we get (2) at once.

3. Some Exactly Solvable Cases

Our general study now focuses on the calculation of the transition map (5),
namely its matrix elements a, b, c, d. Starting from the Hamilton function (3)
and its Newton equation (1) we consider two linearly independent solutions
ψ1(t) and ψ2(t) and introduce the matrix

Ψ(t) =

(

ψ1(t) ψ2(t)
Mψ̇1(t) Mψ̇2(t)

)

. (18)

Consider a solution q̂(t) of (1) such that

q̂(t0) = q0, ˙̂q(t0) = p0/M. (19)

Because ψ1 and ψ2 are linearly independent, we can look for q̂(t) in the form

q̂(t) = Aψ1(t) + Bψ2(t). (20)

Then A and B are determined by
(

A
B

)

= Ψ−1(t0)

(

q0

p0

)

. (21)
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Let q1 = q̂(t1), p1 = M ˙̂q(t1). Then from (19)–(21) we see that
(

q1

p1

)

= Ψ(t1)Ψ−1(t0)

(

q0

p0

)

. (22)

We recognize the matrix on the right-hand side of (22) as the transition map
Φ, that is,

Φ =

(

a b
c d

)

= Ψ(t1)Ψ−1(t0). (23)

The theory of adiabatic invariants is rarely founded on rigorous results,
therefore the study of exactly solvable cases is of fundamental importance,
namely we can use them to test various analytic approximations and also
the accuracy of numerical calculations. Because the ideal adiabatic processes
are infinitely slow and refer to the limit T → ∞ we must deal necessarily
with the asymptotic behaviour of dynamical systems, which is difficult to
approximate, because all simple minded perturbational and other approxima-
tion techniques fail (break down) after some finite time, and so typically give
wrong predictions for the asymptotic behaviour in the limit T → ∞. The
same difficulty occurs in numerical calculations. We shall see that the WKB
methods (Robnik and Romanovski 2000) can be successfully applied. Here
we deal only with the linear model, in which ω2(t) is a linear function of time,

ω2(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ω2
0 if t ≤ 0

ω2
0 +

(ω2
1−ω2

0)
T t if 0 < t < T

ω2
1 if t ≥ T

. (24)

Thus ω(t) has discontinuous first derivative at t = 0 and t = T , and belongs
to the class C0. Introducing the notation ã = ω2

0, b̃ = ω2
1 − ω2

0 we obtain that
on the interval (0, T ) (1) has the form

q̈ +

(

ã +
b̃t
T

)

q = 0. (25)

Two linear independent solutions of (25) are given by the Airy functions:

ψ1(t) = Ai

(

b̃t + ãT

b̃2/3T 1/3

)

(26)

and

ψ2(t) = Bi

(

b̃t + ãT

b̃2/3T 1/3

)

. (27)

The elements a, b, c, d of the matrix ΦT are defined by (22) and (23).
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The exact analytic expression for

μ2 = (E1 − Ē1)2 =
E0

2

(

δ2 + γ2
)

(28)

is very complex, and we do not show it here. However, for ω2
0 = 1, ω2

1 = 2,
E0 = 1, using the asymptotic expansion 10.4.60,62,64,66 of Abramowitz and
Stegun (1972) (pp. 448–449), we obtain the following approximation

(E1 − Ē1)2 ≈ ε2

128

⎛

⎜

⎜

⎜

⎜

⎝
9 − 4

√
2 cos

⎛

⎜

⎜

⎜

⎜

⎝

4 − 8
√

2
3 ε

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠
, (29)

where we introduce the adiabatic parameter ε,

ε =
1
T
. (30)

It can be seen that the exact expression (28) and its leading asymptotic ap-
proximation (29) practically coincide for ε ≤ 0.05, which demonstrates the
power of the asymptotic expansion of the relevant expressions containing the
Airy functions. Observe that the decay of μ2 to zero as ε → 0 is oscillatory
but quadratic on the average, namely as y = 9

128 ε
2. This is always the case

when ω(t) is of class C0. As we will see, in general, if ω(t) is of class Cm, then
μ2 goes to zero oscillatory but in the mean as a power ε2(m+1). This theorem
will be proven in the next section using the exact formulation of the WKB
method, applied to the relevant (but arbitrarily high) order. We shall see that
the leading WKB term precisely reproduces the exact leading term in (29).

4. The Application of the WKB Theory

We proceed with the calculation of the transition map Φ in the general case,
and because (1) is generally not solvable, we have ultimately to resort to
some approximations. Since the adiabatic limit ε → 0 is the asymptotic
regime that we would like to understand, the application of the rigorous WKB
theory (up to all orders) is most convenient, and usually it turns out that the
leading asymptotic terms are well described by just the leading WKB terms
if ε is sufficiently small. In using the WKB method we refer to our work
(Robnik and Romanovski 2000), where we have derived the explicit analytic
expressions for all WKB orders in closed form, except for the exact rational
coefficients, which can be easily obtained from a recurrence formula.2 The

2 There is substantial literature on WKB method, which due to limited space cannot be
reviewed here. But we should mention the classic works by N. Fröman and P.O. Fröman,
who have found a number of interesting relationships, e.g. a relation between the even and
odd order terms (Fröman 1966), although we do not use it here, so that our exposition is
selfcontained.
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WKB method, when worked out to all orders, and when the series is conver-
gent, has the potential to be exact and rigorous provided that the underlying
series converges.

We introduce re-scaled and dimensionless time λ

λ = εt, ε = 1/T, (31)

so that (1) is transformed to the equation

ε2q′′(λ) + ω2(λ)q(λ) = 0. (32)

By prime we denote the differentiation w.r.t. λ. Let q+(λ) and q−(λ) be two
linearly independent solutions of (32). Then the matrix (18) takes the form

Ψλ =

(

q+(λ) q−(λ)
εMq′+(λ) εMq′−(λ)

)

(33)

and taking into account that λ0 = εt0, and λ1 = εt1, we obtain for the matrix
(5) the expression

Φ =

(

a b
c d

)

= Ψλ(λ1)Ψ−1
λ (λ0). (34)

We now use the WKB method in order to obtain the coefficients a, b, c, d of
the matrix Φ. To do so, we look for solution of (32) in the form

q(λ) = w exp

{

1
ε
σ(λ)

}

(35)

where σ(λ) is a complex function that satisfies the differential equation

(σ′(λ))2 + εσ′′(λ) = −ω2(λ) (36)

and w is some constant with dimension of length. The WKB expansion for
the phase is

σ(λ) =
∞
∑

k=0

εkσk(λ). (37)

Substituting (37) into (36) and comparing like powers of ε gives the recursion
relation

σ′20 = −ω2(λ), σ′n = −
1

2σ′0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n−1
∑

k=1

σ′kσ
′
n−k + σ

′′
n−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (38)

Here we apply our WKB notation and formalism from our work (Robnik
and Romanovski 2000) and we can choose σ′0,+(λ) = iω(λ) or σ′0,−(λ) =
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−iω(λ). That results in two linearly independent solutions of (32) given by
the WKB expansions with the coefficients

σ0,±(λ) = ±i
∫ λ

λ0

ω(x)dx, σ1,±(λ) = −1
2

log
ω(λ)
ω(λ0)

, (39)

σ2,± = ± i
8

∫ λ

λ0

3ω′(x)2 − 2ω(x)ω′′(x)

ω(x)3
dx, . . . (40)

and so on, reminding that all coefficents are known as explicit formulae in
terms of ω(t), a fundamental result obtained in Robnik and Romanovski
(2000). Since ω(λ) is a real function we deduce from (38) that all functions
σ′2k+1 are real and all functions σ′2k are pure imaginary and σ′2k,+ = −σ′2k,−
and σ′2k+1,+ = σ

′
2k+1,− where k = 0, 1, 2, . . ., and thus we have σ′+ = A(λ) +

iB(λ), σ′− = A(λ) − iB(λ) where A(λ) =
∑∞

k=0 ε
2k+1σ′2k+1(λ), B(λ) =

−i
∑∞

k=0 ε
2kσ′2k,+(λ) are both real quantities. Integration of the above equa-

tions yields
σ+ = r(λ) + is(λ), σ− = r(λ) − is(λ), (41)

where r(λ) =
∫ λ

λ0
A(x) dx, s(λ) =

∫ λ

λ0
B(x) dx. Below we shall denote s1 =

s(λ1). To simplify the expressions let us denote A0 = A(λ0), A1 = A(λ1),
B0 = B(λ0) and B1 = B(λ1).

Using this notation we find (after a very long calculation) that the ele-
ments of the matrix Φλ are

a = − 1√
B0B1

[

A0 sin
(

s1
ε

)

− B0 cos
(

s1
ε

)]

, (42)

b = 1
M
√

B0B1
sin

(

s1
ε

)

,

c = − M√
B0B1

[

(A0A1 + B0B1) sin
(

s1
ε

)

+ (A0B1 − A1B0) cos
(

s1
ε

)]

,

d = 1√
B0B1

[

A1 sin
(

s1
ε

)

+ B1 cos
(

s1
ε

)]

.

Thus we can obtain the final result for expression (10), exact to all orders,

α + β =
1

B0B1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

sin2
( s1

ε

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

B2
0B2

1

ω2
0

+ ω2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ cos2
( s1

ε

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

B2
0

ω2
1

ω2
0

+ B2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

sin2
( s1

ε

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A2
0

ω2
1

ω2
0

+
A2

0A2
1

ω2
0

+
2A0A1B0B1

ω2
0

+ A2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

cos2
( s1

ε

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A2
0B2

1

ω2
0

+
A2

1B2
0

ω2
0

− 2A0A1B0B1

ω2
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

sin
( s1

ε

)

cos
( s1

ε

)

× (43)
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⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2A0B0
ω2

1

ω2
0

+ 2A1B1 +
2

ω2
0

(A0A1 + B0B1) (A0B1 − A1B0)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

reminding that Ē1 = (E0/2)(α + β).
So far the result is exact. Let us consider the first order WKB approxima-

tion, which is the generic case, that is

A(λ) ≈ εσ′1,+(λ), B(λ) ≈ σ′0,+(λ)

i
= ω(λ). (44)

Substituting these values of A(λ) and B(λ) into (43) we find

α + β = 2
ω1

ω0
+

ε2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ω1ω
′(λ0)2

4ω5
0

−
cos

⎛

⎜

⎜

⎜

⎜

⎝

2
∫ λ1
λ0

ω(x) dx

ε

⎞

⎟

⎟

⎟

⎟

⎠
ω′(λ0)ω′(λ1)

2ω3
0ω1

+
ω′(λ1)2

4ω0ω
3
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ O(ε3). (45)

As shown in (10)–(12), Ē1 =
α+β

2 E0 and (ΔE1)2

E2
0
= 1

2

[

(

Ē1
E0

)2 −
(

ω1
ω0

)2
]

.

Therefore

(ΔE1)2

E2
0

=

ε2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ω2
1ω
′(λ0)2

8ω6
0

−
cos

⎛

⎜

⎜

⎜

⎜

⎝

2
∫ λ1
λ0

ω(x) dx

ε

⎞

⎟

⎟

⎟

⎟

⎠
ω′(λ0)ω′(λ1)

4ω4
0

+
ω′(λ1)2

8ω2
0ω

2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ O(ε3). (46)

Substituting into the last formula ω(λ) =
√

1 + λ we obtain exactly the ap-
proximation (29). Thus the WKB approach yields exactly the leading asymp-
totic term for Ē1 and μ2 for general ω(t), and not only that, but also all the
higher power terms of ε if desired. In Robnik and Romanovski (2008) we
explain how all the higher order WKB terms can be calculated using our
closed form formula (Robnik and Romanovski 2000). Please note that the
expression in the big brackets of (46) is positive definite (its minimal value is
a complete square of a real quantity), as it must be.

This result can be generalized to the case that all derivatives of ω(t) are
zero at t0 and t1 up to and including order (n−1). In such case μ2 goes to zero
with ε oscillating like in (46), but in the mean as a power of ε2n. From this
we conclude (theorem) that if the function ω(t) is of class Cm (all derivatives
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up to and including order m are continuous), then μ2 goes to zero with ε
oscillating but in the mean as a power of μ2 ∝ ε2(m+1). The details can be
found in Robnik and Romanovski (2008).

5. Some Other Results and Considerations

If ω(t) is a periodic function of time with period τ some further general con-
clusions can be made. First, after an integer multiple of τ the mean energy Ē1

never decreases. The transition map Φn over an integer number n of periods
τ is simply a power of Φ1, namely Φn = (Φ1)n. Then, since the determinant
of Φn is unity for any n (Liouville theorem; area preserving map) everything
depends on the trace S = Tr(Φ1). If |S | is greater than 2, the eigenvalues
of Φ1 are real reciprocals and the energy of the system grows exponentialy
with n for almost all initial conditions, except for those which are exactly on
the exponentially contracting manifold. Since ω(t) is bounded, the adiabatic
invariant I = E(t)/ω(t) is not conserved, but we can describe the system,
which in fact in such case exhibits parametric resonance, and both Ē1 and μ2

increase exponentially with time. If |S | is less than 2 then the eigenvalues are
complex conjugates on the unit circle and we have just the oscillation of Ē1

and μ2.
One can consider also other than microcanonical ensembles of initial con-

ditions. For example, if we have a shell of microcanonical ensembles with the
distribution w(E0) of initial energies, then the final energy can be written as

P(E1) =
∫

G(E1; E0)w(E0)dE0. (47)

where G(E1; E0) = P(E1) is a kind of “Green function” for the energy
evolution of the system with the intitial sharp energy E0 of the underlying
microcanonical ensemble. Even more general aspects of composition and
of generalization of ensembles of initial conditions can be obtained. More
details are given in Robnik and Romanovski (2008).

Finally, we mention that one can generalize the results by including the ar-
bitrary external forcing, derived in Kuzmin and Robnik (2007), which cannot
be presented here due to lack of space.

6. Discussion and Conclusions

The purpose of this paper is to review the ideas, methods and results of the
series of our papers (Robnik and Romanovski 2006a, b; Robnik et al. 2006)
on the dynamics of a time-dependent linear oscillator, where the oscillation
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frequency ω(t) is an arbitrary function of time. External forcing can be ana-
lyzed in a similar way, but could not be covered due to the lack of space, but
the interested reader should see the paper Kuzmin and Robnik (2007). Most
of the details can be found in Robnik and Romanovski (2008).

We have studied the evolution of the energy of such a system over a
time interval of length T , and also its statistical properties, in particular the
distribution function P(E1) of the final energies E1 under the assumption that
the initial ensemble of initial conditions is a uniform canonical ensemble
of initial conditions (i.e. uniform w.r.t. the angle variables)3 at the sharply
defined initial energy E0. The crucial point is that for the linear oscillator we
know the phase flow or the so-called transition map explicitly in the form of a
2 x 2 matrix. Using this, we can explicitly calculate the distribution function
P(x) = π−1(2μ2 − x2)− 1

2 , where x = E1 − Ē1, and Ē1 and μ2 are the final
average energy and variance, respectively. Thus the distribution function is
universal, and this result is exact and rigorous. In nonlinear time-dependent
oscillators the main and major difficulty is that we do not know the phase flow
globally, and consequently we can not perform averages of the final quantities
in terms of the initial conditions. Practically all perturbation schemes break
down at finite time, so asymptotic results T → ∞ cannot be obtained in an
easy way.

We are able to calculate rigorously all the moments of P(E1). Odd mo-
ments are exactly zero, the even moments are powers of the second moment
μ2. The latter one is a function of the first moment. Therefore everything is
determined by the first moment Ē1. In order to calculate Ē1 and μ2 etc. we
can use the WKB method as developed in our paper (Robnik and Romanovski
2000), and explained in detail in Robnik and Romanovski (2008).

In our analysis we clearly see when the adiabatic invariant I(t) =
E(t)/ω(t) is conserved or not. In the (ideal) adiabatic limit T → ∞ it is
conserved, the variance μ2 is zero and E1 = Ē1 = ω1E0/ω0, and P(E1) is
a delta function P(E1) = δ(E1 − Ē1). If it is not conserved exactly, when
T is finite, we find μ2 = E2

0[(Ē1/E0)2 − (ω(T )/ω(0))2]/2 > 0, and it can
be calculated using a WKB method analytically in a closed form, which is a
major achievement of our work. From this follows at once the conclusion that
the adiabatic invariant I = Ē1/ω1 at the average energy Ē1 never decreases,
which is a kind of irreversibility statement.

We have also studied in Robnik and Romanovski (2008) three specific
solvable models and have demonstrated the power of the WKB expansion,
where already the leading WKB term usually very well describes the asymp-
totic behaviour of μ2 when ε = 1/T goes to zero. In this paper we have

3 In case of N = 1 this is also microcanonical ensemble, in terminology of statistical
mechanics, unlike the case of higher dimensional tori N ≥ 2, which we do not analyze here.
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discussed only the linear model. We also discuss what happens if ω(t) is
smooth and of class Cm, having m continuous derivatives, calculating and
showing that μ2 oscillates as ε goes to zero, but in the mean vanishes as
∝ ε2(m+1). If ω(t) is analytic, thus it also is of class C∞, it is known from
the literature that μ2 must decay exponentially ∝ exp(−const/ε). If ω(t) is
periodic, Ē1 can grow exponentially, and so does the variance μ2, in which
case I(t) = E(t)/ω(t) is not conserved, but we can describe the system.

We have introduced the so-called G-function, which is a kind of a Green
function for the evolution of the energy and derived a composition formula
for it when the interval of evolution is decomposed into a finite number
of subintervals, for which the corresponding G j-function is known for all
subintervals j and is uniform canonical there. This formula applies also to
nonlinear systems and might be a good starting basis to describe them. The
theory for nonlinear systems remains open and is a subject of the current
research (Robnik and Romanovski 2009). The case of the separatrix crossing
has been investigated numerically in Robnik and Wood (2006).
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Abstract. Quantum dynamics of a particle in time-dependent rectangular and elliptical bil-
liards is studied. Exact analytical solution of the Schrödinger equation for monotonically
expanding (contracting) rectangular billiard is obtained. It is shown that for rectangular billiard
with two harmonically oscillating walls the quantum average energy can be time-periodic for
certain values of the oscillation amplitudes. For harmonically oscillating elliptical quantum
billiard the time-dependence of the average energy is calculated. It is found that the aver-
age energy can be time-periodic in the adiabatic regime. Possibility for application of the
developed approach for arbitrary time-dependent (shape-keeping) billiard geometry is shown.

Key words: Time-dependent billiards; Fermi acceleration

1. Introduction

Nonlinear dynamics of time-dependent billiards has been the subject of
extensive research during the past two decades (Koiller et al. 1995; Lenz
et al. 2008). On of the main motivations for the studying particle dynamics
in billiard geometries with time-dependent boundaries is the fact that Fermi-
acceleration is possible in such systems. The dependence of the dynamics on
the geometry of the billiard makes the acceleration process in two-dimensions
more attractive compared to the one in one dimension. Classical dynamics of
time-dependent billiards has been considered for different geometries, both
integrable and non-integrable ones. First Koiller et al. (1995) studied billiards
with periodically moving boundaries within the Hamiltonian formalism.
One of the most simplest time-dependent billiards, the breathing circle was
explored from the viewpoint of nonlinear dynamics and Fermi acceleration
in Kamphorst and de Carvalho (1999). It was shown that the energy gain in
such a system is bounded and no infinite acceleration is possible. A more
systematic treatment of time-dependent billiards was done by Loskutov et al.
(2000) and Loskutov and Ryabov (2002). In particular, they analyzed chaotic

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 81
NATO Science for Peace and Security Series B: Physics and Biophysics,
c© Springer Science+Business Media B.V. 2009
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(stadium-like) billiards with time-dependent boundaries and conjectured that
a sufficient condition for the possibility of Fermi acceleration is the noninte-
grability of the unperturbed billiard. Another type of nonintegrable billiards,
time-dependent annular billiards was studied recently in de Carvalho et al.
(2006). By considering concentric and eccentric annular billiards the authors
showed that Fermi acceleration is possible in the eccentric case (de Carvalho
et al. 2006). However, most recently it was shown that unbounded energy
gain is even possible in a time-dependent billiard with integrable static
counterpart. Namely, it was found that in time-dependent elliptical billiard
Fermi acceleration can be observed and this acceleration is tunable (Lenz
et al. 2007, 2008). Despite a certain progress made on the study of classical
dynamics of time-dependent billiards, the corresponding quantum problem
has been rarely explored. In quantum case the problem of time-dependent
billiards corresponds to solving the two-dimensional Schrödinger equation
with time-dependent boundary conditions. We note that the one-dimensional
Schrödinger equations with time-dependent boundary conditions have been
extensively studied during the past four decades.

In particular, an early study of the time-dependent infinite square well
dates back to Doescher and Rice (1969). A mathematical more detailed
treatment of the one-dimensional Schrödinger equation with time-varying
boundary conditions is given by Munier et al. (1981). Later, Pinder has
studied the case of a contracting square quantum well (Pinder 1990).
Scheininger and Kleber treated the case of periodically time-dependent
boundaries by solving the problem in terms of the full-cycle propagator
(Scheininger and Kleber 1991). Seba studied the time-periodic boundary
conditions in terms of Floquet operators (Seba 1990). Systematic studies
of the one-dimensional Schrödinger equation were done by Makowski and
Dembinski (1991), Makowski and Peplowski (1992), and Makowski (1992),
they classified the cases when the problem can be solved exactly. We mention
also Badrinarayanan et al. (1995); Cohen and Wisniacki (2003); Jose and
Gordery (1986); Kamphorst et al. (2007); Karner (1989); Koiller et al.
(1996); Moralez et al. (1994); Pereshogin and Pronin (1991); Razavy (1991);
Willemsen (1994); and Yuce (2004), where different aspects of the one-
dimensional Schrödinger equation with time-dependent boundary conditions
are treated. Most recently, Glasser et al. (2009) studied the quantum dynamics
of a particle confined in a 1D-box with an oscillating wall. We note that in
most cases the time-dependent boundary conditions are reduced to static
ones by transforming the original Schrödinger equation to a time-dependent
harmonic oscillator.

In this work we address the two-dimensional extension of the above men-
tioned time-dependent 1D box. We consider boundary conditions given on:
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1. Time-dependent rectangular billiards

2. Time-dependent elliptical billiards

3. Some more general time-dependent geometries

This work is organized as follows: in the next section we briefly recall the
solution of the Schrödinger equation for time-dependent 1D box. Section 3
treats the time-dependent rectangular billiard. In Sect. 4 we present the so-
lution for the time-dependent elliptical billiard. Section 5 presents a short
discussion of the extension of the used methods to other geometries. Finally,
Sect. 6 presents some concluding remarks.

2. Time-Dependent 1D Box

In the case of time-dependent one-dimensional box we have the Schrödinger
equation (� = m = 1)

i
∂Ψ

∂t
= −1

2
∂2Ψ

∂x2
, (1)

where the wave function Ψ=Ψ(x, t) satisfies the boundary and initial
conditions

Ψ|x=0 = Ψ|x=L(t) = 0, Ψ|t=0 = Ψ0(x), (2)

with L(t) is being the width of the box. Using the following time-dependent
coordinate transformation

y =
x

L(t)
,

and the substitution

Ψ(y, t) =
1

L(t)
exp

( i
2

L̇(t)L(t)y2
)

φ(y, t),

Equation (1) can be reduced to the Schrödinger equation for time-dependent
harmonic oscillator (Makowski and Dembinski 1991):

iL2 ∂φ

∂t
= −1

2
∂2φ

∂y2
+

1
2

L3L̈y2φ. (3)

The boundary and initial conditions for (3) are given by

φ|y=0 = φ|y=1 = 0, t ≥ 0, φ|t=0 = φ0(y),

where

φ0(y) = L(0) exp
[

− i
2

L̇(0)L(0)y2
]

Ψ0(yL(0)).
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Time and coordinate variables in (3) can be separated if L(t) satisfies the
following equation:

L3L̈ = const. (4)

The solutions of (4) provide us with the motions of the wall for which the
original problem can be solved analytically. The general solution of (4) can
be written as

L3L̈ = −D
4
, (5)

L(t) =
√

At2 + Bt +C for D = B2 − 4AC. (6)

Special solutions are:

L(t) = At + B for D = 0,

and

L(t) =
√

At + B for D = B2.

With the condition of (5), (3) can be rewritten as

i
∂φ

∂τ
= −1

2
∂2φ

∂y2
− D

8
φ, (7)

where

τ =

t
∫

0

ds

L2(s)
.

For D > 0, time and coordinate variables can be separated using the
substitution φ(τ, y) = f (τ)Φ(y) and for Φ(y) we get the Kummer equation
(Abramowitz and Stegun 1964)

z
d2U

dz2
+

(

1
2
− z

)

dU
dz
+

1
4

(k2 − 1)U = 0, (8)

where U(z) = M(α, β, z), M(α, β, z) is the Kummer function (Abramowitz
and Stegun 1964), with

z =
i
√

D
2

y2, k2 =
4K

i
√

D
, U(z) = exp

( z
2

)

Φ(z),

here K is the separation constant. Thus the complete set of solutions of (1)
can be written as

Ψn = Nn · L−3/2x exp (−iKnτ(t)) exp

⎛

⎜

⎜

⎜

⎜

⎝

i
2

x2

⎛

⎜

⎜

⎜

⎜

⎝

L̇
L
−
√

D
2L2

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠
M

⎛

⎜

⎜

⎜

⎜

⎝

3
4
+ i

Kn√
D
,

3
2
,

i
√

D
2

x2

L2

⎞

⎟

⎟

⎟

⎟

⎠
,

(9)
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where the Nn are the normalization constants and the Kn are defined from the
following equation:

M

⎛

⎜

⎜

⎜

⎜

⎝

3
4
+ i

Kn√
D
,

3
2
,

i
√

D
2

⎞

⎟

⎟

⎟

⎟

⎠
= 0.

For D = 0, i.e. for L(t) = At + B, the complete set of solutions of (1) can be
written as

Ψn =

√

2
L

exp

(

i
2

L̇
L

x2 − in2π2

2
τ(t)

)

sin
(nπx

L

)

. (10)

For an arbitrary time-dependence of the boundary, an exact analytical solution
is not possible. However, the problem can be solved e.g. by expanding the
wave function in terms of the eigenfunctions of the corresponding static box
(Makowski and Dembinski 1991).

3. Time-Dependent Rectangular Billiard

The static rectangular billiard is a simple integrable system which allows
exact analytical solution both in the classical and in the quantum case. The
motion of a quantum particle in a static rectangular billiard is described by
the following time-independent Schrödinger equation:

−1
2

(

∂2

∂x2
+
∂2

∂y2

)

ψnl = λ
2
nlψn, (11)

where λnl =
√

Enl, Enl are the energy eigenvalues. The corresponding bound-
ary conditions are given by:

ψ(a, y) = ψ(x, b) = ψ(0, y) = ψ(x, 0) = 0, (12)

where a and b are the side lengths of the rectangle. The eigenfunctions
ψnl(x, y) and eigenvalues λnl are given by

ψnl(x, y) =
1
2

sin
(nπx

a

)

sin

(

lπy
b

)

, (13)

λnl =
π√
2

√

n2

a2
+

l2

b2
. (14)

In the case of the time-dependent rectangular billiard we have the following
Schrödinger equation

i
∂Ψ(x, y, t)

∂t
= −1

2

(

∂2

∂x2
+
∂2

∂y2

)

Ψ. (15)
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We consider rectangular billiards with two (perpendicular) moving walls, for
which the boundary conditions are given by

Ψ|x=0 = Ψ|x=a(t) = Ψ|y=0 = Ψ|y=b(t) = 0. (16)

Using the coordinate transformations ξ = x/a(t) and η = y/b(t), we can
remove the time-dependence of the boundary conditions and get

i
∂Ψ(ξ, η, t)

∂t
=

[

− 1

2a2

∂2Ψ

∂ξ2
+ i

ȧ
a
ξ
∂Ψ

∂ξ

]

+

[

− 1

2b2

∂2Ψ

∂η2
+ i

ḃ
b
η
∂Ψ

∂η

]

. (17)

The substitution

Ψ(ξ, η, t) =
1√
ab

exp
[ i
2

(

ȧaξ2 + ḃbη2
)

]

φ(ξ, η, t), (18)

reduces (17) into the form

i
∂φ

∂t
=

[

− 1

2a2

∂2φ

∂ξ2
+

1
2
ξ2äaφ

]

+

[

− 1

2b2

∂2φ

∂η2
+

1
2
η2b̈bφ

]

, (19)

with boundary conditions that vanish on a unit square:

φ|ξ=0 = φ|ξ=1 = 0, φ|η=0 = φ|η=1 = 0.

Time and coordinate variables of (19) can be separated if the following equa-
tions are obeyed:

a3ä = const = D1

and
b3b̈ = const = D2.

Let g1(ξ, t) and g2(η, t) be the solutions of the equations

ia2 ∂g1

∂t
= −1

2
∂2g1

∂ξ2
− D1

8
ξ2g1, (20)

and

ib2 ∂g2

∂t
= −1

2
∂2g2

∂η2
− D2

8
η2g2. (21)

Then the solution of (19) can be represented as φ(ξ, η, t) = g1(ξ, t)g2(η, t).
The functions g1 and g2 can be written explicitly as

g jn(ξ, t) = ξ exp
( i
4

√

D jξ
2
)

M

⎛

⎜

⎜

⎜

⎜

⎜

⎝

3
4
+

iK2
n

√

D j

,
3
2
,

i
√

D j

2
ξ2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Tn, j = 1, 2, n = 1, 2, 3, ...,
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where

Tn = exp

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−i

t
∫

0

K2
n

a2
dτ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For D j = 0 we have

gjn(ξ, t) = sin
(√

2Knξ
)

Tn, j = 1, 2, n = 1, 2, 3, ....

Now we consider the case of oscillating walls, i.e. when a(t) = a1 + a2 cosωt
and b(t) = b1 + b2 cosωt. In this case time and coordinate variables of (19)
cannot be separated, rather we solve it numerically by expanding the wave
function in terms of the eigenfunctions of the static square billiard:

φ(ξ, η, t) =
∑

n,l

cnl(t)ψnl(ξ, η),

where
ψnl(ξ, η) = 2 sin(πnξ) sin(πlη), n, l = 1, 2, 3, ...

Inserting this expansion into (19) one can obtain a system of first-order dif-
ferential equations for the coefficients cnl(t), whose solution allows us to
construct the solution of (17).

The time-dependence of the average energy can be calculated as

〈E(t)〉 =
∫ a(t)

0

∫ b(t)

0
Ψ∗(x, y, t)HΨ(x, y, t)dxdy. (22)

In Fig. 1, the time-dependence of the average energy is plotted for differ-
ent oscillation amplitudes of the billiard walls. Specifically, we use Fig. 1a
a(t) = 20+ cos(2.5t), b(t) = 20+ cos(2.5t) and Fig. 1b a(t) = 20+2 cos(2.5t),
b(t) = 20 + 2 cos(2.5t). The expansion coefficients for the initial state are
chosen as cnl(0) = 1√

2n+l
. As can be seen from Fig. 1, for the amplitude

a2 = b2 = 2 the time-dependence of the average energy is periodic, while
for a2 = b2 = 1 it is not and the growth of 〈E(t)〉 is suppressed. The regime of
higher amplitudes corresponds to higher perturbation strength. In this context
we mention the results of Glasser et al. (2009), where it was shown that in the
oscillating 1D-box, in the regime of high oscillation frequencies, the average
energy becomes time-periodic. In our opinion, a similar situation appears in
the regime of higher amplitudes in time-dependent rectangular billiard. In
other words, for smaller oscillation amplitudes the velocity of the wall (for
fixed oscillation frequency) is small and the system is kept in the adiabatic
regime, where a quantum particle follows the wall movement, while for high
enough oscillation amplitudes (i.e. for higher velocities of the wall), the parti-
cle does not feel the confinement of the boundary to the region with minimal
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Figure 1. The time-dependence of the quantum average energy for harmonically oscillating
rectangular billiard, (a) a(t) = 20+ cos(2.5t), b(t) = 20+ cos(2.5t), (b) a(t) = 20+ 2 cos(2.5t),
b(t) = 20 + 2 cos(2.5t)
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Figure 2. Classical and quantum average energies for time-dependent rectangular billiard,
a(t) = 20 + 0.5 cos(2.5t), b(t) = 20 + 0.5 cos(

√
3 × 2.5t)

area. Figure 2 compares the average energy for classical and the quantum
cases. The growth of the energy is strongly suppressed in the quantum case
compared to the corresponding classical system.
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4. Elliptical Billiard with Moving Boundaries

The classical and quantum dynamics of static elliptical billiards has been
extensively studied during the last two decades (Waalkens et al. 1997; Traiber
et al. 1989). The classical time-dependent elliptical billiard was recently stud-
ied in detail in Lenz et al. (2008), where the possibility of tunable Fermi
acceleration was shown.

The Schrödinger equation for the static elliptical billiard is separable in
elliptic coordinates which are defined as

x = f cos θ cosh ρ, y = f sin θ sinh ρ, (23)

with
0 < ρ < ρ0, 0 < θ < 2π. (24)

Writing the wave function as

ψ = G(ρ)F(θ), (25)

and substituting it into the Schrödinger equation

−1
2

(

∂2

∂x2
+
∂2

∂y2

)

ψ = Eψ, (26)

one can find that G and F obey the Mathieu and associated Mathieu equa-
tions, respectively (Waalkens et al. 1997; Traiber et al. 1989):

d2G

dρ2
+ (k2 f 2 cosh2 ρ − E)G = 0, (27)

d2F

dθ2
+ (E − k2 f 2 cos2 θ)F = 0. (28)

The boundary conditions for the angular F and radial G functions are given by

F(θ + 2π) = F(θ), G(ρ0) = 0.

Here, we consider the case when the ellipse is given by

x2

a2 cosh2 ρ0
+

y2

a2 sinh2 ρ0
= 1, (29)

where ρ0 = const, a = a(t) > 0 is the half of the distance between the foci.
It is clear that for this kind time dependence the eccentricity of the ellipse
remains constant. In this case the Schrödinger equation can be written as

i
∂Ψ

∂t
= −1

2

(

∂2

∂x2
+
∂2

∂y2

)

Ψ, (30)
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with the initial condition
Ψ|t=0 = Ψ0(x, y). (31)

Using the coordinate transformations

ξ =
x

a(t)
, η =

y
a(t)

, (32)

and the substitution

Ψ(ξ, η, t) =
2
a

exp
( i
2

aȧ
(

ξ2 + η2
)

)

φ(ξ, η, t), (33)

we can rewrite the Schrödinger equation in the form

ia2 ∂φ

∂t
= −1

2

(

∂2

∂ξ2
+
∂2

∂η2

)

φ +
1
2

a3ä(ξ2 + η2)φ (34)

and the wave function has to vanish on the time-independent ellipse:

ξ2

cosh2 ρ0
+

η2

sinh2 ρ0
= 1. (35)

In elliptic coordinates, (34) can be rewritten as

ia2 ∂φ

∂t
= − 1

2(cosh 2ρ − cos 2θ)

(

∂2

∂ρ2
+
∂2

∂θ2

)

φ − a3ä (cosh 2ρ − cos 2θ) φ.

(36)
In these coordinates the boundaries of the elliptical domain are given by

{(ρ, θ) : 0 ≤ ρ < ρ0, 0 ≤ θ ≤ 2π}
and for the boundary conditions we have

φ|ρ=ρ0 = 0, φ|θ=0 = φ|θ=2π,
∂

∂θ
φ

∣

∣

∣

∣

∣

θ=0
=

∂

∂θ
φ

∣

∣

∣

∣

∣

θ=2π
.

Time and coordinate variables in (36) can be separated if a3ä = const = −D
4 .

With the separation ansatz

φ(ρ, θ, t) = R(ρ)F(θ)T (t),

we get

ia2Ṫ (t) = kT (t), (37)

d2R

dρ2
+

(

1
8

D cosh 4ρ + 2k cosh 2ρ + λ

)

R = 0, (38)

d2F

dθ2
−

(

1
8

D cos 4θ + 2k cos 2θ + λ

)

F = 0, (39)
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where k and λ are the separation constants. We note that for D = 0 (38) and
(39) coincide with the Mathieu equations.

In the case of oscillating boundaries, i.e. a3ä � const, the problem can
be solved numerically by expanding the wave function in terms of the eigen-
functions of the corresponding static elliptical billiard.

φ(ρ, θ, t) =
∑

n,l

cnl(t)ψnl(ρ, θ), (40)

where ψnl(ξ, η) is the solution of

− 1
2(cosh 2ρ − cos 2θ)

(

∂2

∂ρ2
+
∂2

∂θ2

)

φ = Enlφ, (41)

with the boundary conditions given by (35).
To obtain the eigenfunctions of the static elliptical billiard we use the

plane wave decomposition method described in Heller (1984) and Cohen
et al. (2004).

Substituting (40) into (36) we obtain a system of coupled first order differ-
ential equations for the time-dependent coefficients cnl(t). With the cnl(t), we
can calculate the average energy using (22). In Fig. 3, the quantum average
energy is shown as a function of time for a periodic driving law given by

a(t) = 0.7 + 0.07 sin(ωt), (42)
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Figure 3. Quantum average energy for time-dependent ellipse. Initial state is the ground
state: a(t) = 0.7 + 0.07 sin(ωt), (a) ω = 1, (b) ω = 10
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where ρ0 = tanh−1
√

0.51. It can be seen from Fig. 3a, that for ω = 1 the
time-dependence of the average energy is periodic. This is due to the fact that
for ω = 1 (and for smaller frequencies) the system is in the adiabatic regime
where the particle essentially stays in the instantaneous ground state of the
corresponding static system. In the non-adiabatic regime of high frequencies
(ω = 10) (Glasser et al. 2009 this regime is called “chaotic regime”) we
observe a completely different behavior. 〈E(t)〉 is not periodic, but the energy
is still bounded. The boundary between adiabatic and non-adiabatic regimes
is defined by the frequency of the stationary state (Glasser et al. 2009). It
should be noticed that the above prescription can be used only for the case
when the eccentricity of the ellipse remains constant.

5. Other Billiard Geometries

Now we consider a more general case when the boundary conditions are given
for a domain {(x, y, t) : t > 0, (x, y) ∈ Ωa(t)}, whose boundaries can be
defined by the equation

g

(

x
a(t)

,
y

a(t)

)

= 0, (43)

with g(x, y) being a continuous function with a smooth first derivative
(a(t)> 0). Then the boundary condition for (30) can be written as

Ψ|g( x
a(t) ,

y
a(t)

)

=0 = 0. (44)

Some special cases of (43) (for a(t) = 1), which reproduces integrable
geometries, are:

1. For g(x, y) = |x+ y| − |x− y| = 2 we have square billiard [−1; 1]× [−1; 1]

2. For g(x, y) = x2 + y2 − 1 we have a circle

3. For g(x, y) = x2

cosh2 ρ0
+

y2

sinh2 ρ0
= 1 we get an ellipse with the focus

distance of 2

Furthermore, we consider the special case of a time-dependence a(t) which
allows the separation of time and coordinate variables of (30). Again, us-
ing the transformations given by (32) and (33) we obtain the Schrödinger
equation for a time-dependent harmonic oscillator confined in the domain
g(ξ, η) = 0:

ia2 ∂φ

∂t
= −1

2

(

∂2

∂ξ2
+
∂2

∂η2

)

φ +
1
2

a3ä(ξ2 + η2)φ, (45)
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with the following initial and boundary conditions, respectively:

φ(ξ, η, t)|t=0 =
a(0)

2
exp

(

− i
2

a(0)ȧ(0)
(

ξ2 + η2
)

)

Ψ0(ξ, η), Ψ|g(ξ,η)=0 = 0.

(46)
Time variable can be separated, if a3ä = const. Consider for example the case
when the time-dependence of a(t) is given by a(t) = At + 1. Then, (45) and
(46) can be written as

i
∂φ

∂τ
= −1

2

(

∂2

∂ξ2
+
∂2

∂η2

)

φ, (47)

φ(ξ, η, t)|τ=0 =
1
2

exp
(

− i
2

A
(

ξ2 + η2
)

)

Ψ0(ξ, η), Ψ|g(ξ,η)=0 = 0, (48)

where
τ =

t
At + 1

.

The solution of the problem is then given by (30) and (44) and can be writ-
ten as

Ψ(x, y, t) = 2 exp
( i
2

A
(

ξ2 + η2
)

)

φ
( x

At + 1
,

y
At + 1

,
t

At + 1

)

, (49)

where φ(x, y, t) denotes the solution of the corresponding static billiard prob-
lem, for which the boundary conditions are given on the curve g(x, y) = 0.
In general cases, when time and coordinate variables cannot be separated,
the problem has to be solved numerically. The most convenient way is by
expanding the wave function in terms of the complete set of eigenfunctions
of the corresponding static problem.

6. Conclusion

In this work we studied the quantum dynamics of billiards with moving
boundaries. The problem is reduced to a two-dimensional Schrödinger
equation with time-independent boundary conditions but additional time-
dependent terms. We explored the time-dependence of the average energy
of the particle moving in such billiards. Billiards geometries with integrable
static counterparts, such as rectangles and ellipses are considered. An exact
analytical solution of the time-dependent Schrödinger equation is obtained
in the case of a monotonically expanding (contracting) rectangle. In the rect-
angular billiard with two harmonically oscillating walls the average energy
can be a periodic function of time for some values of the frequency and the
amplitude, while for other values, 〈E(t)〉 is not periodic. The comparison of
the average energy for the classical and quantum time-dependent rectangular
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billiards shows that the average energy is much stronger suppressed in the
quantum system than in the classical one. For the elliptical billiard, we
considered the case where the eccentricity remains constant. We found that
for harmonically oscillating boundaries the average energy is time-periodic.
It is shown that the method used for rectangular and elliptical billiards can
be used for more general billiard geometries, which fulfill certain boundary
conditions.
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SCREENING OF THE COULOMB INTERACTION IN A GENERIC

BALLISTIC QUANTUM DOT

D. Ullmo
Université Paris-Sud, LPTMS, Orsay Cedex, France; denis.ullmo@u-psud.fr

Abstract. In semiconductor quantum dots, electrons behave as Fermi–Landau quasi-particles
interacting through a week screened interaction. For confined systems a genuine “micro-
scopic” derivation of how this screening takes place is made more complicated than in the bulk
case because it has to be treated concurrently with the reorganization of charges generating the
smooth electrostatic confining potential in which the electrons are evolving. This contribution
gives a discussion of this problem in a semiclassical framework.

Key words: Quantum dots; Semiclassical framework; Screened interaction

1. Introduction

Mesoscopic physics, in the sense of the study of small, fully coherent,
electronic systems on the micron or sub-micron scale, is a field already a few
decades old, with a significant number of achievements both experimental
and theoretical (Aleiner et al. 2002; Sohn et al. 1997; Grabert and Devoret
1992; Richter 2000; Ullmo 2008). The first experimental realizations of such
mesoscopic systems were small metallic grains, for which the motion of the
electrons within the sample is diffusive. Progress made in the patterning of
two dimensional electron gas, in GaAs/AlGaAs or other kind of heterostruc-
ture, made it possible however since the early to produce and study ballistic
quantum dots, for which the electrons motion is governed by the electrostatic
confining potential.

In such systems, the interplay between Coulomb interaction VCoul(r, r′)
and interference effects due to confinement plays, in many circumstances, a
fundamental role. It is therefore somewhat surprising that, even at this time,
there does not exist a proper theory of screening of the Coulomb interaction
in ballistic quantum dots. For bulk (possibly disordered) electron gas, the
mechanisms leading to screening are extremely well understood and have
since long found their way into textbooks. For finite systems, however an
extra complication arises from the fact that screening takes place “together”
with the reorganization of charges required to form the self consistent one

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 97
NATO Science for Peace and Security Series B: Physics and Biophysics,
c© Springer Science+Business Media B.V. 2009
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body potential in which the electrons are evolving. Both processes (screening
and formation of the self consistent electrostatic potential) need to be treated
concurrently, making significantly more involved a microscopic description.

In the semiclassical limit, and more precisely whenever the screening
length κ−1 is much smaller than the typical size L of the system, a common
wisdom approach is usually followed. This common wisdom simply states
that since the characteristic scales of variation of the screened potential Vsc

and of the electrostatic mean field potential Umf are parametrically differ-
ent (the former κ−1 is a quantum scale, when the latter L is classical), one
could nevertheless use the same screened interaction as for the bulk, and fur-
thermore assume that Umf(r) is correctly approximated by a Thomas–Fermi
approximation, which amount to solve the self consistent equation

Umf(r) = Uext(r) +
∫

dr′n(r′)VCoul(r, r′) (1)

n(r) =
∫

dp
(2π�)d

Θ(μ − Umf(r) − p2/2me). (2)

Interestingly enough, there is no general microscopic derivation of the
above picture. More precisely, our confidence in having the Thomas–Fermi
approximation as a correct starting point for the computation of Umf is due
to the fact that this approximation can be derived in a quite general frame-
work starting from a density functional description (in e.g. the local den-
sity approximation) and neglecting the effect of interferences (Ullmo et al.
2001, 2004). The “common wisdom” prescription given above therefore es-
sentially amounts to trusting the density functional approach on the classical
scale L (although it might be less reliable on the quantum scale λF; cf. for
instance the discussion in Ullmo et al. 2004), keeping the usual (bulk) form
of the screened interaction on the quantum scale, and assuming that the two
scales are not going to interfere in any significant way.

There is a class of systems (namely billiards with weak disorder) for
which it is possible to perform a renormalization procedure (Aleiner et al.
2002; Blanter et al. 1997) where the fast modes are integrated out so that
only the interesting low-energy physics remains. It is then possible to see how
both the mean field and the screened interaction emerge in that case from this
procedure.

Ideally, the aim of this contribution should have been to generalize this
renormalization approach to a generic ballistic quantum dot. This appears
out of reach at the present time, and I will limit myself here to a significantly
more modest goal, namely to investigate how far the approach introduced
in Sect. 2.3.2 of Aleiner et al. (2002) can be generalized to the case of a
generic quantum dot (i.e. one for which Umf(r) is not well approximated by a
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constant), but also to identify the main difficulty preventing a full solution of
the problem. I hope this will provide some useful milestone in the solution of
this problem in the ballistic case, as well as indicate some possible limitations
existing already in the diffusive one.

2. Renormalization Scheme

In the bulk, the RPA screened interaction, is obtained by considering the
Dyson equation for the dressed interaction (see the discussion in Sect. 9 of
Fetter and Walecka 1971)

Vdressed(r1, r2, ω) = VCoul(r1 − r2) +
∫

dr
∫

dr′VCoul(r1 − r)Π(r, r′, ω)Vdressed(r′, r2, ω), (3)

which is exact if all the one-particle irreducible diagrams are included for the
polarization operator Π but gives the RPA approximation if only the (lowest
order) bubble diagram

Π0(r, r′, ω) = gs

∫ +∞

−∞
dω′

2iπ
G(r, r′, ω + ω′)G(r′, r, ω′) (4)

is kept. G(r, r′, ω) = Θ(ω)GR(r, r′, ω)+Θ(−ω)GA(r, r′, ω) is the unperturbed
time ordered Green’s function, with Θ(x) the Heaviside function, and gs = 2
is the spin degeneracy factor. In the zero frequency low momentum limit
one gets (in the bulk) Π0(r, r′, ω = 0)  −gsν0δ(r − r′), with ν0 the local
density of states per spin. Inserting this expression for Π0 in (3) gives the low
momentum zero frequency RPA approximation of the screened interaction.

Let us consider now a mesoscopic systems, and assume that its typical
dimensions are much larger than the screening length. One then expects that
the residual screened Coulomb interaction should be very similar to the one
in the bulk, and it is therefore natural to approach the question from the
same viewpoint. In that case however the Green’s function are not known
exactly, so one needs to resort to semiclassical approximations of GR,A in
the expression of Π0. The difficulty encountered then is that semiclassical
approximations are valid for high energies (high ω), and in particular one
cannot expect the semiclassical expressions for G(r, r′, ω) to be accurate if ω
is not much larger than the mean level spacing Δ of the system.

Following Aleiner et al. (2002), the idea is then, in the spirit of the
renormalization group approach, to integrate out only the “fast variable”
(high-energy part) for which a semiclassical approximations can be used,
and to deal with the low energy physics by some other methods (based for
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instance on a random-matrix description, Murthy and Mathur 2002; Murthy
and Shankar 2003). Using the exact expression for the polarization bubble

Π0(r, r′, ω) = gs

∑

nn′
Θ(−εnεn′)

ϕ∗n(r′)ϕn(r)ϕ∗n′(r)ϕn′(r′)
ω + εn′ − εn

(−sgn(εn)) (5)

with (εn, ϕn(r)) the one-particle energies and eigenstates, we see that this can
be achieved by restricting the sum in the above expression to pair (n, n′)
such that at least one energy is outside a band centered at the Fermi en-
ergy εF (taken as the origin of energies) and of width ε∗ chosen such that
Δ � ε∗ � ETh, and which precise value (once in this range) is expected
to be irrelevant. Up to an unimportant boundary term, this is equivalent to
restricting the sum to particle-hole energies εn′ − εn larger (in absolute value)

than ε∗. Introducing ΠR,A(r, r′, ω)
def
= limη→0+Π

0(r, r′, ω ± iη) the retarded
and advance polarization bubbles, one can therefore write the polarization
operator in which only the fast modes are integrated out as

Π̂ε∗(r′, r, ω̃=0) =
1

2iπ

∫

dω
ω

[

ΠR(r, r′, ω) −ΠA(r, r′, ω)
]

Θ(|ω| − ε∗). (6)

The insertion of Π̂ε∗ in (3) will then give the effective interaction describing
the low energy (≤ ε∗) physics of the quantum dot.

3. Calculation of the Polarization Loop

Let us first consider positive energies ω > 0. Noting that phase cancellation
is possible only for the product GAGR, but not for GRGR or GAGA, one has

ΠR(r, r′, ω) = gs

∫ 0

−ω
dω′

2iπ
GR(r, r′, ω′ + ω + iη)GA(r′, r, ω′) (7)

and
ΠA(r, r′, ω) = ΠR(r′, r, ω)∗. (8)

The Green’s functions in the l.h.s. of (7) can be evaluated semiclassically as
a sum over classical trajectories (Gutzwiller 1990)

GR(r, r′; ε) 
∑

j:r′→r

GR
j (r, r′; ε)

GR
j (r, r′; ε) def

=
2π

(2iπ�)(d+1)/2
D j(ε) exp

(

iS j(ε)/� − iζ jπ/2
)

, (9)

with S j the classical action of the trajectory j going from r′ to r, ζ j is a
Maslov index, and the determinant D j is a measure of the stability of the
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orbit. Keeping only the diagonal approximation in which a trajectory j is
paired with itself to cancel the oscillating phases, one gets

[GR(r, r′, ω + ω′)GA(r′, r, ω′)]diag =

∑

j:r→r′

4π2

(2π�)d+1
|D j|2 exp

[

i(S j(ω + ω
′) − S j(ω

′))/�
]

. (10)

In this equation, one would like then to perform a Taylor expansion of the
action

(S j(ω + ω
′) − S j(ω

′)) = (∂S j/∂ε)ω = t jω. (11)

Inserting the unity
∫ ∞

0 δ(t − t j) and making use of the sum rule (Argaman
1996)

∑

j:r′→r

|D j(ε)|2
(2π�)d

δ(t − t j) = ν
(d)
0 (r′)Pεcl(r, r

′, t), (12)

where ν(d)
0 (r′) is the bulk density of states per unit area (and spin) for the

local value of kF and Pεcl(r, r
′, t) is the classical (density of) probability that a

trajectory launched in r′ is in the neighborhood of r at time t, we obtain

[GR(r, r′, ω + ω′ )GA(r′, r, ω′)]diag

=
4π2

(2π�)d+1

∫ ∞

0
dt

∑

j:r→r′
|D j|2δ(t − t j) exp [itω/�] (13)

=
2πν0(r′)
�

∫ ∞

0
dtPεcl(r, r

′, t) exp [itω/�] (14)

= 2πν0(r)P̂εcl(r, r
′, ω) , (15)

with Pεcl the Fourier transform of the classical probability Pεcl. Interestingly
enough [GR(ω + ω′)GA(ω′)]diag is independent of ω′, so that finally

ΠR(r, r′, ω) = −iωgsν0(r′)P̂εcl(r, r
′, ω). (16)

Note that the fact that we have computed ΠR, i.e. that ω ≡ ω+ iη, is what
is making the Fourier transform in (14) convergent. If we had computed ΠA

the above approach would have lead to divergences. ΠA should therefore be
derived from ΠR using (8), giving

ΠA(r, r′, ω) = iωgsν0(r)P̂εcl(r
′, r, ω). (17)

For negative ω, ΠA should be calculated first and ΠR derived from it with (8),
leading to the same result.
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Here, one rather important remark is in order. Expression (11) assumes
obviously that ω is small. This is usually not a significant constraint since
the actions S i are classical quantities, so that the relevant scale is the Fermi
energy (or bandwidth) εF . It is therefore enough that ω � εF to apply (11).
However the integral in the left hand side of (6) is not limited to the neigh-
borhood of the Fermi surface. Replacing ΠR,A by the approximations (16) and
(17) will be incorrect on the edge of the energy band, which will be associated
to short distances |r−r′| < λF. This will be the cause of the problems we shall
encounter later on. Let us ignore this issue for the time being, and come back
to this discussion when it will become obvious that the results obtained in
this way are unphysical.

Then, inserting (16) and (17) into (6) and writingΘ(x) = 1−Θ(−x) we get

Π̂ε∗(r′, r, ω̃=0) = −gs

∫ +∞

−∞
dω
2π

[

ν0(r′)P̃εcl(r, r
′, ω) + ν0(r)P̃εcl(r, r

′, ω)
]

× (

1 − Θ(ε∗−|ω|)) . (18)

The term proportional to one in the integrand of (18) gives rise to
∫

(dω/2π)
P̃εcl(r, r

′, ω) = Pεcl(r, r
′, t == 0). To evaluate the remaining term, it is useful

to discuss the weight function Θ(ε∗ − |ω|). Its precise form is irrelevant here,
and, rather than the actual Heaviside step function, I shall assume that Θ(ε∗−
|ω|) is actually a smooth function Θε∗(ω) which is zero for |ω| � ε∗ and
one for |ω| � ε∗. To fix the idea one can think for instance of Θε∗(ω) =
exp(−(1/2)(ω/ε∗)2), but this precise form will not play any particular role. If
one introduces Θ̃ε∗(t) the Fourier transform of Θε∗(ω), one has, with t∗ = �/ε∗

Θ̃ε∗(t)  1/t∗ for t � t∗ (19)

= 0 for t � t∗ (20)
∫ ∞

0
dt Θ̃ε∗(t) = Θε∗(ω== 0) = 1. (21)

Assuming furthermore that Θ̃ε∗(t) is a positive function (this hypothesis can
be easily relaxed), we see that Θ̃ε∗(t) is a density probability (since it is pos-
itive and normalized to one) which selects trajectory shorter than t∗. We thus
can write

Π̂ε∗(r′, r, ω̃=0) = −gs

[

ν0(r′)Pεcl(r, r
′, t=0) (22)

−1
2

(

ν0(r′)〈Pεcl(r, r
′, t)〉t≤t∗ + ν0(r)〈Pεcl(r

′, r, t)〉t≤t∗
)

]

,

where 〈 f (t)〉t≤t∗
def
=

∫ ∞
0 dt f (t)Θ̃ε∗(t) is the average over time t lesser than t∗ of

the function f (t).
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Now Pεcl(r, r
′, t== 0) = δ(r − r′). Furthermore, the condition Δ � ε∗ �

ETh is equivalent to t f � t∗ � tH , with tH = �/Δ the Heisenberg time and
t f the time of flight across the system (for ballistic systems) or time needed
to diffuse to the boundary (for diffusive systems). We see that the choice of
ε∗ is made precisely so that (1) semiclassical approximations are valid, but
also (2) that most of the range [0, t∗] is such that for diffusive or chaotic
systems (the case of integrable or mixed system should be investigated in this
respect), the motion can be assumed randomized. Assuming ergodicity we
can therefore write

〈Pεcl(r, r
′, t)〉t≤t∗ 

∫

dpδ(εF −H(r, p))
∫

dr”dp”δ(εF −H(r”, p”))
= Δν0(r). (23)

This eventually leads to

Π̂ε∗(r′, r, ω̃=0) = −gs
[

ν0(r)δ(r − r′) − ν0(r)ν0(r′)Δ
]

, (24)

where one recognize the first term as the zero frequency low momentum bulk
polarization Π0

bulk(r′, r, ω̃=0) = −gsν0(r)δ(r − r′), and I will denote by

Πl.r.
def
= gsν0(r)ν0(r′)Δ (25)

the remaining long range part. For billiard systems for which ν0(r) =
(AΔ)−1 = const., with A the volume of the system, (24) is for instance
exactly (60) of Aleiner et al. (2002).

4. Self-Consistent Equation

In the bulk, both the Coulomb interaction and the polarization operator Π0
bulk

are translation invariant and the Dyson equation (3) can be solved in momen-
tum representation as

V̂dressed(q) =
V̂Coul(q)

1 − V̂Coul(q)Π̂0
bulk(q)

. (26)

The resulting interaction is then short range, effectively much weaker than the
original Coulomb interaction, and is therefore well adapted for a perturbative
treatment.

The difficulty one encounters in the mesoscopic case is twofold. First,
lack of translational invariance for Πε∗ makes in principle (3) impossible
to be solved in closed form for a generic spatial variations of ν0(r). Sec-
ond, we know that even at the level of electrostatics, the effects of the in-
teractions cannot be small since they will at minima rearrange considerably



104 D. ULLMO

the static charges within the system. Therefore, even if (3) could be solved,
there is little chance that the resulting dressed interaction could be effectively
used in a perturbative approach starting from the non-interacting electrons
Hamiltonian.

For a quantum dot with a fixed number (N + 1) of electrons, one way to
solve both of these difficulties is to derive a self-consistent equation following
one of the standard derivation of the Hartree Fock approximation (Thouless
1961). For this purpose, let us note that any one-body potential Ũ(r), can be
written formally as the two-body interaction

Ṽ(r, r′) =
1
N

(Ũ(r) + Ũ(r′)) (27)

since, using for instance a second quantization formalism

1
2

∫

drdr′Ψ̂†(r)Ψ̂†(r′)Ṽ(r, r′)Ψ̂(r′)Ψ̂(r) =
∫

drΨ̂†(r)Ũ(r)Ψ̂(r). (28)

As a consequence, the total Hamiltonian, as well as the formalism presented
in the first part of this appendix, are unmodified if the confining potential
Uext(r) and the Coulomb potential VCoul(r, r′) are respectively replaced by

U(r) = Uext(r) + Ũ(r) (29)

V(r, r′) = VCoul(r, r′) − Ṽ(r, r′) (30)

One can then now use the freedom in the choice of the function Ũ(r) to
simplify the Dyson equation. In particular, if we can impose that

∫

dr
∫

dr′V(r1, r)Πl.r.(r, r′)Vdressed(r′, r2) ≡ 0, (31)

the Dyson equation (3) would then have the usual “bulk-like” form

Vdressed(r1, r2) = V(r1, r2) −
∫

dr
∫

dr′V(r1, r)Π0
bulk(r − r′)Vdressed(r′, r2),

(32)

which, if ν0(r) and Ũ(r) vary slowly on the scale of the bulk screening length
κ−1 has the same solution as in the bulk.

Now, (31) might seem at first sight difficult to solve since it involves the
unknown function Vdressed(r′, r2). However, since Πl.r.(r, r′) does actually not
correlate r and r′, the two integrals in (31) actually decouple, and a sufficient
condition to solve this equation is that

∫

drV(r1 − r)ν(r) ≡ 0, i.e.
∫

drVCoul(r1 − r)ν(r) =
1
N

∫

drν(r)(Ũ(r) + Ũ(r1)). (33)
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The constant term
∫

drν(r)Ũ(r)/N is irrelevant here as it can be eliminated
by a constant shift of Ũ. One therefore obtain in this way the self-consistent
equation

Ũ(r1) = NΔ
∫

drVCoul(r1 − r)ν(r). (34)

In other words what we have obtained for the self-consistent potential are the
equations

Umf(r) = Uext(r) + ÑΔ
∫

dr′ν0(r′)VCoul(r, r′) (35)

ν0(r) =
∫

dp
(2π�)d

δ(μ − Umf(r) − p2/2m). (36)

5. Discussion and Conclusion

The above result looks very much like what we expected to obtain as we
began this discussion. Indeed (32), (35) and (36), express than integrating
out the “fast degree of freedom” allows one to separate in a natural way the
screened potential in two parts: a first one which is a one body potential de-
termined self consistently, and a second which is just the usual bulk screened
interaction with the local parameters of the electron gas (provided that Ũ(r)
(and thus Ṽ(r, r′)) varies slowly on the scale of the screening length).

What makes this description less useful however is the self consistent
equations (35) and (36) are obviously incorrect. Indeed we know that what-
ever self-consistent equations we end up writing, they should contain in some
approximation the electrostatic equilibrium of the problem. This is not the

case here. If the self-consistent potential Umf(r)
def
= Uext(r) + Ũ(r) obtained

from (34) is well approximated by a constant (giving for instance a billiard
system with weak disorder as was considered in Blanter et al. 1997; Aleiner
et al. 2002), and assuming (N + 1) � 1, one can perform the replacement
NΔν(r) → n(r) in (34) and write instead

Ũ(r1) =
∫

drVCoul(r1 − r)n(r), (37)

i.e. (1) and (2), which is just the Thomas Fermi equation, from which plain
electrostatic is obtained by neglecting the kinetic energy associated to Pauli
exclusion principle. However for a generic confining potential Uext(r), solu-
tions of (34) will not in general be an approximation of the solution of (37).

To identify why we ended up with an incorrect equation is actually not
very difficult. Indeed, the symptom is that the expected density of particle
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n(r) has been replaced in (34) by the Nν(r), i.e. an extrapolation of what is
going on near the Fermi energy. What we see is that, in some sense, (34) is
“aware” of the properties of the system near the Fermi energy (the density
of states ν(r)), but misses the relevant information at large energies, of the
order of the bandwidth, which determine the actual density of particles. This
is to be expected since our approximation of the polarization operator Π∗ε
(24) involves only the local density of states at the Fermi energy ν(r). Going
further back we see that in the end this behavior can be tracked back to the
approximation (11) where the action S (ω) has been linearized near the Fermi
energy, eliminating in this way any information relevant to the large (i.e. ω ∼
εF) energies.

In the end, what makes non trivial the discussion of screening in a fi-
nite system is that the renormalization procedure which transform the bare
Coulomb interaction into the screened one should also describe the emer-
gence of the electrostatic mean field. When the former is essentially domi-
nated by the neighborhood of the Fermi energy, the latter requires an accurate
description of the physics at the band edge.

To conclude, and since obviously this contribution do not provide a satis-
factory solution of the issue of screening in closed quantum dot, a few word
about its possible usefulness in presumably warranted. The necessity to treat
concurrently different energy scales is what is making non-trivial the problem
at hand, but the corresponding separation of scale is however what sort of
guarantee that the “common wisdom” approach of the screening described
in the introduction is at least qualitatively correct. This common wisdom
approach is moreover presumably sufficient as far as qualitative or statistical
descriptions are concerned. The absence of a proper microscopic understand-
ing of screening for closed system might however become a limitation when
accurate simulation tools are required to describe quantitatively the particular
behavior of a specific mesoscopic system. This is particularly true in the view
of the fact that standard self consistent approaches, such as density functional
theory calculations, fail to describe some of their important aspects (Ullmo
et al. 2004). I hope this contribution, by identifying an essential concep-
tual difficulty in an approach which seems to get us extremely close to the
expected result, will provide a useful step toward its full resolution. More-
over, as it turns out that it is not the diffusive character of the dynamics, but
rather the possibility to extrapolated the local density of state up to the band
edge which turn out to be the relevant difficulty here, it might also indicate
some limitation of results derived in the more traditional context diffusive
quantum dots.



SCREENING OF THE COULOMB INTERACTION 107

References

Aleiner I.L., Brouwer P.W. and Glazman L.I.: 2002, Quantum effects in Coulomb blockade.
Phys. Rep., 358, 309–440

Argaman N.: 1996, Semiclassical analysis of the quantum interference corrections to the
conductance of mesoscopic systems. Phys. Rev. B, 53(11), 7035–7054

Blanter Y.M., Mirlin A.D. and Muzykantskii B.A.: 1997, Fluctuations of conductance peak
spacings in the Coulomb blockade regime: Role of electron-electron interaction. Phys.
Rev. Lett., 78, 2449–2452

Fetter A. and Walecka J.: 1971, Quantum Theory of Many-Particle Systems. New York:
McGraw-Hill

Grabert H. and Devoret M.H. (eds.): 1992, Single Charge Tunneling. London: Plenum Press
Gutzwiller M.C.: 1990, Chaos in Classical and Quantum Mechanics. New York: Springer
Murthy G. and Mathur H.: 2002, Interactions and disorder in quantum dots: Instabilities and

phase transitions. Phys. Rev. Lett., 89(12), 126804
Murthy G. and Shankar R.: 2003, Quantum dots with disorder and interactions: A solvable

large-g limit. Phys. Rev. Lett., 90(6), 066801
Richter K.: 2000, Semiclassical Theory of Mesoscopic Quantum Systems. New York: Springer
Sohn L.L., Schön G. and Kouwenhoven L.P. (eds.): 1997, Mesoscopic Electron Transport.

Dordrecht: Kluwer
Thouless D.J.: 1961, The Quantum Mechanics of Many-Body Systems. New York: Academic

Press
Ullmo D.: 2008, Many body physics and quantum chaos. Rep. Prog. Phys., 71, 026001
Ullmo D., Nagano T., Tomsovic S. and Baranger H.U.: 2001, Semiclassical density functional

theory: Strutinsky energy corrections in quantum dots. Phys. Rev. B, 63, 125339-1–
125339-13

Ullmo D., Jiang H., Yang W. and Baranger H.U.: 2004, Landau Fermi-liquid picture of spin
density functional theory: Strutinsky approach to quantum dots. Phys. Rev. B, 70(20),
205309



KICKED BOSE–EINSTEIN CONDENSATES: IN SEARCH

OF EXPONENTIAL INSTABILITY ∗
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Gower Street, London WC1E 6BT, UK; t.monteiro@theory.phys.ucl.ac.uk

Abstract. Bose–Einstein condensates subject to short pulses (“kicks”) from standing waves of
light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked
rotor. We review briefly our current understanding of dynamical or exponential instability
in weakly kicked BECs. Previous studies of the onset of dynamical instability associated
it with some form of classical chaos. We show it is due to parametric instability: resonant
driving of certain collective modes. We map the zones of instability and calculate the Liapunov
exponents.

Key words: Bose–Einstein condensate; Kicked systems; Dynamical instability

1. Introduction

Cold atoms subjected to strong δ-kicks from standing waves of light provide a
near-perfect experimental realization of the leading quantum chaos paradigm,
the quantum kicked rotor (QKR) (Casati et al. 1982; Fishman et al. 1982).
They provided convincing demonstrations of the quantum supression of clas-
sical chaotic diffusion (“Dynamical Localization”) and further proof that
chaos and exponential sensitivity does not persist in quantum dynamics and
the linear Schrödinger equation (Moore et al. 1995; Raizen 1999; Szriftgiser
et al. 2002; Duffy et al. 2004; Jones et al. 2004, 2007; Chabe et al. 2008).

More recently, kicked cold atom experimental studies have shifted their
attention from dynamical localization, to another interesting regime, namely
the Quantum Resonance regime: if the kicking period T is a rational fraction
of T = 4π, the so called “Talbot time,” absorption of energy by the atomic
cloud peaks at a complex series of narrow resonances. These were analysed in
Fishman et al. (2004) and Wimberger et al. (2004) in terms of a novel “image”
∗ Note that many versions of the famous quantum field theory Bogoliubov transformation

âk = Ukb̂k − Vkb̂†−k differs from (9) by a minus sign. We adopt in this manuscript the sign
convention of Castin (in Les Houches Lecture notes, 2001), related simply by taking Vk →
−Vk and Ak → A−1

k in all equations.
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classical dynamics. Further theory (Wimberger et al. 2005; Buchleitner et al.
2006; Saunders et al. 2007; Lepers et al. 2005) includes proposed applications
such as the realization of a quantum random walk algorithm (Ma et al. 2006).

Many recent experiments employed Bose Einstein Condensates (Ryu
et al. 2006; Sadgrove et al. 2007; Behinaenin et al. 2006; Dana et al. 2008;
Kanem et al. 2007). This suggests a new possibility: namely the regime where
nonlinear dynamics, arising from the many-body nature of the BEC, combine
with the δ-kicked quantum dynamics. Elsewhere, solitonic dynamics also
provides another arena for the interaction between BEC physics and chaos or
more generic nonlinear dynamics (Martin et al. 2007). To date, the conditions
for the initial onset of dynamical instability in kicked BECs and the behavior
at longer times in these regimes, including the growth in non-condensate
particles is not yet well understood.

2. Kicked BECs: The Origin of Dynamical Instability

We attempt to review here the current state of understanding, regarding on-
set of exponential instability in the weakly kicked BEC. We consider only
kicking strengths K ≤ 1, and remain within the framework of the Gross
Pitaevski equation (GPE) plus linearized perturbations. There is discussion
elsewhere of the behavior of the GPE in the strong chaos regime K � 1
e.g. Shepelyansky (1993) and Mieck and Graham (2004) but it becomes de-
batable whether the GPE provides an adequate representation of an atomic
condensate in a regime where large amounts of energy are driven into the
cloud, especially if the occupation number of individual excited modes no
longer remains much larger than one. It is likely that, in that case, a quantum
treatment of thermal excitations is essential; see, e.g. Isella and Ruostekoski
(2006a, b), Ruostekoski and Isella (2005) and Gardiner and Morgan (2007)
for discussions of the available options.

Most previous work on instability in kicked BEC resorted to the time-
dependent Bogoliubov using the approach introduced by Castin and Dum
(1997, 1998). In practical terms, in this method, excitations of the condensate
are evolved in time, concurrently with the GPE (in practice this involves
simultaneous propagation of about 2–10 equations analogous to the GPE it-
self). But orthogonality between the condensate mode and the excited modes
is at all times enforced. The method provides an estimate of the number of
non-condensate atoms. But since its regime of validity lies in the limit of
weak condensate depletion and perturbations, in the presence of resonant
driving or exponential instability, it can become unreliable within very few
kicks for realistic condensates. Hence it provides, in effect, just an initial rate
at which the non-condensate population starts growing.



INSTABILITY IN KICKED BECS 111

Using the Castin–Dum (CD) method, previous works suggested a link
between exponential behavior and chaos. In Ma et al. (2006), the possibility
that instability was related to chaos in the one-body limit was investigated
for the Kicked Harmonic Oscillator. In Zhang et al. (2004) and Liu et al.
(2006) the correlation between chaos in the mean-field dynamics, rather, and
the onset of dynamical instability, was investigated. An instability border,
determined by the kick strength K and the nonlinearity g was identified for
T = 2π. It was then found (Liu et al. 2006) that the parameter ranges for this
instability corresponds closely to a transition from regular to chaotic motion,
of an effective classical Hamiltonian derived from the mean-field dynamics.
A similar onset of instability was identified by Poletti et al. (2007) in a variant
of the kicked BEC system. In Rebuzzini et al. (2007), a study in the Quantum
accelerator regime (Quantum Resonances with gravitational acceleration), no
exponential instability was found.

However, in Reslen et al. (2008) it was found that the dynamical instab-
ility at T = 2π was due to parametric resonances, rather than chaos. In other
areas of BEC physics, the relationship between parametric resonance and dy-
namical instability of a BEC has already been well studied. A particular case
concerns atomic behavior trap modulated periodically in time, a topic of both
theoretical (Kramer et al. 2005a, b; Garcia-Ripoll et al. 1999; Kagan Yu and
Manakova 2006) and experimental interest (Gemelke et al. 2005; Campbell
et al. 2005; Engels et al. 2007). Here, the typical method in an analysis of
the stability of small perturbations of the initial ground state configuration,
rather than evaluating the excited modes in a time-dependent formalism (as
in the CD method). The two techniques are closely related. Both involve in
some way a decomposition of a small perturbation in terms of low-lying
collective modes (Bogoliubov modes). Hence both assume relatively weak
perturbations. Condensate stability analysis does not enforce orthogonaliza-
tion between the evolving condensate and excitations at all times. But it
has the advantage that explicit stability parameters are obtained at little com-
putational expense by diagonalising a small stability matrix. It thus becomes
easier to distiguish stable from unstable resonances; for instance, in a weak
instability, the probability of a particular momentum may be growing slowly
with time, but still be exponential; in contrast, rapid growth may be found in
a strong but stable resonance.

In Reslen et al. (2008) no stability parameters were explicitly calculated
so instability was largely identified with rapid growth at short times in non-
condensate atoms, using the CD method. It was found that the condensate
recovers stability after losing it and in fact that the zones of exponential
instability occur over narrow ranges of the nonlinearity g and kick period
T . These correspondeded to resonant excitations of pairs of coupled normal
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modes. A simple model using Bogoliubov analysis of the initial ground state
confirmed this.

In a more recent work (Monteiro et al. 2009), the stability parameters
were calculated from the condensate stability matrix and mapped. It was
found that in fact only coupled mode resonances give exponential behavior.
Resonant driving of single Bogoliubov modes yields a far stronger conden-
sate response (in this case, the CD method would predict much faster growth
of excitations measured in terms of non-condensate population in the coupled
equations) but growth is not exponential. This seems surprising at first but
is well-known in other instances of BEC resonant driving. With increasing
K and g, the number of resonances which can be strongly excited by the
kicking proliferate and overlap. The CD method suggests this is associated
with generalized exponential instability; this regime is however beyond the
scope of analyses based on decomposition on Bogoliubov modes.

Mapping the zones of stability made it clear that for strong nonlinear-
ity g > 1, the Talbot time T = 4π (or rational multiples thereof) is no
longer of any significance for resonances of kicked BECs. The main reso-
nances are displaced to other values of T . This is an important point, since all
recent experimental studies (and many theoretical ones) have focused exclu-
sively on values of T = nπ where n is an integer or rational fraction. Based
on the map, we investigate two types of resonances: (a) Linear resonances
are single-mode resonances: as g → 0, they evolve into the usual Talbot
time (or a rational fraction) resonances of the non-interacting QKR. They are
the strongest resonances but are stable. (b) Nonlinear resonances involve a
coupled-pair of modes; they vanish as g → 0. They can yield exponential
growth, but are relatively weak: the exponential growth ceases after a finite
time. Oddly, for K ∼ 0.4–0.8 a regime of exponential oscillations is identi-
fied: exponential growth is interspersed with exponential decay; for K > 0.8,
exponential growth simply saturates after a short time.

In Monteiro et al. (2009) a model including coupling between Bogoliubov
modes (Beliaev and Landau terms) gave a quantitative description of novel
features of the strongest “Linear” resonances. In particular an extraordinarily
sharp “cut-off” in the leading resonances for g ∼> 1 was identified: this pro-
vides one of the clearest and most robust experimental signature of the effect
of interactions in kicked BECs.

The suppression of the exponential growth in the “NL” resonances or the
presence of exponential oscillations is not satisfactorily accounted for by the
models, even with Beliaev/Landau corrections. Below we review briefly
the theory of the Bogoliubov decomposition and stability matrix.
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3. Kicked BEC Systems

We consider a BEC confined in a ring-shaped trap of radius R. We assume that
the lateral dimension of the trap is much smaller than its circumference, and
thus we are dealing with an effectively 1D system. The dynamics are those of
a dimensionless 1D Gross-Pitaevskii (GP) (Zhang et al. 2004; Monteiro et al.
2009) Hamiltonian with an additional kicking potential:

H = HGP + K cos θ f (t), (1)

yielding a dimensionless GP equation

HGP = −1
2
∂2

∂θ2
+ g|ψ(θ, t)|2. (2)

We write the condensate wavefunction in the form ψ = ψ0 + δψ, where
ψ0 is the unperturbed condensate and δψ represent the excited components.
Inserting this form in the GPE and linearizing with respect to δψ, we can
write:

i�
d
dt

(

δψ
δψ∗

)

= L(t)

(

δψ
δψ∗

)

. (3)

where,

L(t) =

(

H(t) + g|ψ|2 gψ∗2
−gψ∗2 −H(t) − g|ψ|2

)

. (4)

Insight into the time-evolution of small perturbations of the condensate
is best described by a decomposition into a few normal modes. The effect of
the nonlinearity is to provide an effective coupling between ψ and ψ∗, so the
standard way to do this is to work with a “dual vector” in (4) as elaborated
in Castin and Dum (1997, 1998). Excluding the kick term for the moment,
we recall that the time propagation under HGP can be analyzed in terms of
the eigenmodes (uk(t), vk(t)) and eigenvalues ofωk(t) of the 2×2 matrix on the
right hand side of (4). Setting ψ = 1/

√
2π, the matrix can be diagonalized and

there are well-known analytical expressions for the unperturbed eigenmodes:

(uk(t = 0), vk(t = 0)) =

(

Uk

Vk

)

eikθ

√
2π
, (5)

where Uk + Vk = Ak, Uk − Vk = A−1
k , and Ak =

(

k2

2 ( k2

2 +
g
π )

)−1/4
.

In order to understand the behavior at the resonances, we introduce be-
low a simple model using the eigenmodes (5) as a basis. Writing the small
perturbation in this basis:

(

δψ(t)
δψ∗(t)

)

=
∑

k

bk(t)

(

Uk

Vk

)

eikθ

√
2π
+ b∗k(t)

(

Vk

Uk

)

e−ikθ

√
2π
. (6)
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Neglecting the kick, evolving the modes from some initial time t0, each
eigenmode (uk, vk) simply acquires a phase i.e.:

bk(t) = bk(t0)e−iωk(t−t0), (7)

where ωk =

√

k2

2 ( k2

2 +
g
π ).

After a time interval T , a kick is applied which couples the eigenmodes.
Its effect is obtained by expressing the perturbation in a momentum basis,
ψ =

∑

l al(t)|l〉where |l〉 = eilθ√
2π

, and we can restrict ourselves to the symmetric
subspace al = a−l of the initial condensate (parity is conserved in our system).
Then, we can see by inspection that

ak(t) = Ukbk(t) + Vkb∗−k(t). (8)

Note that bk = b−k for this system. Conversely, the corresponding amplitude
bk in each eigenmode k is given trivially from (6) using orthonormality of the
momentum states and the relation U2

k − V2
k = 1, yielding

bk(t) = Ukak(t) − Vka∗k(t). (9)

This is a classical version of the well-known Bogoliubov transformation of
quantum field theoretical Hamiltonian and becomes appropriate when there
is macroscopic occupation of low-lying modes.

If the evolving condensate is given in the momentum basis, the effect of
a kick operator Ukick = e−iK cos θ is well-known. The matrix elements:

Unl = 〈n|Ukick |l〉 = Jn−l(K)i±(l−n) (10)

The Jn−l are Bessel functions.
The amplitudes al(t) are given by

an(t+) =
∑

l

i±(l−n) Jn−l (K) al(t
−), (11)

where an(t+)/an(t−) denotes the amplitude in state |n〉 just after/before the
kick.

We can now define a “time-evolution” operator

a((n + 1)T ) = L′(T ) a(t = nT ) (12)

noting that the a vector of momentum amplitudes is in the dual form:

a = (...a−l, a−l+1..., a0, ..a+l..., ...a
∗
−l...a

∗
0, ..a

∗
+l...) (13)

With the above basis L′(T ) is the product of four simple matrices:

L′(T ) = B−1L f ree(T )B Ukick (14)
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B and B−1 between the Bogoliubov and the usual plane-wave basis:

b = B a (15)

Where both a, b have the dual form of (13). Their elements are easily inferred
from (8) and (9) respectively and couple the two parts of the dual vector. L f ree

gives the free ringing of the eigenmodes and is a diagonal vector containing
the phases e−iωlT (or e+iωlT for the lower half of the b dual vector). Ukick is
the action of the kick, with matrix elements from (11) (and obviously do not
mix the al with the a∗l ).

Since we truncate the number of modes at n, the matrix L′(T ) has di-
mension 2n + 1-by-2n + 1. In the present case, al = a−l and we may easily
transform to a matrix of size n + 1-by-n + 1 using cos lx states rather than
plane waves.

One might hope naively to use L′(T ) for time propagation as in (12). But
this is only provides agreement with GPE numerics for very short times, or
for long time in the limit of weak driving, K ∼< 0.05. Much better agreement
with the long time evolution under the GPE (up to K < 0.5 is obtained
by allowing the Bogoliubov modes to interact by means of Beliaev–Landau
coupling (Monteiro et al. 2009). However the short time behavior suffices for
L′(T ) to identify regions of instability.

A more detailed analysis shows that the eigenvalues of L′(T ) in general
come in quartets λ, 1/λ, λ∗, 1/λ∗. Then |λmax | > 1 (where λmax is the largest
eigenvalue and the local Lyapunov exponent) imply dynamical instability and
exponential growth in the relevant modes (at least for short times).

Parametric resonance is associated with large oscillations in the reso-
nantly driven modes, regardless of whether they are stable or not. For com-
parison, we plot in Fig. 1 the behavior at the instability identified by Zhang
et al. (2004). The CD method indicates rapid growth of non-condensate atoms
at T = 2π and g  2.2. The lower figure shows the condensate energy before,
during and after the resonance. Large oscillations in energy are seen in the
instability region. However, exponential behavior is not clear since we are
not isolating the unstable modes.

A better indicator is to plot the average probability of mode 2 (averaged
over 100 kicks) i.e.

∑

n
1

100 |a2(t = nT )|2. We map this for all T, g for K = 0.5
in Fig. 2 (left). The right hand side maps regions of dynamical instability
|λmax | > 1. We analyze dynamical stability by mapping the eigenvalues of
L′(T ) for all the resonances of the lowest three excited modes. We divide the
resonances into (1) the “linear” family L(n, l) (i.e. those which evolve from
the linear case and converge at g = 0 to a rational fraction of the Talbot
time). They are given by the resonance condition ωlT  2πn. The resonance
in Fig. 1a is the L(1, 1) (first resonance of mode l = 1). (2) The “nonlinear”
resonances Nn and νn which vanish in the absence of interactions, at g = 0;
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Figure 1. (a) Behavior near the instability identified by Zhang et al. (2004). Non-condensate
particles for kicking period T = 2π, K = 0.8, g  2, obtained by CD method. The inset shows
the rate of exponential growth; zero denotes polynomial growth or less. The graph from Reslen
et al. (2008) shows that the instability is a resonance: the condensate is unstable for g = 2–2.5
but is stable for before (g = 1.5) and after (g = 3.0). (b) Energy oscillations as a function
of time; smoothed plots are also shown. Before and after the resonance (g = 1.5 and 2.8) the
smoothed plots are flat. Near-resonance, (g = 2.2 and 2.5) the energy shows the characteristic
large, slow, resonant oscillations. The energy plots does not show exponential behavior too
clearly as they does not isolate individual unstable modes

Figure 2. Comparison between GP equation numerics and stability analysis. Upper figure
(left): Probability for mode 2 (from GPE) averaged over 100 kicks for K = 0.5; (right) Shows
|λmax|, largest eigenvalue of matrix L′(T ). Bright regions denote |λ| > 1 and hence exponen-
tial behavior (dynamical instability). The unstable N1, N2, ..Nn series of nonlinear resonances
(which only appear for g ∼> 1) correspond to (ω1 + ω2)T  2nπ. The asterisk denotes position
of the instability found by Zhang et al. (2004), which we show is due to N3. The L series are
resonances which evolved from partial or full resonances of the Talbot time at g = 0. They are
stable, but are much stronger than the exponential resonances. L(n, l) denotes the resonance
condition ωlT  2nπ
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the Nn correspond to (ω1 +ω2)T  2πn, while νn are somewhat analogous to
“counter-propagating mode” resonances found in modulated traps (Kramer
et al. 2005a, b) and imply 2ωnT  2π.

The resonance of Fig. 1 is thus N3. Contrary to the suggestion of Reslen
et al. (2008) where no Liapunov exponents were calculated, we find that none
of the L(n, l) resonances have any |λ| > 1. They are all stable, including
L(1, 1), by far the strongest of all. But counter-intuitively, they are associated
with a much stronger BEC response, even after a very long-time (100 kicks)
than the nonlinear resonances Nn and νn which are unstable.

A peculiar feature seen near the maxima of the unstable resonances Nn

series are exponential oscillations (For K  0.4–0.8 they are seen for both
N1 and N3; however the N2 resonance overlaps strongly with two other res-
onances so behaves somewhat differently). These are illustrated in Fig. 3.
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Figure 3. Log of Mode 2 probability of N3, near the asterisk of Fig. 1. T = 6.12, g = 2.5.
The exponential growth persists for only a finite time; it is then replaced by exponential decay,
leading to exponential oscillations (log scale shown in inset). Lower figure shows similar
oscillations for K = 0.6 (for T = 6.17, g = 2.5, not on log scale). Inset shows exponential
oscillations of mode 1
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The rates of exponential increase and decay correspond quite closely with
the largest eigenvalues λmax, λ

−1
max of L′(T ). Nonetheless, the cause of the

oscillatory behavior is not clear. To our knowledge it has not been seen in
other related BEC systems.

In conclusion, we have reviewed our present understanding of dynamical
instability in kicked BECs.
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VORTICES IN THE GROUND STATE OF SPINOR BOSE–EINSTEIN

CONDENSATES

A.F. Sadreev
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; almsa@ifm.liu.se

Abstract. We have calculated the F = 1 ground state of a spinor Bose–Einstein condensate
trapped harmonical potential with an applied Ioffe–Pitchard magnetic field. The vortex phase
diagram is found in the plane spanned by perpendicular and longitudinal magnetic fields. The
ferromagnetic condensate has two vortex phases which differ by winding number in the spinor
components. The two vortices for the Fz = −1 antiferromagnetic condensate are separated
in space. Moreover we considered an average local spin |〈−→S 〉| to testify to what extend it
is parallel to magnetic field (the nonadiabatic effects). We have shown that the effects are
important at vortex cores.

Key words: Vortices; Spinor Bose–Eistein condensates

1. Introduction

Vortices appear in many physical systems from tornadoes and bathtub
whirlpools to type-II superconductors and rotating Bose–Einstein conden-
sates. Interest to vortices in different media exists long time ago. Apparently
the first observation of vortices is related to water flow in tube. As Iwo
Bialynicki-Birula et al. (2000) cite, “Vortices have been a source of fasci-
nation since time immemorial. Empedocles, Aristotle and Descartes tried
to explain the formation of the Earth, its gravity, and the dynamics of the
whole solar system as due to primordial cosmic vortices.” Berry in his course
“Singularities in waves and rays” (Berry 1981) presents another reference to
vortices in ocean tides studied by Whewell (1833).

The physical significance of the singularities of the phase of quantum-
mechanical wave functions has been recognized by Dirac in his work on
magnetic monopoles (Dirac 1931). The hydrodynamic formulation of the
Schrödinger theory discovered by Madelung (1926) provided a vivid inter-
pretation of the lines in space where the phase is singular. These are simply
the vortex lines in the flow of the probability fluid. Theoretical foundation for
the study of these fascinating and ubiquitous objects was provided by Nye
and Berry in an important series of papers (Berry 1981; Nye and Berry 1974;

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 121
NATO Science for Peace and Security Series B: Physics and Biophysics,
c© Springer Science+Business Media B.V. 2009
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Berry 1977) and by Hirschfelder et al. (1974a); Hirschfelder et al. (1974b).
The vortices described in these fundamental papers are the phase singularities
of the complex scalar wave field ψ(x, y) which satisfies the Helmholtz wave
equation

(∇2 + E)ψ = 0. (1)

Explicit descriptions of the nodal points as phase singularities or topo-
logical charges associated with a complex wave function are given in many
articles, for example, Berry (1981), Nye and Berry (1974), Hirschfelder et al.
(1974a), Shvartsman and Freund (1994), and Freund and Kessler (1996).
There are two separate sets of nodal lines at which either Reψ or Imψ vanish.
The intersections of the two sets at which Reψ = 0, Imψ = 0 define the nodal
points. Let us write the wave function as ψ(x, y) =

√

ρ(x, y) exp(iθ(x, y)),
where θ(x, y) and ρ(x, y) denote the phase and norm. As Dirac demonstrated
already in 1931 (Dirac 1931) nodal points give rise to current vortices. This
means that when the following loop integral encloses a nodal point one has

∮

vdr =
∮

∇θdr = ±2π. (2)

Therefore, the nodal points of complex wave function are the centers of cur-
rent vortices. Although direct observation of vortices in quantum mechanics
is hardly possible, the theory of them shortly reviewed above has been ap-
plied in different wave phenomena. That is clear because of universality of
the Helmholtz equation (1). First of all, the vortices were studied long time
ago for acoustic vibrations (Ebeling 1984; Waterhouse 1985, 1987) whose
description is completely equivalent to the quantum vortices. Recently the
Marburg group of Stöckmann confirmed a mass of theoretical predictions
for vortices and saddles experimentally using the one-to-one correspondence
between the Poynting vector in a microwave plane billiard and the probability
current density in the corresponding quantum system (Barth and Stöckmann
2002; Kim et al. 2003). Beautiful visualization of phase singularities was
done by a highly isotropic microchip laser with a large Fresnel number (Chen
and Huang 2003; Chen et al. 2006a, b) and monochromatic light beams
(Soskin et al. 1997; Courtial and O’Holleran 2007; Flossmann et al. 2008).

However electromagnetic systems like microwave resonators or elastic
systems like elastic membranes are described in general by vectorial fields
(electromagnetic and displacement respectively). In particular, in elastic bil-
liards there are two types of elastic eigen modes. The flexural modes with
displacement ψ perpendicular to the plane of the plate are well described by
the scalar biharmonic Kirchoff–Love equation (Landau and Lifshitz 1959)

D∇4ψ = ρhΩ2ψ. (3)
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Here, h is the thickness of the plate, and D denotes the flexural rigidity, given
by D = Eh3/12(1 − σ2), where E is Young’s modulus, σ is Poisson’s ratio,
and ρ is the density. Solutions of (3) are characterized by nodal lines near
which fine powder is collected under vibrations are visualized as the Chladni
patterns (Waller 1952). As dependent on size of fine particles a very thin
powder can collect at anti-nodal regions where the amplitude of vibrations is
maximal (Thomas and Squires 1998; Aronson and Tsimring 2006; Dorrestijn
et al. 2007).

Other modes have vectorial displacement in the plane of the plate. They
are described by a two-dimensional Navier-Cauchy equation for the in-plane
displacement vector (Landau and Lifshitz 1959; Achenbach 1973)

μ∇2u + (λ + μ)∇(∇u) + ρΩ2u = 0 (4)

where u(x, y) is the displacement field in the plate, λ, μ are the material depen-
dent Lamé coefficients. Introducing elastic potentials ψ and A with the help
of the Helmholtz (Achenbach 1973) decomposition the displacement field u
could be written as

u = ul + ut, ul = ∇ψ, ut = ∇ × A. (5)

Then (4) reduces to two Helmholtz equations for the elastic potentials

−∇2ψ = k2
l ψ,

−∇2A = k2
t A. (6)

Here kl = ω/cl, kt = ω/ct are the wave numbers for the longitudinal and
transverse waves, respectively and ω2 = ρΩ2/E. In the 2D-case potential A
has only one none-zero component Az and the dimensionless longitudinal and
transverse sound velocities cl,t are given by

c2
l =

1
1 − σ2

, c2
t =

1
2(1 + σ)

, (7)

where σ is Poisson’s ratio (Landau and Lifshitz 1959; Achenbach 1973). σ
is function of the Lamé coefficients (Landau and Lifshitz 1959; Achenbach
1973).

The flexural modes are characterized by nodal lines while the vectorial
in-plane displacements u(x, y) = (u(x, y) v(x, y)) in closed elastic plate have
nodal points

u(x0, y0) = 0, v(x0, y0) = 0, (8)
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at the point x0 = (x0, y0). They are specified by the Poincaré index (topologi-
cal charge) (Dubrovin et al. 1985; Liu and Mazenko 1992). Here, we consider
the statistical properties of NPs, in elastic random waves. In this case, only
structurally stable zeros of the Poincaré indexes q ± 1 occur (Dennis 2003)

q = sign(det Mx0) = sign(λ1λ2), M =

⎛

⎜

⎜

⎜

⎜

⎝

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y ,

⎞

⎟

⎟

⎟

⎟

⎠
(9)

where λ1,2 are eigenvalues of matrix M at NP x0. Depending on these eigen-
values NPs split on the four types (Dubrovin et al. 1985; Liu and Mazenko
1992): (1) centers for imaginary λ1,2 with the index q = 1; (2) nodes for
real λ1,2 with the same sign and q = 1; (3) focuses for complex λ1 = λ∗2
with q = 1; and (4) saddles for real λ1,2 with opposite sign and q = −1.

Eigenvalues of matrix M are
ux+vy

2 ±
√

(
ux+vy

2 )2 − J =
ux+vy

2 ± √D/4 where
we have introduced

S = (ux + vy)2 − 4J, J = det(M). (10)

If q = 1, S > 0 NP can be classified as node, while for q = 1, S < 0 we have
NP as focus (center for particular case ux + vy = 0). At last for q = −1 NP is
a saddle.

In order to clearly show these types of NP we consider simple superposi-
tion (Maksimov and Sadreev 2007, 2008)

u(x) =

√

2(1 − γ)
N

N
∑

n=1

cos φln exp[iklnx] +

√

2γ
N

N
∑

n=1

sin φtn exp[iktnx]

v(x) =

√

2(1 − γ)
N

N
∑

n=1

sin φln exp[iklnx] −
√

2γ
N

N
∑

n=1

cos φtn exp[iktnx] (11)

consisted of only three plane waves (N = 3) with the wave vectors directed by
2π/3 angles relative each other. Here where φln, φtn are the angles between
kln, ktn and the x-axis respectively. The prefactors

√
γ,

√

1 − γ are chosen
from the normalization condition 〈u†u〉 = 1 where 〈. . .〉 means integration
over the elastic membrane. For γ = 1 we have the vectorial “electric” field
u = ∇ψ. Then at NP the “scalar potential” ψ achieves maximum or minimum
for q = 1 or has a saddle point for q = −2. Respectively, NP of u is a node or a
saddle as demonstrated in Fig. 1. For γ = 1 we have the vectorial “magnetic”
field u = ∇ × A NPs of which are centers of displacements and saddles as
demonstrated in Fig. 2.
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Figure 1. (Color online) Intensity of in-plane displacement u2+v2 and vectorial field u = ∇ψ
shown by arrows for superposition of three plane longitudinal waves with the wave vectors
directed by 2π/3 angles relative each other and zero random phases θln = 0. kl = 20, σ = 0.5.
NPs are shown by circles (nodes), and by stars (saddles)

Figure 2. (Color online) Intensity of in-plane displacement u2 + v2 and vectorial field
u = ∇×A for superposition of three plane transverse waves with the wave vectors directed by
2π/3 angles relative each other and zero random phases θtn = 0. k = 10, σ = 0.5. Saddles are
shown by stars, and centers by circles

2. Vortices in the Ground State

The mean energy of two-dimensional quantum system equals

〈E〉 =
∫

d3r
[

�
2

2m
|∇ψ|2 + U(r)|ψ(r)|2

]

. (12)

From here we immediately obtain that the ground state ψ0(r) has no nodal
lines (points in the two-dimensional case) because each nodal line increases
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the gradient term in (12). If there were nodal points we had vortical currents
around the nodal point which would supply kinetical energy. The wave sys-
tems obeying to the Helmholtz equation (1) have the nodeless ground state
too. However this simple argument forbidding nodal points in the ground
state can not applicable for charged quantum particles in external magnetic
field with the mean energy

〈E〉 =
∫

d3r
[

1
2m
|(i�∇ + e

c
A)ψ|2 + U(x, y)|ψ(x, y)|2 + 1

8π
(∇ × A)2

]

. (13)

For uniform external magnetic field the solution of the Schrödinger equation
is well known (Landau and Lifshitz 1975)

ψ(r) = exp(ikx x + ikzz)φm(y), (14)

where φm(y) are the eigen functions of the harmonic oscillator. Then for the
ground state we have again nodeless state kx = 0, kz = 0,m = 0.

Firstly, vortices in the ground state were discovered by Abrikosov in 1957
superconductors of the second order for Landau–Ginzburg description (the
Abrikosov vortices) (Saint-James and Sarma 1969)

F = τ|ψ|2 + β
2
|ψ|4 + 1

4m
(i�∇ + 2e

c
A)ψ|2 + 1

8π
(∇ × A)2 (15)

where τ = T−Tc
Tc

, ψ is a condensate of Cooper pairs. Physical origin of the
Abrikosov vortices is related to an existence of two correlation lengths (Saint-
James and Sarma 1969). The first one is given by the superconducting order
parameter ψ

ξ =
�√

4m|τ| .

The second length, the London penetration depth is given by magnetic field

λ =

√

β

8πm|τ|
c
�e
.

Then, if ξ < λ the loss of energy around the nodal point might be less than
a gain of energy by penetration of magnetic field through the vortex core for
the field exceeding the low critical magnetic field.

Vortices in the ground state of quantum system of many interacting elec-
trons are the next example. In the fractional quantum Hall effect (Chakraborty
and Pietiläinen 1995) the external magnetic field penetrates through the two-
dimensional (2D) electron system at the vortex positions. Every vortex cor-
responds to a single magnetic field flux quantum. For the quantum Hall state
of the filling factor ν = 1, a single vortex is on top of each electron. For



VORTICES IN THE GROUND STATE OF SPINOR BECS 127

stronger B, more vortices appear and, e.g. the Laughlin state of ν = 1/3
attaches three vortices on top of each electron. The vortices keep electrons
farther apart, reducing the interaction energy and causing strong correlations
between the electrons (Saarikoski et al. 2004).

3. Vortices in the Ground State of Spinor Bose–Einstein Condensates

Our major part of the paper is to show an existence of vortices in the ground
state of the spinor Bose–Einstein condensates (BEC) confined in an external
inhomogeneous magnetic field. We argue that the quadratic Zeeman energy
gives rise to the vortex states. This energy was ignored in previous theoretical
studies, although it exists in experimental systems (Isoshima and Yip 2006).
Despite these extensive studies on vortices, studies on simpler systems such
as the spinor BEC of atoms in a uniform magnetic have not been conducted
till 1996. The existence of different vortices has been predicted in the seminal
papers by Ho and Shenoy (1996), Ho (1998), and Ohmi and Machida (1998)
and was further studied by several others (Yip 1999; Isoshima et al. 2000;
Isoshima and Machida 2002; Mizushima et al. 2002a, 2004; Martikainen
et al. 2002; Bulgakov and Sadreev 2003; Mueller 2004; Zhang et al. 2007).
In the spinor BEC, a vortex state is inseparably related to the spin texture. By
utilizing this relation, it is possible to imprint the vorticity without rotating
the cloud, as proved experimentally (Leanhardt et al. 2003; Leanhardt 2003).
By applying a quadrupole (nonuniform) magnetic field, the spin texture of
the BEC is forced, resulting in the nucleation of the vortex.

One of the recent developments in Bose–Einstein condensates (BEC) in
atomic gases is the study of dilute Bose gases with spin degrees of freedom.
The first realization of such a system is found in optically trapped 23Na,
which is a spin-1 Bose gas (Anderson et al. 1995). The nature of the spinor
condensate depends on the magnetic interaction. In zero magnetic field the
spinor condensate can be either ferromagnetic or antiferromagnetic (“polar”).
Both have very different properties (Davis et al. 1995; Petrich et al. 1995).

In the present paper we study the ground state structure of BEC described
by a constituent atom with the hyperfine state |F| = 1 (Fz = ±1, 0) where the
order parameter of the Bose condensate is characterized by three components:
Ψα, α = ±1, 0 similarly to the spin part of superfluid 3He. However these
degrees of freedom bring about a remarkable difference between the BEC
of alkali atoms and that of 4He. The hyperfine spin aligns along the direc-
tion of the local magnetic field when a BEC is magnetically trapped. Then,
even though the alkali atoms carry spins, they behave like scalar particles.
In contrast, the spin of the alkali atoms is an important degree of freedom
in an optical trap formed by the optical dipole force which confines atoms
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in all hyperfine states Fz = ±1, 0 (Stamper-Kurn et al. 1998). In order to
manipulate by spin states we assume at the same time that the BEC is created
in a magnetic Ioffe–Pitchard trap (Miesner et al. 1999).

Following to Ohmi and Machida (1998) and Isoshima and Machida
(2002) we introduce the basis set |x >, |y >, |z > defined by Fi|i >= 0,
i= x, y, z. The order parameter is then expressed via a three-dimensional
vector Ψi where

|Ψ >= Ψx|x > +Ψy|y > +Ψz|z > . (16)
−→
Ψ behaves as a vector under spin space rotation. In what follows the Latin
indexes define the XYZ basis (16) while the Greek indexes denote the
z-quantized basis with Fz = ±1, 0.

In particular a mean value of spin is equal to

〈−→F (r)〉 = Ψ∗(r)α
−→
FαβΨ(r)β (17)

where
−→
Fαβ are the matrix elements of the spin operators Fi in the basis (16).

We write the order parameter via the Bose condensate density n

Ψi(r) = ξ∗i (r)
√

n(r), (18)

and the average local spin via normalized spinor ξα

〈−→S (r)〉 = ξα−→Fαβξβ. (19)

In terms of the order parameter (16) the BEC free energy density has the form
(Ho 1998; Ohmi and Machida 1998)

H = Ψ∗i
(

− �2

2m∇2 + U(r) − μ
)

Ψi +
1
2g1(Ψ∗iΨi)2

+ 1
2g2(Ψ∗iΨ

∗
i )(Ψ jΨ j) + iγμεi jkBkΨ

∗
iΨ j, (20)

where
U(r) = m(ω2

z z2 + ωr2)/2 (21)

is the potential of the optical trap, γμ is the gyromagnetic ratio and B(r) is
magnetic field of the Ioffe–Pitchard trap. The two interaction constants g1 and
g2 are characteristics of the three-component order parameter which represent
the spin degrees of freedom of the condensate. The two nonlinear terms in
(20) originate from the interactions (Ohmi and Machida 1998)

1
2

gnn2 +
1
2

gs〈F〉2 (22)

where g1 = gs + gn, g2 = −gs. As shown by Klausen et al. (2001), the spin
interaction of 87Rb is ferromagnetic (gs < 0), while for 23Na this interaction
is antiferromagnetic (gs > 0) (Stenger et al. 1998).
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When the system is uniform and infinitely large, the ground state is either
ferromagnetic of antiferromagnetic (Ho 1998; Ohmi and Machida 1998).
However a rich variety of topological defects have been predicted (Ho 1998;
Ohmi and Machida 1998; Ho and Shenoy 1996; Yip 1999; Khawaja and
Stoof 2001; Mizushima et al. 2002b). Ho and Shenoy (1996) have shown
that the spatial variations of the magnetic field B give rise to vortical ground
state. In particular these variations are necessary to produce the magnetic
trapping. The basic assumption of Ho and Shenoy is that the spin stateΨi(r) =
ξi(r)Φ(r), defined by the normalized spinor ξi is aligned with the magnetic
field. This approach has established local a spin-gauge symmetry of the con-
densate. It means that a local gauge U(1) transformation is undoing by a local
spin rotation. Nodal points of the scalar field Φ define a vortices. Yip (1999)
has considered composite vortices in the spin-1 BEC in a rotating trap. These
vortices display interesting internal structure. They may have broken cylin-
drical symmetry with nodes of the order parameter of individual components
appearing at positions other than the trap center.

Topological defects similar to composite vortices, called skyrmion in
general, have been proposed in the spinor BEC (Khawaja and Stoof 2001;
Mizushima et al. 2002b; Marzlin et al. 2000). However it was shown that in
the ferromagnetic spin-1 BEC trapped in a harmonic potential, the skyrmions
or composite vortices are not thermodynamically stable without rotation
(Khawaja and Stoof 2001; Mizushima et al. 2002b). The skyrmions were
shown to be favored over the singular vortices and other non-axis-symmetric
vortices. Following (Mizushima et al. 2002b) we introduce a specification of
different vortex phase winding numbers as (m1,m0,m−1) for the condensate
wave function (Ψ1,Ψ0,Ψ−1) with mα = 0,±1,±2, . . .. We show that the
vortices with different winding numbers are stable even without rotation in
the Ioffe–Pitchard trap for the ground state.

4. Gross–Pitaevskii Equations

We consider the ground state of the spin-1 BEC which is uniform along the z
axis. We introduce cylindrical coordinates r = (r, ϕ, z). Suppose that a Ioffe–
Pitchard magnetic field

B = (B⊥(r) cos ϕ,−B⊥(r) sin ϕ, Bz) (23)

is applied to the system. The trapping potential (21) gives rise to a character-

istic length d =
√

�

2mω and a characteristic energy E0 = �ω which allow to
write the dimensionless form of the free energy density (20)

H̃ = g1

E2
0d3 H = ψ∗i (−∇2 + v(ρ) − μ̃)ψi

+ 1
2 (ψ∗i ψi)2 +

g̃
2 (ψ∗i ψ

∗
i )(ψ jψ j) + iεi jkbkψ

∗
iψ j, (24)
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where

μ̃ =
μ

�ω
, b =

γμB
�ω

,
−→
ψ =

√

g1

�ω

−→
Ψ, g̃ =

g2

g1
. (25)

Since the spin-1 BEC is uniform along the z axis we fix the linear density
of the Bose gas by condition

∫

d2r|Ψ j|2 = N
L
.

Substituting notations (25) and the coupling constants (Ho 1998)

g1 =
4π�2

m
a2, g2 =

4π�2

3m
(a0 − a2), (26)

we obtain
∫

d2−→ρ |ψi|2 = 8πa2
N
L
, (27)

where −→ρ is a dimensionless two-dimensional radius vector. For the case of
23Na g̃ is negative (≈ −0.1) , and an external magnetic field is uniform,
then the ground state is antiferromagnetic. For the case of 87Rb g̃ is positive
(≈ 0.03), and the ground state is ferromagnetic. For a strong magnetic field or
small BEC density it is reasonable to consider g̃ = 0 as the first step. Then
the Gross–Pitaevskii equation in the z-quantized basis ψα takes the following
form

(−∇2 + v(ρ) − μ̃)ψα + n(ρ)ψα − Eαβψβ = 0, (28)

where

E =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

bz
b⊥(ρ)√

2
eiϕ 0

b⊥(ρ)√
2

e−iϕ 0 b⊥(ρ)√
2

eiϕ

0 b⊥(ρ)√
2

e−iϕ −bz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (29)

One can see that (28) give rise to a separation of variables ρ and ϕ. Equations
(28) and (29) imply that ψα = ψα−1eiϕ. This equality gives us the simple
relation

mα = mα−1 + 1 (30)

between vortical winding numbers mα of the spinor component ψα:
On the one hand, for the strong magnetic field bz the spinor component ψ1

is prevailing. On the other hand, the kinetic energy prevents this component
to have nodes. Therefore the solution for the ground state has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1(ρ)
h0(ρ)e−iϕ

h−1(ρ)e−2iϕ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(31)
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for which the Gross–Pitaevskii equation is

d2h1

dρ2
+

1
ρ

dh1

dρ
− (v + n − μ̃)h1 + bzh1 +

b⊥√
2

h0 = 0

d2h−1

dρ2
+

1
ρ

dh−1

dρ
− (v + n +

4
ρ2
− μ̃)h−1 − bzh−1 +

b⊥√
2

h0 = 0

d2h0

dρ2
+

1
ρ

dh0

dρ
− (v + n +

1

ρ2
− μ̃)h0 +

b⊥√
2

(h1 + h−1) = 0.

Here

v(ρ) =
1
4
ρ2, b⊥ = bρ. (32)

with obvious normalization condition n(ρ) = hα(ρ)2.
For small longitudinal magnetic field bz a different solution of the Gross–

Pitaevskii equation
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1(ρ)eiϕ

f0(ρ)
f−1(ρ)e−iϕ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(33)

could be favorable for the ground state. Substituting (33) into the Gross–
Pitaevskii equation (28) we obtain

d2 f1
dρ2
+

1
ρ

d f1
dρ
− (v + n +

1

ρ2
− μ̃) f1 + bz f1 +

b⊥√
2

f0 = 0

d2 f−1

dρ2
+

1
ρ

d f−1

dρ
− (v + n +

1

ρ2
− μ̃) f−1 − bz f−1 +

b⊥√
2

f0 = 0

d2 f0
dρ2
+

1
ρ

d f0
dρ
− (v + n − μ̃) f0 +

b⊥√
2

( f1 + f−1) = 0.

5. Numerical Results

In order to find the ground state of the spin-1 BEC for g̃ = 0 we numerically
solved (32) and (34). The ground states corresponed to solutions (31) and
(33) were chosen by the minimum of the energy of the BEC. For compu-
tations, since in the magnetic field of the Ioffe–Pitchard trap magnetization
does not conserve, we fixed the dimensionless linear density (27) but not
magnetization similar to Ho (1998), Ho and Shenoy (1996), and Isoshima and
Machida (2002). We took N/L = 1000 fitting the chemical potential μ̃ in the
Gross–Pitaevskii equations. The vortex phase diagram in the plane spanned
by the perpendicular magnetic field b and longitudinal one bz for is shown in
Fig. 3 g̃ = 0. As expected the vortex phase (0 − 1 − 2) is substituted by the
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Figure 3. Vortex phase diagram of the spin-1 BEC in the Ioffe–Pitchard trap for g̃ = 0
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Figure 4. The radial behavior of the (1 0 − 1) vortex at bz = 0.7, b = 1 and of the (0 − 1 − 2)
vortex at bz = 0.8, b = 1

vortex phase (1 0 − 1) when the magnetic field bz is decreased as shown in
Fig. 3. One can see that the winding number rule (30) holds for each vortex
phase. Figure 4 shows the radial behavior of the spinor components in the
vortex phases presented in Fig. 3. We also performed a computation for the
ground state of the ferromagnetic case g̃ = 0.03 (87Rb) using the Metropolis
procedure with a total number of sites of the order 50,000. For this case the
vortex phase diagram shown in Fig. 3 is slightly deformed. However deviation
of the effective constant g̃ from zero gives rise to a solution which violates
rotational symmetry of the Bose condensate around the z-axis.

For the antiferromagnetic case g̃ = −0.1 (23Na) the vortex phase diagram
changes. The rule (30) still holds. However a new vortex phase appears in
which two nodal points of the component ψ−1 are spacely separated as shown
in Fig. 5. We denote this kind of vortices as two prime. At the solid line
between vortex phases (0 − 1 − 2′) and (0 − 1 − 2) shown in Fig. 6 the
vortices of the component ψ−1 are joining together at ρ = 0. As the magnetic
field b decreases the distance between the vortices increases. For small b these
vortices go to the region ρ � 1 where the wave function is exponentially
small because of optical trapping. As a result the vortices become practically
invisible. The dashed line in Fig. 6 shows where this happens.
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Figure 5. Phase images arg(ψi) in the vortex phase (0 − 1 − 2′) for g̃ = −0.1, bz = 0.9,
b = 0.2, μ̃ = 11.44
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Figure 6. Vortex phase diagram of the spin-1 BEC in the Ioffe–Pitchard trap for g̃ = −0.1

The ground vortex phase (1 0 − 1) is interesting because by that it has
non-axis-symmetric vortices for the spinor components ψ1 and ψ−1 as it was
found by Mizushima et al. for rotating BEC (Mizushima et al. 2002b).

Next, we evaluated | < −→S (ρ) > | in order to find out to what extend
nonadiabatic effects are important (Ho and Shenoy 1996). It is well known
that in quantum magnets with anisotropy these effects are important for the
ground state. Quantitatively the nonadiabatic effects can be described by a
quantum reduction of the spin | < −→S (ρ) > | < 1 and deviation of the direction
of average local spin with respect to the magnetic field. In Fig. 7a we show
the radial dependence of | < −→S (ρ) > | in the vortex phases (0 − 1 − 2) and
(1 0 − 1). As seen from figure the quantum spin reduction is maximal for
the vortex phase (1 0 − 1). The value of the average local spin | < −→S (ρ) > |
substantially reduces at the vortex core. For the vortex phase (0 − 1 − 2) the
quantum spin reduction is almost absent (shown in Fig. 7a by dashed line).

Moreover we calculated the radial behavior of the deviation of the direc-
tion <

−→
S (ρ) > relative to the direction of the local magnetic field

−→
b . We

found that in the plane perpendicular to the z-axis the local spin completely
follows the direction of the magnetic field. In the plane parallel to the z-axis
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Figure 7. Figure shows the radial dependence of the average local spin < S(ρ) > (a) and
its projection onto the direction of local magnetic field (b) specified by the angle θ (b) for
different vortex phases shown in Fig. 3. Solid line refers to the vortex phase (1 0 − 1), g̃ = 0,
bz = 0.1, b = 0.2, μ̃ = 11.5, and dashed line refers to the vortex phase (0 − 1 − 2), g̃ = 0,
bz = 1.5, b = 0.5, μ̃ = 12

the situation is different. For the vortex phase (1 0 − 1) shown in Fig. 7b the
direction of the local spin (19) substantially differs from the direction of the
magnetic field while for the phase (0 − 1 − 2) this is not so. Therefore, as
seen from Fig. 7 the adiabatic approximation is applicable only for the phase
(0 − 1 − 2).

Thus we conclude that the ground state of the spin-1 Bose–Einstein con-
densate trapped in the harmonic potential and subjected by the Ioffe–Prichard
magnetic field is given by a rich variety of winding numbers in different
spinor components. At the vortex cores of the ground state the quantum spin
reduction is substantially large and the direction of the average local spin can
deviate from the magnetic field.

Acknowledgements

I am very grateful to my permamnent coauthors Karl–Fredrik Berggren,
Evgeny Bulgakov and Dmitrii Maksimov without whos the present paper
could not appear. I thank Michael Berry for important remarks and dis-
cussions. The work was partially supported by the grants 07-02-00694 and
09-02-01211 of Russian Foundation for Basic Research.



VORTICES IN THE GROUND STATE OF SPINOR BECS 135

References

Achenbach J.D.: 1973. Wave Propagation in Elastic Solids. North-Holland, Amsterdam
Anderson M.H., Ensher J.R., Matthews M.R., Weiman C.E. and Cornell E.A.: 1995. Science,

269, 198
Aronson I.S. and Tsimring L.S.: 2006. Rev. Mod. Phys., 78, 641
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NONLINEAR DYNAMICS OF WAVE PACKETS AND VORTICES

IN BOSE–EINSTEIN CONDENSATES

Chaos and Billiard Motion

K. Nakamura
Heat Physics Department of the Uzbek Academy of Sciences, 28 Katartal
Street, 100135 Tashkent, Uzbekistan; nakamura@a-phys.eng.osaka-cu.ac.jp

Abstract. We study the dynamics of single and multi-component Bose–Einstein condensates
(BECs) in two dimensions with and without a harmonic trap by using various variants of non-
linear Schrödinger (or Gross–Pitaevskii) equation. Firstly, we examine the three-component
repulsive BEC with cubic nonlinearity in a harmonic trap, and see the conservative chaos
based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three
vortex cores, which are equivalent to three charged particles under the uniform magnetic
field with the repulsive inter-particle potential quadratic in the inter-vortex distance ri j on
short length scale and logarithmic in ri j on large length scale. The vortices here acquire the
inertia in marked contrast to the standard theory of point vortices since Onsager. We then
explore chaos in the three-body problem in the context of vortices with inertia. Secondly,
by choosing the nonlinear Schrödinger equation with saturable nonlinearity, we investigate
the single and multi-component WP dynamics within the hard-walled square and stadium
billiards with neither a harmonic trap nor driving field. We analyze the stability of WPs by
using the variational (collective-coordinate) method. By emitting the radiation the Gaussian
WP becomes deformed to a bell-shaped one and then stabilized. As the velocity increases,
WPs tend to be stable against many collisions with billiard walls.

Key words: Bose–Einstein condensate; Vortices; Wave packet dynamics

1. Introduction

As well as single-component Bose–Einstein condensates (BECs), the trap-
ping techniques can create multi-component condensates which involve inter-
component nonlinear interactions. The multi-component BEC, far from being
a trivial extension of the single-component one, presents novel and funda-
mentally different scenarios for its ground state and excitations. In particular,
it has been observed that BEC can reach an equilibrium state characterized
by the separation of the species in different domains (Hall et al. 1998a, b;
Matthews et al. 1998; Stenger et al. 1998; Miesner et al. 1999; Modugno et al.
2001a, b; Brazhnyi et al. 2006). BEC provides a nice stage when the nonlinear
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Schrödinger equation plays a vital role. We study the dynamics of single- and
multi-component BECs in two dimensions (2-d) with and without a harmonic
trap by using the nonlinear Schrödinger (or Gross–Pitaevskii) equation.

In Sect. 2 we examine the three-component repulsive BEC in a harmonic
trap in the absence of magnetic field, and construct a model of conserva-
tive chaos based on a picture of vortex molecules. Assuming the vortex
solution with a Gaussian tail for each component and applying the collective-
coordinate method, we obtain an effective nonlinear dynamics for three vor-
tex cores. This dynamics represents three charged particles under the uniform
magnetic field with the repulsive inter-particle potential. We show the novel
feature of point vortices in the multi-component BEC unseen in the single-
component version, and explore “the chaos in the three-body problem.”

In Sect. 3, by choosing the nonlinear Schrödinger equation with saturable
nonlinearity, we investigate the single- and multi-component wave packet
(WP) dynamics within the hard-walled square and stadium billiards with
neither a harmonic trap nor driving field. We study the stability of WPs
by using the variational (collective-coordinate) method. We show how the
Gaussian WP becomes deformed and stabilized and how the stability of a
billiard motion depends on the velocity of WP.

2. Chaos in 3-Body Problem in Vortices with Inertia

BEC has a dual aspect of waves and particles. The wave nature is highlighted
in the phenomenon of interference leading to fringe patterns (Andrews et al.
1997a, b, 1998). On the other hand, the particle nature of BECs can be seen
in typical localized states like vortices and solitons. In fact solitons were ob-
served in the quasi-one dimensional BEC (Strecker et al. 2002; Khaykovich
et al. 2002). Solitons are non-diffusive and localized wave packets and be-
have like particles described in classical mechanics. Recently, Kinoshita et al.
(2004) measured the collisional dynamics of two bright solitons in a trapped
quasi one-dimensional 87Rb BEC. Two bright solitons with collisional inter-
action are integrable, and their dynamics is similar to “Newton’s cradles.”

On the other hand, Martin et al. (2007) theoretically predicted that three
bright solitons in a one-dimensional BEC were non-integrable and showed
the change of their behavior from regular to chaos, being related to the three-
body problem in classical astrophysics. They further did a direct numerical
simulation of the Gross–Pitaevskii equation (GPE) which describes the dy-
namics of the macroscopic wave function, and also confirmed such a change
in the behavior of bright soliton dynamics.

In multi-component BECs, there are not only intra-component particle
interaction but also inter-component particle interaction which is another
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origin of nonlinearity, so we expect novel soliton dynamics unseen in single-
component BECs. Motivated by this, Pérez-Gacı́a et al. (1997), Montesinos
et al. (2004), and Yamasaki et al. (2005) investigated bright soliton dynamics
in two or three component BECs in two dimensions, and discussed their
particle-like behavior. However, in two and higher dimensional systems,
bright solitons are unstable unless intra-component interaction oscillates
between attraction and repulsion or intra-component three-body interaction is
strong enough, so experimental realization of bright soliton in two-dimension
seems to be very difficult. On the other hand, topological vortex solitons as
quantized vortices of the macroscopic wave function can be stable even in two
dimensions. Contrary to a bright soliton, vortex solitons in multi-component
BECs have already been experimentally realized, and can become a good
candidate to study solitons in 2-d multi-component BECs.

In this Section, we consider the vortex soliton in multi-component BECs
in two dimensions. To consider the effective dynamics of point-like dynamics
of vortices, we extract some degrees of freedom by using the variational
approach, and derive an effective dynamics with finite degrees of freedom.
For the case of an one-component BEC, it is well known that effective hamil-
tonian with finite degrees of freedom becomes (Onsager 1949; Neu 1990;
Aftalion 2006)

H = −8π
∑∑

j>i

nin j log ri j, (1)

in the limit of infinitesimal vortex cores in the vortex point-like picture. Here

ni is the winding number of the ith vortex, and ri j =

√

(xi − x j)2 + (yi − y j)2

is the distance between cores of ith and jth vortices. Equation (1) shows that
there is no momentum degree of freedom and xi and yi are conjugate coordi-
nates each other. On the other hand, in the case of multi-component BECs, we
can successfully show that the system recovers momentum degrees of free-
dom and is described as particle-like dynamics rather than vortex point-like
dynamics.

Analyzing the multi-component GPE with vortex soliton, we now extract
some degrees of freedom of soliton by using the variational principle,
and obtain the effective Hamiltonian with finite degrees of freedom for
vortex solitons. BEC at zero temperature is described by the GPE. A two-
dimensional system of trapped n-component macroscopic wave function
Φ1(t, x, y), Φ2(t, x, y), · · ·, Φn(t, x, y), obeys

i ∂∂tΦi(t, x, y) =
[

− ∇2 + V(x, y) + gii|Φi(t, x, y)|2 +∑

j�i gi j |Φ j(t, x, y)|2
]

Φi(t, x, y), (2)
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for i = 1, . . . , n. V(x, y) = (x2 + y2) stands for the effect of trapping. gii

and gi j are the coupling constant of intra-component and inter-component
interaction, respectively. We set the situation of repulsive interactions and
assume the same inter-component and the same intra-component interactions,
i.e. g11 = g22 = · · · = g1 > 0 and g12 = g13 = · · · = g1n = g23 = g24 =

· · · = g2 > 0. In the context of (2), we here made the following replacement:
t
2 → t, 2Ui j → gi j.

In the absence of the inter-component interaction, each component has
stationary states of a vortex. So, we consider the case in which each compo-
nent has one vortex and vortices interact with each other through the inter-
component interaction of BECs. Our goal is to derive from (2) the evolution
equation for the collective coordinates of trial vortices. The collective co-
ordinates for a vortex are phase variables besides the center of mass. We
Taylor-expand the phase with respect to space coordinates relative to the
center of mass. We choose a trial function for the vortex with unit winding
number (ni = ±1) as (Aranson and Steinberg 1996)

Φi(t, x, y) ≡ fi(t, x, y) exp[iφi(t, x, y)]

=
1√
πΔ

exp

[

− x2 + y2

2Δ

]

√

(x − xi)2 + (y − yi)2

2ξ2 + (x − xi)2 + (y − yi)2

× exp i

[

ni tan−1
(

y − yi

x − xi

)

+ αi(x − xi) + βi(y − yi)

]

, (3)

which is the solution of (2). The meaning of collective coordinates is as fol-
lows: (xi, yi) is the center of mass and (αi, βi) are the first-order coefficients of
Taylor-expansion of the phase φi(t, x, y) with respect to (x − xi, y − yi) rather
than (x, y). A trivial constant phase has been suppressed. Δ is the width of
trapped condensates and ξ is the healing length related to vortex core size.
For the case of a single-component BEC, Δ and ξ are approximately obtained
as Δ =

√

1 + g1/4π and ξ =
√

2πΔ/g1.
First of all we note: (2) can be derived from the variational principle that

minimizes the action obtained from Lagrangian density for field variables,

L =
∑

i

[

i
2

(ΦiΦ̇
∗
i − Φ∗i Φ̇i) + |∇Φi |2 + (x2 + y2)|Φi |2 + g1

2
|Φi|4

]

+
∑∑

j>i

g2|Φi|2|Φ j|2. (4)

In fact, the multi-component GPE is obtained from Lagrange equation:

∂

∂t
∂L
∂Φ̇∗i
− ∂L
∂Φ∗i
+ ∇ ∂L

∂∇Φ∗i
= 0. (5)
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By regarding (xi, yi) and (αi, βi) as variational parameters, the Lagrangian
density (4) becomes

L = ∑

i

[

f 2
i

(

ẋi
∂φi
∂xi
+ ẏi

∂φi
∂yi
+ α̇i

∂φi
∂αi
+ β̇i

∂φi
∂βi

)

+

(

∂ fi
∂x

)2

+

(

∂ fi
∂y

)2

+

{(

∂φi
∂x

)2

+

(

∂φi
∂y

)2}

f 2
i +

g1
2 f 4

i + (x2 + y2) f 2
i

]

+ g2
∑

j>i f 2
i f 2

j . (6)

We now insert the trial Gaussian function (3) into (6) and obtain the effec-
tive Lagrangian L for their collective coordinates by integrating L over space
coordinates:

L =
∫

dxdyL. (7)

In the limit of X = ξ2/Δ � 1, the Lagrangian for collective coordinates is
expressed by

L(xi, yi, αi, βi) =
∑

i

[

(α2
i + β

2
i − αi ẋi − βiẏi)

(

c1 − c2r2
i
Δ

)

+
nic3
Δ

(xiẏi − yi ẋi + 2αiyi − 2βi xi) − c4(xiα̇i + yiβ̇i)

+ 1
Δ

{

c5 + c7

(

1 + 2g2
g1

)

+ c9Δ
2
}

+
r2

i
Δ2

{

c6 − c8

(

1 + g2
g1

)

+ c10Δ
2
}

+
c11
Δ2

g2
g1

∑

j>i V(xi j, yi j)
]

. (8)

Here, ri =

√

x2
i + y2

i , xi j = xi − x j, and yi j = yi − y j. Coefficients c1 ∼ c11

are expressed in terms of the imperfect Gamma function Γ(ν, x). (Nakamura
2007) Asymptotic behaviors for the interactions V(xi j, yi j) between solitons
becomes

V(xi j, yi j) =

{ −r2
i j + V0 (ri j � 1)

−24Δ2X log ri j + V ′0 (ri j � 1),
(9)

with ri j =
√

x2
i j + y2

i j. Equation (9) conveys that the repulsive inter-particle

potential is quadratic in the inter-vortex distance ri j on short scale and loga-
rithmic in ri j on large scale.

Lagrange equations of motion for the phase variables αi and βi lead to

αi  B1 ẋi − niB2yi

βi  B1ẏi − niB2xi. (10)

Equation (10) shows that (αi, βi) correspond to generalized momentum conju-
gate to (xi, yi) under the vector potential. Therefore we can rewrite other two
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equations by eliminating αi and βi. Another Lagrange equation of motion for
(xi, yi) gives

ẍi  −niB3ẏi − B4xi − B5
∑

j�i
∂V(xi j ,yi j)

∂xi

ÿi  niB3 ẋi − B4yi − B5
∑

j�i
∂V(xi j ,yi j)

∂yi
, (11)

Coefficients B1 ∼ B5 are simple functions of c1 − c11.
Equation (11) shows that the dynamics of vortices is very similar to

charged particles under the magnetic field in the harmonic potential. The
vortices here acquire the inertia in marked contrast to the standard theory
of point vortices since Onsager (1949). This is one of the most important
discoveries in the present work. The corresponding Hamiltonian to (10) and
(11) can be given as

H =
∑

i

[1
2

[(αi, βi) − ni �Ai]
2 +Wi +

∑

j>i

U(xi j, yi j)
]

, (12)

with the vector potential �Ai = −D1(−yi, xi), the harmonic potential Wi =

D2(x2
i + y2

i )/2, and interaction U(xi j, yi j) = D3V(xi j, yi j)/2, where D1 =

B3/(1 + B1), D2 = B4 − B2D1 − D2
1, and D3 = 2B5. Compared to (1), it

is clear that the system has momentum degrees of freedom, i.e. the inertia,
and vortices have particle-like behavior rather than vortex point-like behavior
in conventional many vortices system. The inertia of the present vortices has
appeared due to the multi-component nature of BEC. Parameters D1 ∼ D4

depend on ξ, Δ, and g, and can be controlled by changing the number of
particles, tightness of trapping and strength of interaction which is tunable by
Feshbach resonance.

We shall focus on the system of three vortices with equal winding num-
bers, and find that chaos appears even in three vortices system. This feature is
completely different from that of point vortices system in a single component
BEC in which chaos appears in the case of more than three vortices.

For three vortices with the same winding numbers (n1 = n2 = n3 = 1),
Hamiltonian (12) becomes

H =
1
2

(α2
1 + α

2
2 + α

3
3 + β

2
1 + β

2
2 + β

3
3)

+D1(x1β1 + x2β2 + x3β3 − y1α1 − y2α2 − y3α3)

+
1
2

(D2
1 + D2)(x2

1 + x2
2 + x3

3 + y2
1 + y2

2 + y3
3)

+U(x12, y12) + U(x23, y23) + U(x31, y31). (13)
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With use of Jacobi coordinates

(xT , yT ) =
1
3

(x1 + x2 + x3, y1 + y2 + y3)

(xC , yC) =
1
2

(x1 − x3, y1 − y3),

(xR, yR) = (x1 + x3 − 2x2, y1 + y3 − 2y2)

(αR, βR) =
1

2
√

3
(α1 + α3 − 2α2, β1 + β3 − 2β2)

(αT , βT ) =
1√
6

(α1 + α2 + α3, β1 + β2 + β3)

(αC , βC) =
1
2

(α1 − α3, β1 − β3), (14)

Equation (13) can be rewritten as

H = α2
T + β

2
T +
√

6D1(xTβT − yTαT ) +
3(D2

1+D2)
2 (x2

T + y2
T )

+α2
C + β

2
C + 2D1(xCβC − yCαC) + (D2

1 + D2)(x2
C + y2

C)

+α2
R + β

2
R +

D1√
3
(xRβR − yRαR) +

D2
1+D2

12 (x2
R + y2

R)

+U
(

2xC+xR
2 , 2yC+yR

2

)

+ U
(

2xC−xR
2 , 2yC−yR

2

)

+ U(−2xC ,−2yC). (15)

(xT , yT ), (xC , yC), and (xR, yR) represent the center of mass of all three
components, the relative displacement, and the bisector of the vertex (x2, y2),
respectively. Aside from the separable center-of mass degrees of freedom,
the system of three vortices with the same winding numbers has 4 degrees of
freedom, but the independent constants of motion is 2 (energy and angular
momentum). The system is therefore nonintegrable and can be chaotic. For
three vortices with the different winding numbers (n1 = n2 = −n3 = 1), on
the other hand, even the angular momentum is not conserved, and one can
expect chaos more easily.

We now carry out a simulation for time evolution of three vortices with
the identical winding number. Under the fixed center-of-mass coordinates,
we construct from (15) the equations of motion for xC, yC , xR, yR and their
canonical-conjugate variables, which is solved numerically. Poincaré cross
section and power spectra in Fig. 1 show the transition from high-dimensional
tori to chaos, as the system’s energy is increased. In fact the lowest panels
show a collapse of torus and the broad power spectrum, which are manifesta-
tions of chaos.
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a

b e

c f

d

Figure 1. [Color online] Poincaré cross section for βR = 0 (a)-(c), and power spectra (d)–(f).
(a), (d): D1 = D2 = 5,D3 = 1. (b), (e): D1 = D3 = 5,D2 = 1. (c), (f): D1 = 1,D2 = D3 = 5

3. Billiard Motion of Wave Packets

In nonlinear optics, it is well-known that dynamics of the optical pulse propa-
gating in nonlinear media is described by nonlinear Schrödinger equation. In
particular, the dynamics of the optical pulse propagating in the nonlinear me-
dia with the nonlinear refractive index n(I) = n0I/ (1 + n1I) is described by
saturable nonlinear Schrödinger equation,where I is the intensity of pulse and
n0, n1 are positive constants (Jovanoski and Sammut 1994; Schjodt-Erisken
et al. 1998).



NONLINEAR DYNAMICS OF MULTI-COMPONENT BECS 145

In this Section we study the billiard motion of macroscopic wave packet
(WP) in two dimensions which obeys Gross–Pitaevskii equation with the
saturable nonlinearity. As billiards we choose a square and stadium.

In the billiard-free case, the nonlinear Schrödinger equation for the single-
componrnt wave function is given by

i�
∂ψ

∂t
= − �

2

2m
∇2ψ − c|ψ|2

1 + γ|ψ|2ψ , (16)

where γ and c are positive constans. The last term on the right hand side of
(16) stands for the saturable nonlinearity. When this term will be expanded
with respect to a small but finite γ, its first and second terms give a cubic
and quintic nonlinearities, respectively. On the other hand, when γ � 1,
(16) becomes the linear Schrödinger equation. In this sense, we regard the
saturable nonlinearity as the most generic among others. We examine the
stability of WP which obeys (16) by using the collective coordinate method.
Equation (16) can be derived from the Lagrangian density,

L f ree =
i
2

(ψψ̇∗ − ψ∗ψ̇) +
1
2
|∇ψ|2 + c

γ2
(log(1 + γ|ψ|2) − γ|ψ|2) . (17)

We take Gaussian function as a trial function for WP:

ψ =

√

1
πwxwy

exp[− (x − x0)2

2w2
x
− (y − y0)2

2w2
y

+ iαx(x − x0) + iαy(y − y0) + iβx(x − x0)2 + iβy(y − y0)2], (18)

where q ≡ {x0, y0; w j, α j, β j} ( j = x, y) are collective-coordinates which
characterize the WP. Variables α j, β j ( j = x, y) are canonical-conjugate to
the center-of-mass j0 and the width w j, respectively. Inserting (18) into (17)
and integrating over space variables, the effective Lagrangian L f ree for q is
obtained. The Lagrange equation for q is

d
dt

(
∂L f ree

∂q̇
) − ∂L f ree

∂q
= 0. (19)

Besides the complementary relations α j =
d
dt j0 and β j =

1
2wj

d
dt w j

( j= x, y), equation of motion for w j ( j = x, y) leads to the effective potential
for the widths:

U f ree(wx,wy) = 1
2w2

x
+ 1

2w2
y
+ cπ3

6γ2 wxwy +
c
γ2 πwxwy{ 1+ea

2 Φ( 1+ea

4 , 2, 1)

−Φ( 1
2 , 2, 1) + 2(log 1+ea

2 − log 2) log 3−ea

2 − 2 log 1+ea

2 } − 2c
γ , (20)
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where Φ(z, s, v) =
∑∞

n=0(v+n)−szn Learch function and a = γ
πwxwy

. The profile
of this potential is shown in Fig. 2, which has a stable minimum. Since (20)
is not dependent on the center-of-mass coordinates, one might expect a stable
propagation of the weakly-breathing WP. But it is not true and the fact is more
intricate.

We numerically solved (16) with use of the initial Gaussian WP in (18).
Snapshots of WP dynamics are shown in Figs. 3 and 4. Figure 3 represents the
cross-section of the WP on the vertical plane passing through the cente-of-
mass. We find that the radiation (i.e. short wave length fluctuations) emerges
as the WP propagates. Figure 4 shows the analogous dynamics of the WP on
longer time scale. Interestingly, there appears a deformation of the WP profile
from Gaussian to bell-shaped. It should be noted: the bell-shaped WP can

Figure 2. Width potential U f ree(wx,wy)

Figure 3. Emission of the radiatin from wave packet. Time elapses from left to right
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Figure 4. Deformation of wave packet from Gaussian to bell-shaped. Time elapses from left
to right

Figure 5. Dynamics of wave packet in a square billiard. Initially, the wave packet is located
at the center of the billiard, i.e. x = y = L/2 with L = 32

coexist with the accompanying radiation and the bell-shaped WP keeps its
profile for a long time.

We shall proceed to a study of the collisions of WP with square walls
(see Fig. 5). Again we apply the variational method (Montesinos et al. 2004;
Pérez-Gacı́a et al. 1997; Montesinos et al. 2005). The nonlinear Schrödinger
equation with a hard-walled square boundary can be obtained from the
Lagrangian density,

Lbilliard = L f ree + V(r)|ψ|2, (21)

where V(r) represents the confining potential: V(r) = 0 inside the billiard and
V(r) = V0 with V0 = ∞ outside the billiard, although we shall choose a large
but finite value for V0 in the numerical analysis below. Inserting Gaussian
function (18) into (21) and integrating over all space coordinates, we obtain
the effective Lagrangian for the collective-coordinates q = {x0, y0; w j, α j, β j}
( j = x, y). Then Lagrange equation yields equations motion for its center-of-
mass and width as

ẍ0 = −∂Ubilliard(x0, y0,wx,wy)

∂x0
, (22a)
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ÿ0 = −∂Ubilliard(x0, y0,wx,wy)

∂y0
, (22b)

ẅx = −∂Ubilliard(x0, y0,wx,wy)

∂wx
, (22c)

ẅy = −∂Ubilliard(x0, y0,wx,wy)

∂wy
, (22d)

with the potential given by,

Ubilliard(x0, y0,wx,wy) = U f ree(wx,wy)

+V0[A1(x0,wx) + A2(y0,wy) + A1(x0,wx)A2(y0,wy)], (23)

where A1(x0,wx) = 1
2 [erfc( x0

wx
+ erfc( L−x0

wx
)] and A2(y0,wy) = 1

2 [erfc( y0
wy

) +

erfc( L−y0
wy

)], and erfc(x) stands for the error function defined by erfc(x) =
2√
π

∫ ∞
x

e−t2 dt. The terms including A functions come from the interaction
of WP with the hard-walled square billiard. Equation (23) depends on both
the center-of-mass (x0,y0) and widths (wx,wy), which radically changes the
argument in the case of the billiard-free motion.

Figure 6 shows the profile of the effective width potential Ubilliard(x0, y0,
wx,wy) when the center-of mass of WP is located in the vicinity of the wall.
Ubilliard has still an isolated minimum as in the case of the center-of-mass
away from the wall, but the potential profile becomes to be elongated along
the wall and to have infinitely-degenerated minima when the WP approaches
very close to the walls (compare Fig. 6a and b). Because of this, when WP
collides with and is reflected from the wall, the high-speed WP has little time
to diffuse along the wall, while the low-speed WP has enough time to dif-
fuse along the wall. Therefore the former WP is expected to show a stability
against its collision with the wall.
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Figure 6. The profile of Ubilliard with V0 = 100 when wave packet is located in the vicinity
of the wall at y0 = L/2: (a) x0 = 0.9L; (b) x0 = 0.99L
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1.4
effective dynamics
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Figure 7. Time evolution of the width. Velocity is v = 10

To see the influence of collisions of WP with the walls, we show in Fig. 7
the numerical result for the time evolution of the width defined by W(t) =
[
∫

((x− < x >)2 + (y− < y >)2)|ψ|2d2r]1/2 in the case of high-velocity WP
(v = 10). Here W is evaluated with use of the wave function regularized by
removing the effect of radiation. The width shows spikes when WP collides
with wall boundaries, but is stable between successive collisions with the
walls. We also find in Fig. 7 that the billiard motion of WP can also be well
interpreted in terms of the effective dynamics of the collective coordinates. It
should be noted the stability of width is not guaranteed in the case of low-
velocity WP (e.g. v ≤ 1).

We now investigate the WP dynamics in the stadium billiard. Figure 8
shows wave packet profiles during the collision with a wall. We see the sta-
bility of WP in the vicinity of the wall. Figure 9 shows the trajectory of the
center of mass of WP. As in the case of the square billiard, the WP keeps its
robustness against collisions with the stadium billiard.

In the classical dynamics, the particle moving in the stadium billiard
shows a chaotic trajectory. However, in quantum dynamics, WP is well-
known to collapse because of the absence of nonlinearity. When a suitable
(e.g. saturable) nonlinearity is included, our numerical simulation strongly
indicates that the WP does keep its particle picture for a long time.

The feature of WP dynamics in the two-component BEC is much more
interesting. We studied the dynamics of the two-component WP described by
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Figure 8. Wave packet profiles during the collision with a curved wall

Figure 9. Billiard motion of the wave packet in the stadium. Snapshots are taken at the
moments that the wave packet collides with the wall
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the two-component saturable nonlinear Schrödinger equation. In this case,
there exist three types of collisions between WPs (transmission, reflection,
and formation of a molecule) depending on the initial relative velocity. Be-
cause of the space limitation, however, the concrete results will be described
elsewhere.

4. Summary and Discussions

We explored vortex dynamics of the multi-component BEC in the harmonic
trap in the case that each component has a single vortex. With use of collective
coordinates for the vortex core and phase gradients, we have obtained an ef-
fective nonlinear dynamics for vortex cores, which represents three charged
particles with inertia under the uniform magnetic field in the harmonic po-
tential. The repulsive inter-particle potential is quadratic in the inter-vortex
distance ri j on short scale and logarithmic in ri j on large scale. The inertia of
vortices is the most novel aspect that has not been found in the conventional
theory of point vortices since Onsager. As the energy is increased, the system
of three vortex cores shows the transition from regular high-dimensional torus
to chaos, which is a manifestation of “chaos in the three-body problem.”

We also investigated the single and multi-component WP dynamics
within the hard-walled square and stadium billiards with neither a harmonic
trap nor driving field. We chose a saturable nonlinearity in the nonlinear
Schrödinger equation. The stability of WPs can be analyzed by using the vari-
ational (collective-coordinate) method. The initial Gaussian WP is deformed
to a bell-shaped one, which coexists with the radiation around the WP. As
the velocity increases, WPs tend to be stable against many collisions, whose
mechanism is elucidated with use of the effective potential for widths of WP.

Acknowledgements

The author owes much to T. Ogura, A. Kohi, and D. Matrasulov for their
valuable contributions and to M. Kobayashi for innumerable comments and
discussions on numerical works. The full details will be published in a sep-
arate paper. The work is partly supported through a project of the Uzbek
Academy of Sciences (FA-F2-084).

References

Aftalion A.: 2006. Vortices in Bose-Einstein Condensates, Birkhäuser, Boston
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Abstract. We review recent progress in the field of optomechanics, where one studies the
effects of radiation on mechanical motion. The paradigmatic example is an optical cavity with
a movable mirror, where the radiation pressure can induce cooling, amplification and nonlinear
dynamics of the mirror.

Key words: Optomechanics; Radiation pressure; Nonlinear dynamics

1. Introduction

Optomechanics is an emerging research topic that is concerned with me-
chanical effects caused by light, particularly in connection with micro- and
nanomechanical structures that are deflected by radiation pressure. Thoughts
about the mechanical effects of light can be traced back as far as Johannes
Kepler. Observing the tails of comets always pointing away from the sun,
he speculated that this might be due to the force exerted by the solar radi-
ation. Ever since the first measurements of such radiation forces more than
100 years ago, optomechanical effects have been observed in various areas
of physics and engineering: Spacecraft with solar sails are indeed being de-
veloped, radiation forces are setting fundamental limits for the precision of
laser interferometers used in detecting gravitational waves, and these forces
are also used to manipulate cold atoms. A recent addition is the use of op-
tomechanical forces to drive, cool and read out micro- and nanomechanical
devices (see a recent review in Kippenberg and Vahala 2008, and other recent
developments in Marquardt 2008). To reach the ground state of a mechanical
oscillator with a frequency of 100 MHz, it would have to be cooled down
to about 1 mK. Achieving such ground state cooling would “put back me-
chanics into quantum mechanics” (Schwab and Roukes 2005), and quantum
effects would become observable in a massive object consisting of roughly
1015 atoms.
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This brief review is organized as follows. In Sect. 2 we introduce the
basic setup, an optical cavity, driven by a laser with one mirror placed on
an oscillating cantilever. We explain the classical effects of retarded radia-
tion forces. Similar physics was investigated in a variety of other system,
like driven LC-circuits coupled to cantilevers (Brown et al. 2007) or single-
electron transistors and microwave cavities coupled to nanobeams (Naik et al.
2006; Rodrigues and Armour 2007; Regal et al. 2008). Light-induced forces
can not only cool the cantilever, but can also enhance the mechanical motion
leading to an instability. In Sect. 3 we show how one can derive an intricate
attractor diagram for the resulting self-induced oscillations (Marquardt et al.
2006), which have also been seen in experiment. Section 4 is devoted to a
quantum description of the coupled cavity-cantilever system (Ludwig et al.
2008). A new optomechanical setup (Jayich et al. 2008; Thompson et al.
2008), which aims at Fock state detection, is discussed in Sect. 5.

2. The Basic Optomechanical Setup

The standard setup of optomechanics is shown in Fig. 1. It consists of an
optical cavity driven by a laser impinging on the cavity through a fixed mirror.
The other mirror of the cavity is movable. For example, it may be attached
to a micro-cantilever as used in atomic force spectroscopy. In such a setup
the mechanical effects of light are enhanced, as the light field is resonantly
increased in the cavity and each photon will transfer momentum to the mirror
in each of the numerous reflections it undergoes, until finally leaving the
cavity.

The coupled cavity-cantilever system is described by a Hamiltonian of
the form

Ĥcav+cant = �

(

ωcav − g
x̂M

xZPF

)

â†â + �ωMĉ†ĉ . (1)

Additional terms in the Hamiltonian describe the driving of the cavity by the
laser beam, decay of photons out of the cavity and the mechanical damping
of the cantilever. Here, ωM denotes the oscillation frequency of a mechanical

Fdx

< 0 > 0

x

F

a b

Figure 1. (a) The standard setup of optomechanics. (b) The dependence of the radiation
pressure force (circulating intensity) on the cantilever position
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oscillator, whose displacement can be expressed as x̂M = (ĉ† + ĉ)xZPF in
terms of ladder operators and the oscillator’s zero point fluctuations xZPF =

(�/2mωM)−1/2. The optical cavity, described by operators â† and â, has a
resonance frequency ωcav if the cantilever is fixed at position xM = 0.

The coupling term ∝ x̂Mâ†â with a strength depending on the coupling
constant g can be understood by two equivalent ways of reasoning: The ra-
diation pressure force should give rise to a term of the form −F̂rad x̂M =

− c
L â†â �kcav x̂M, which leads to (1) with g = ωcavxZPF/L. Alternatively, we

can understand the same term as stemming from the dependence of the cav-
ity’s resonance frequency on the cavity length, L+ xM, given by dωres/dxM =

−ωcavxM/L.
Two crucial new ingredients are added to the physics of radiation pressure

by considering a cavity setup. First, the radiation pressure becomes strongly
position dependent due to its proportionality to the total light intensity in the
cavity ∝ â†â. The light intensity shows resonances when the cavity length
L + xM is varied. Their full width at half maximum (FWHM) depends on the
decay time κ−1 of the cavity, xFWHM = κL/ωcav .The resulting dependence of
the radiation pressure force on the cantilever position in the stationary state is
sketched in Fig. 1. Secondly, the decay time κ−1 introduces a delay between
the mirror motion and the response of the light intensity.

To understand the effects of such a retarded response of the radiation
pressure force, let us consider a cantilever at a position xM > 0 to the right
of the resonance (see Fig. 1) moving towards the resonance position, ẋM < 0.
We consider small delay times and small excursions of the cantilever only.
Moving leftwards the cantilever acts against the radiation pressure, which
grows as the cantilever moves closer to resonance and the light intensity in
the cavity increases. This increase, however, lags behind the movement of the
cantilever, so that at any instance the force acting on the cantilever is smaller
than its stationary value at the same position would be (see Fig. 1). Mov-
ing into the opposite, positive direction the delayed decrease of the intensity
leads to an accelerating force on the cantilever, larger than the stationary one.
Overall, there is a net input of work into the mechanical motion during one
oscillation, given by the enclosed area in the force-position diagram in Fig. 1.
Thus, for xM > 0 (where the laser light is blue detuned with respect to the
cavity resonance) the cantilever motion gets enhanced, while for xM < 0
the same physics causes an additional damping. In the next section, we will
extend these qualitative statements to a detailed description of the classical
dynamics of the coupled cavity-cantilever system.

Retarded radiation forces were first investigated in pioneering studies by
Braginsky, both experimentally and theoretically (Braginsky and Manukin
1967; Braginsky et al. 1970).
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3. Nonlinear Classical Dynamics

Operating on the red detuned side of the resonance, any small thermal oscil-
lation amplitude will be damped away more quickly than in the absence of
radiation. On the opposite, blue detuned side, damping is effectively reduced.
If this effect overcomes intrinsic friction, an arbitrary thermal fluctuation
will be amplified into an oscillation with increasing amplitude, driving the
coupled system into a nonlinear regime (Aguirregabiria and Bel 1987; Fabre
et al. 1994; Braginsky et al. 2001; Marquardt et al. 2006). Finally, the sys-
tem will settle into a stable, self-sustained oscillation, where radiation power
input and dissipation are in balance. This will be the subject of the present
section. These effects have already been observed in experiments (Höhberger
and Karrai 2004; Carmon et al. 2005; Kippenberg et al. 2005; Metzger et al.
2008).

To derive classical equations of motion, we replace the operator â by the
complex light amplitude α and the position operator x̂M by the cantilever’s
classical displacement xM. From the Hamiltonian equation (1) we then derive

α̇ =

[

i

(

Δ + g
xM

xZPF

)

− κ
2

]

α − iαL

ẍM = −ω2
M xM + |α|2 �g/(mxZPF) − ΓM ẋM ,

where αL is the amplitude of the driving laser field, ΓM describes the mechan-
ical damping of the cantilever, and Δ = ωL − ωcav is the detuning of the laser
light with respect to the cavity resonance.

Beside a static solution xM(t) = const., the system can exhibit self-
induced oscillations. The cantilever will then conduct approximately sinu-
soidal oscillations, xM(t) ≈ x̄+ A cos(ωMt), at its unperturbed frequency ωM.
Since radiation pressure effects are small, the amplitude A of the oscillations
will change slowly over many oscillation periods only.

From this ansatz, an analytical solution for the coupled dynamics of xM(t)
and α(t) can be found (Marquardt et al. 2006; see also Ludwig et al. 2008).
The two parameters of the solution, the amplitude A and the average displace-
ment x̄, can be determined from two balance conditions: For any periodic
solution the total force should average to zero during one cycle,

〈ẍM〉 ≡ 0 ⇔ mω2
M x̄ = 〈Frad〉 = �g

mxZPF

〈

|α(t)|2
〉

. (2)

This yields an implicit equation for x̄, since 〈Frad〉 is a function of x̄ and
A. Furthermore, the work performed by the radiation pressure balances on
average the frictional losses,

〈Frad ẋ〉 = ΓM

〈

ẋ2
〉

. (3)
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Figure 2. The power fed into the cantilever motion by the radiation force, as a function of
oscillation amplitude and laser detuning. This can be used to construct the possible attractors
for the elf-induced oscillations (indicated by thick lines)

Eliminating x̄ by use of (2) we can plot the ratio between radiation power
input and frictional loss, the two sides of the last equation, as a function of
the oscillation amplitude A. Such a plot is shown in Fig. 2, where we chose the
detuning Δ as a second variable, while other parameters are fixed. The condi-
tion of (3) is fulfilled if the ratio Prad/Pfric = 1, as indicated by the horizontal
cut in Fig. 2. A solution will be stable only if an increase of the amplitude is
accompanied by a decrease of Prad/Pfric. By that reasoning the final attractor
diagram is constructed, as indicated by the thick black lines in Fig. 2.

Important general features of the dynamics of the coupled system can be
seen in Fig. 2. Self-induced oscillations appear for sufficiently strong driving
around integer multiples of the cantilever frequency, Δ ≈ nωM . Such oscil-
lations appear for a positive detuning Δ, while for red detuned laser light
(Δ < 0) the stationary solution, xM(t) = const., is stable. Note that stable
solutions with large amplitude do exist even for Δ < 0.

The most striking feature, however, is the coexistence of several stable
solutions with different finite oscillation amplitudes for a fixed set of sys-
tem parameters. This dynamical multi-stability, first discussed in this context
in Marquardt et al. (2006) and also seen in similar systems (Rodrigues and
Armour 2007), is visible in Fig. 2b, while for the parameters of Fig. 2a we find
coexistence of a stationary and a finite amplitude solution around Δ ≈ 2ωM .

These multi-stabilities could be utilized for ultra-sensitive “latching”
measurements, as argued in Marquardt et al. (2006).
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Self-induced oscillations in an optomechanical system have already been
observed in experiments with bolometric forces (Höhberger and Karrai 2004;
Metzger et al. 2008) and in microtoroidal structures where radiation pressure
dominates (Carmon et al. 2005). Recently, a more detailed comparison of
theory and experiment revealed interesting effects due to higher order me-
chanical modes that get involved in the nonlinear dynamics (Metzger et al.
2008).

4. Quantum Theory of Optomechanical Systems

The prospect of reaching the quantum mechanical ground state of a “macro-
scopic” mechanical object is currently one of the main goals in the field of
micro- and nanomechanics. Impressive progress has been made in a series
of experiments (Cohadon et al. 1999; Höhberger-Metzger and Karrai 2004;
Arcizet et al. 2006; Gigan et al. 2006; Schliesser et al. 2006; Kleckner and
Bouwmeester 2006; Corbitt et al. 2007; Thompson et al. 2008), though the
ground state has not yet been reached at the time of writing. In the classi-
cal picture derived above, we found that a properly detuned laser beam will
cool the cantilever by providing extra damping. According to the classical
theory, the cantilever can be cooled down to an effective temperature Teff =

T ΓM/(Γopt + ΓM), apparently arbitrarily close to absolute zero for sufficient
drive power and low mechanical damping. However, quantum mechanics sets
the ultimate limit for optomechanical cooling.

Starting from an intuitive quantum picture of the cooling process, we will
present in the next subsection a quantum noise approach to cooling. Quantum
effects on the self-induced oscillations can be described numerically within a
quantum master equation discussed in the following subsection, which allows
studying the classical-to-quantum crossover.

4.1. QUANTUM NOISE APPROACH TO COOLING

In the quantum description, a photon impinging on the cavity will emit or
absorb a phonon of the mechanical cantilever motion and change its fre-
quency accordingly, in a Raman-like process. A photon that is red detuned
from the resonance will absorb a phonon of energy �ωM from the cantilever,
so that it is scattered into the cavity resonance, leading to cooling. Detuning
to a “sideband” of the cavity at a frequency ωcav − ωM will be particularly
effective.

For a quantitative approach the radiation field of the cavity will be consid-
ered as a “bath” acting upon the “system,” the cantilever degree of freedom
x̂M, via the coupling term, −x̂MF̂, in the Hamiltonian. The influence of the
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Figure 3. (a) Power spectrum for the radiation pressure force. (b) Quantum-mechanical
cooling limit

bath is then characterized by the power spectrum of the force, Ŝ FF (ω) =
∫

dt exp(iωt)
〈

F̂(t)F̂(0)
〉

. In particular, Fermi’s golden rule links the net op-
tical damping rate of the cantilever to the possibility of the cavity to ab-
sorb/emit a quantum of energy �ωM from/to the bath, S FF(±ωM), as

Γopt = (xZPF/�)
2 [S FF(ωM) − S FF(−ωM)] . (4)

The power spectrum S FF is directly related (Marquardt et al. 2007) to the
spectrum of photon number fluctuations due to shot-noise (see Fig. 3). Cru-
cially, the asymmetry of the power spectrum (which is set by the laser detun-
ing) determines whether the cavity will more readily absorb or emit energy,
setting the sign of the net optical damping rate Γopt [cf. (4)].

One finds (Marquardt et al. 2007; Wilson-Rae et al. 2007) a simple limit
on the minimal occupation number, n̄O

M = [κ/(4ωM)]2, which can be reached
for optimal detuning Δ = −ωM in the resolved-sideband limit ωM � κ, for
Γopt � ΓM. In general, the reachable occupation number n̄M of the mechan-
ical mode will depend on the initial occupation n̄T

M (hence, starting from
cryogenically precooled samples is advantageous) and the mechanical and
optical damping rates, as n̄M = (Γoptn̄O

M +ΓMn̄T
M)/(Γopt +ΓM) , which reduces

to the simple classical expression for the effective temperature given above
for n̄T

M � 1. As shown in Fig. 3 ground state cooling is most advantageously
pursued in the resolved-sideband regime with high finesse cavities and high
frequency resonators. With various groups working on a variety of setups fur-
ther progress and final success in approaching the quantum limit is expected
in the very near future.

The strong coupling regime, where Γopt > κ, needs a more sophisticated
analysis and gives rise to new features (Marquardt et al. 2007, 2008).
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4.2. QUANTUM DESCRIPTION OF SELF-INDUCED OSCILLATIONS

For a full quantum description (Ludwig et al. 2008) of the self-induced os-
cillations, we have to consider the reduced density matrix ρ̂ of the system
consisting of cantilever and cavity mode. Mechanical damping and photon
decay out of the cavity are treated using a Lindblad master equation,

d
dt
ρ̂ = Lρ̂ = − i

�

[

Ĥcav+cant+drive , ρ̂
]

+ΓMD [ĉ]+ κD [â] (for T = 0), (5)

where D [â] = âρ̂â† − 1
2 â†âρ̂ − 1

2 ρ̂â†â is of the standard Lindblad form.
The stationary state of the system is found as the eigenvector of the

Liouvillian L for eigenvalue zero. This problem can be solved numerically
for a restricted, but sufficiently large number of cavity and cantilever states.
From the eigenvector, the density matrix ρ̂ f , all quantities of interest, for
instance, the average kinetic energy of the cantilever motion, can then be
calculated.

Before comparing the results of this quantum mechanical description to
the classical approach, it is instructive to quantify the degree of “quantum-
ness” of the system. Using the dimensionless parameters P = 8 |αL|2 g2/ω4

M ,
characterizing the driving strength, and ζ = g/κ, the Hamiltonian is written as

Ĥcav+cant+drive = �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

−Δ − κζ(ĉ + ĉ†)
]

â†â + ωMĉ†ĉ +
√

2Pω2
M

4κζ
(â + â†)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(6)

The master (5) then contains only dimensionless quantities, if time and the
remaining energy/frequency variables are written in terms of the mechanical
oscillation frequency ωM. Four of the dimensionless parameters in this equa-
tion, ΓM/ωM, κ/ωM , Δ/ωM and P do also appear in the classical equations
of motion, while

ζ =
g
κ
=

xZPF

xFWHM
∝ √� (7)

does not. The so-defined “quantum parameter” ζ constitutes a measure of the
quantum nature of the system and vanishes in the classical limit � → 0. It is
defined as the ratio of the quantum mechanical zero point fluctuations of the
cantilever to a classical length scale, namely the resonance width xFWHM of
the cavity.

The quantum master equation allows studying the quantum-to-classical
crossover of the system dynamics by changing the numerical value of the
quantum parameter ζ. Classical results are recovered for small ζ, while for
ζ � 1 quantum fluctuations tend to smear out the sharp features of the
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Figure 4. Wigner densities for the cantilever under the influence of the radiation force, for
varying detuning, displaying the optomechanical instability (middle and right panels)

classical result and favour the occurrence of self-induced oscillations below
the classical onset, a feature which can also be deduced from the quantum
noise approach introduced above (see Ludwig et al. 2008 for details and
figures). Note that to some extent the effects of quantum fluctuations can be
mimicked by introducing quantum zero-point fluctuations into the classical
equations of motion (Ludwig et al. 2008).

The existence of classical bi- or multistable solutions can be seen by
considering the Wigner density of the cantilever. As illustrated in Fig. 4, the
Wigner density shows characteristic features corresponding to (a) a single
stationary classical solution (broad peak in phase space), (b) a single finite
amplitude classical solution (ring structure – the phase of the oscillatory so-
lution is undetermined), or (c) the coexistence of a classical stationary and
finite amplitude solution (peak with superimposed ring structure).

We find that most optomechanical experiments are well in the classical
regime, in the sense that the quantum parameter remains small (e.g. ζ ≈
10−3 � 1 in the Bouwmeester setup, Kleckner and Bouwmeester 2006). In
two recent setups, however, combining standard optomechanics with cold-
atom physics (Gupta et al. 2007; Murch et al. 2008; Brennecke et al. 2008),
ζ is of the order of one. In these experiments a cloud of cold atoms is placed
in an optical cavity, so that the collective motion of the cloud couples to an
optical mode of the cavity, replacing the cantilever motion.

5. Towards Fock-State Detection

Linked inextricably to the race towards ground state cooling is the question
how to confirm the quantum nature of the final state. Measurement of the
displacement quadratures is possible via optical readout (Clerk et al. 2008).
However, probably the most straightforward demonstration would be to ob-
serve the quantum jumps from the ground state to progressively higher energy
eigenstates (Fock states), as the system heats up again. Such quantum jumps
between different Fock states have been observed in the mechanical motion
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of an electron in a Penning trap (Peil and Gabrielse 1999). In optomechanics
such quantum jumps might eventually be observed for the mechanical motion
of a truly macroscopic object, consisting of billions of atoms.

Recently, the Yale group of Jack Harris introduced a novel optome-
chanical setup (Thompson et al. 2008; Jayich et al. 2008), where a thin
dielectric membrane is placed in the middle of a cavity with two fixed, high
finesse mirrors. Beside the technological advances offered by this setup, it
also leads to a different coupling of the mechanical displacement of the
oscillating membrane to the cavity, which is advantageous for the aim
of Fock state detection. To find the structure of the coupling term in the
Hamiltonian, consider first the limit of a perfectly reflecting membrane at
some position x in the middle of the cavity. Moving the membrane will
change the frequencies of resonances in the left and right halves of the
cavity in opposite directions, which would lead to a resonance crossing at
some displacement xcross. A finite transmission of the membrane, however,
produces an anti-crossing, with ω(x) − ω(xcross) ∝ x2 near the degeneracy
point. In rotating wave approximation the coupling is then of the form
∝ (ĉ†ĉ + 1

2 ) â†â, so that
[

Ĥcant+cav+drive , ĉ†ĉ
]

= 0, allowing non-destructive
measurement of the phonon number. Detecting the phase of the transmitted
beam driving the cavity at resonance frequency then constitutes a direct
quantum non-demolition (QND) measurement of the phonon number.

Shot noise in the transmitted beam can be overcome by time averaging,
which, however, is restricted by the life time of Fock states due to finite damp-
ing and temperature. Optimal averaging times and strategies, how best to
distinguish classical from quantum fluctuations, even when the QND readout
time is comparable to the state’s life time, have been explored in Jayich et al.
(2008).

6. Conclusions

Optomechanics is a new research topic that has been established in the
past four years, with strong progress being made through a tight interplay
of theory and experiment. Even the classical nonlinear dynamics of these
systems is far from being fully explored: For example, chaotic motion has
been observed at strong drive (Carmon et al. 2005), but not yet analyzed
systematically. In the quantum regime, ground-state cooling and creation
of nonclassical states (e.g. entanglement) are interesting challenges. New
setups expand the applicability of these concepts, e.g. in superconducting
microwave circuits or with cold atoms.
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HOHENBERG–MARTIN DILEMMA FOR BOSE CONDENSED

SYSTEMS AND ITS SOLUTION
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Abstract. The properties of the uniform Bose gas is studied within the optimized variational
perturbation theory (Gaussian approximation) in a self-consistent way. It is shown that the
atomic BEC with a repulsive interaction becomes unstable when the gas parameter γ= ρa3

exceeds a critical value γcrit ≈ 0.01. The quantum corrections beyond the Bogoliubov–Popov
approximation to the energy density, chemical potential and pressure in powers of

√
γ expan-

sions are presented.

Key words: Bose condensate; Critical density; Field theoretical methods; Nonperturbative
approach

1. Introduction

The outline of the present talk is following:

• What is Hohenberg–Martin dilemma? Illustration on the one loop level
(Hohenberg and Martin 1965)

• Yukalov–Kleinert prescription (Yukalov and Kleinert 2006)

• Hartree Fock–Bogolubov approximation and unstability of uniform
BEC

2. Hohenberg–Martin Dilemma for Bose Condensed Systems

1. LBOSE(ψ, ψ∗) is invariant under U(1) globe gauge symbol. ∃ T = Tc,
T 〈Tc U(1) is broken.

2. The theory of Bose-condensed systems is based on Bogolubov idea of
breaking the global gauges symmetry by means of the Bogolubov shift
for field operators.

ψ(r, t)→ v(r, t) + ψ̃(r, t),
∫

v∗(r, t)ψ̃(r, t)dr = 0, (1)

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 165
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N0 = 〈
∫

ϑ∗ϑ(r, t)dr〉,

N1 = 〈
∫

ψ̃∗ψ(r, t)dr〉. (2)

statistical N = N0 + N1

3. Statistical condition stability

•
dΩ(μ, v)

dv
= 0, (3)

MIN of thermodynamic potential
• Particle spectrum, under the broka gauge symmetry must be gap-

less:

lim
k→∞ E(k) = 0. (4)

This is equivalent to Hugaholtz–Bines theorem: μ = Σn(0, 0) −
Σan(0, 0) Σαβ-self energies.

• Conservation of quantum number (spin, momentum)

〈ψ̃(r, t)〉 = 0 (5)

Hohenberg–Martin dilemma: if you fix μ by (4) then you can not satisfy (3)
and vice verso.

3. Illustration of Hohenberg–Marin Contradiction
(One Loop Approximation) UNIFORM Bose System

Partitution function:

Z(β) =
∫

DψDψ∗e−s (6)

action

S =
∫ T

0
dτdr

{

ψ+[∂τ − ∇
2

2m
− μ]ψ(x) +

g
2

(ψ+ψ)2
}

, (7)

Thermodynamic potential:

Ω = −T ln Z(β) (8)

Thermodynamic average:

〈Â〉 = 1
Z(β)

∫

Dψ+DψD(ψ, ψ+) e−s(ψ,ψ+) (9)
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Bogolubov shift

ψ = v + ψ̃

ψ̃ =
1√
2

(ψ1 + iψ2),

ψ̃+ =
1√
2

(ψ1 − iψ2) (10)

ψa(r, τ) =
1√
Vβ

∑

n,k

ψa(ωn, k)eiωnτ+ikr, (a, b = 1, 2) (11)

ωn = 2πnT – Matsubara frequency

∑

k

→ ∀
∫

k/(2π)3 (12)

then

S = S 0 + S (1) + S (2) + S (3) + S (4),

S 0 =

∫

dτdi[
gv4

2
− μv2],

S (1) = di
∫

dτψ1

√
2v[μ + gv2],

S (2) =
1
2

∑

n,n′
k,k′

ψa(ωn, k)Mab(ωn, k;ωn, k′)ψb(ωn; k′) (13)

Mab =
(2π)4

√
β

(S (k + k′)S (ωn + ωn′)

(

εk + x1 ωn

−ωn εk + x2

)

(14)

where εk = k2/2m,

x1 = 2gv2 − μ; (15)

x2 = gv2 − μ.
One loop:

s(3) → 0

s(4) → 0 (16)

Then
∫ DψDψ+e−S is Gaussian. Green function:

G(i,i′)
ab = 〈Tτψa(r)ψb(r′)〉 = 1

Z(β)
δ2Z(β, j1, j2)
δ ja(2)δ jb(2′)

∣

∣

∣

∣

j1= j2=0
(17)
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Gab(k, ωn) =
1

ω2
n + E2

k

(

εk + x2 ωn

−ωn εk + x1

)

(18)

Ek =
√

(εk + k1)(εk + k2), (19)

εk = k =2 /2m; x1 = 3gv2 − μ,
x2 = gv2 − μ (20)

Σn =
1
2

[x1 + x2 + 2μ], Σan =
1
2

[x1 − x2], (21)

Check condition:

• 〈ψ1〉 = 0⇒
S (1) =

∫

dτdτψ1

√
2v[μ + dv2] = 0 (22)

that is μ = −gϑ2 must be.

• H.P. theorem

Σn − Σan = x2 + μ = μ mute⇒ x2 = 0; (23)

that is Ek =
√

k2/2m + x1εk ≈ ck + 0(11) that is x2 = gϑ2 − μ; μ = gv2

One can cheek that μ = gϑ2 not appropriate with dΩ
dv = 0 mins Ωi.

4. Yukalov–Kleinert Prescription

For each three conditions for equilibrium

1. 〈ψ̃〉 = 0 ψ→ v + ψ̃: quantum conservation

2. 〈N̂0〉 = 〈
∫

v2dr〉 = N0

3. 〈N〉 = N0 + N2; N! = N̂1 = 〈
∫

(ψ̃)2dr〉
One should introduce three Lagrange multipliers to satisfy these conditions

S [v, ψ] =
∫

[

L̂ + μ0N̂0 + Λ̂
]

dt (24)

Λ ≡
∫

[

L(r, t)ψ̂+ +L∗ψ̂
]

dr (25)

μ0 – chemical potential for condensed particles: N0 = − ∂Ω
∂μ0

μ1 – chemical potential for uncondensed particles: N1 = − ∂Ω
∂μ1

L – is chosen such that 〈Λ̂〉 = 0
All and all grand Hamiltonian

H[v, ψ̂] = Ĥ − μ0N̂0 − μ1N̂1 − Λ̂ ↔ Ĥ − μN (26)
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μ = −
(

∂Ω
∂N

)

is μ = (μ0N0 + μ1N1)/N. This prescription leads to Illowis action
for interacting (content potential) uniform Bose gases:

S [ψ, ψ∗] =
∫

dτdr{ψ∗[∂τ − ∇
2

2m
]ψ − μ1ψ̂

∗ψ̂

−μ0v2 − (Lψ̂+ +L∗ψ̂) +
g
2

[ψ∗ψ]2} (27)

5. Illustration for One Loop

After ψ→ v + ψ̂, ψ̂ = 1√
2
(ψ1 + iψ2), ψ̂+ = 1√

2
(ψ1 − iψ2)

S = S 0 + S (1) + S (2) + 0(ψ3); (28)

S 0 = Vβ[−μ0v2 + gv4/2] (29)

S (1) =

∫

dτdr{gv2[ ˆψ+ + ψ̂] − L∗ψ̂ − Lψ̂∗; (30)

S (2) =
1
2

∑

n,n′
k,k′

ψa(ωn, x)Mab(ωn, k;ωn, k
′)ψb(ω′n; k′); (31)

Mab =
(2π)4

√
β

S (�k + �k′)S (ωn + ωn′)

(

εk + x1 ωn

−ωn εk + x2

)

; (32)

εk = �k2/2m; (33)

Ga(ω2, k) =
1

ω2
n + E2

k

⎛

⎜

⎜

⎜

⎜

⎝

εk + x2 ωn

−ωn εk + x1

⎞

⎟

⎟

⎟

⎟

⎠
(34)

Ek =
√

(εk + x1)(εk + x2); (35)

x1 = 2gv2 − μ, x2 = gv2 − μ
Ω = V{−μ0v2 + gϑ4/2} +

∑

k

Ek + T
∑

k

ln[1 − e−βEk ] (36)

Conditions

1. 〈ψ1〉 = 0; L = gv3 ⇒ S = 0

2. Σn − Σm = μ1 ⇒ μ1 = gv2; x2 = 0; Ek ∼ ck + 0(k3)

3. ∂Ω
∂v=0 : We can fix μ0

No contradictions
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6. Hartee–Fock–Bogolubov Method in Yukalov–Kleinert Prescription

This prescription can be used not only in path integral functions, but also in
operators. The grand Hamiltonians:

H = Ĥ − μ0N̂0 − μ1N̂1 − Λ; (37)

ψ → v + ψ̃; (38)

H = H0 + H(1) + H(2) + H(3) + H(4) (39)

where

H0 = −μ0N0 + gv4/2; (40)

N0 =

∫

dτv2 = V · v2; (41)

H(1) = 0 (42)

with choice of L;

H(2) =

∫

dτ{ψ̃+(−∇
2

2m
− μ1)ψ̃ +

gv2

2
(ψ̃2 + ψ̃+

2
+ 4 ˜ψ+ψ̃); (43)

H(3) = v
∫

dτ{ψ̃+ψ̃2 + ψ̃+ψ̃+ψ̃}; (44)

H(4) =
g
2

∫

dτ[ψ̃+ψ̃]2 (45)

Equation of motion

i
∂v
∂τ
=

δH
δv
= −μ0v + g[v3 + x̃] = 0 (46)

i
∂

∂τ
ψ̃ =

δH

δψ̃+
=

(

−∇
2

2m
− μ1

)

ψ̃⊥ + g[2v2ψ̃ + v2ψ̃1
+
+ x̂] (47)

x̂ = 2v | ψ̃1 |2 +vψ̃2 + ψ̃+ψ̃2 (48)

Above equation are exact now we implement Hartree–Fock–Bogolubov
(HFB) approximation:

7. Second Quantization

ψ̃ =
1√
V

∑

k

akeikr,

ψ̃+ =
1√
V

∑

k

a+k e−ikr

ρ1 = 〈ψ̃+ψ〉 = 1
V

∑

k

a+k ak ≡ 1
V

∑

k

ρk (49)
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density of uncondensed particle

σ = 〈ψ̃ψ̃〉 = 1
V

∑

k

aka−k ≡ 1
V

∑

k

σk (50)

anomaly density. Where

〈a+k ap〉 = δ(�k − �p)ρk; (51)

〈akap〉 = δ(�k + �p)σk (52)

HFB:

a+k apaη → 2〈a+k ap〉aη + a+k 〈apaη〉 (53)

a+k a+paηam → 4a+k am〈a+paη〉
+ 〈a+k a+p〉aηam + a+k a+p〈aηam〉 − 2N2

1 − N2
σ (54)

where N1 = ρ1 · V; Nσ = σ · V .
Grand Hamiltonian

H → H0 +
∑

k

a+k akωk +
x1

4

∑

k

[aka−k + a+−kak
k] (55)

H0 = −μ0N0 +
gv4

2
− Vg

2
(2ρ2

1 + σ
2) (56)

ωk = εk + 2gρ0 + 2gρ1 − μ1 (57)

x1 = 2g[ρ0 + σ] (58)

This could be easily diagonalized Bogolyubov theory
{

ak = ukbk + vkb+−k
a+k = ukb+k + vkb−k

[bkb+p] = δ(k − p) (59)

with

uk =

√

ωk + Ek

2Ek
,

vk =

√

ωk − Ek

2Ek
,

Ek =

√

ω2
k − x2

1/4. (60)

Impose conditions: Ek ∼ c(�k) + O(k2); which c =
√

x1
2m – sound velocity.

⇒ μ1 = g[ρ + ρ1 − σ]⇒ Ek =
√
εk(εk + x1).
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The diagonalized grand Hamiltonian is:

H = −μ0N0 +
Vgρ2

0

2
− Vg

2
(2ρ2

1 + σ
2),

+
∑

k

b+k bkEk +
1
2

∑

k

(Ek − εk − x1/2), (61)

x1 = 2g[ρ0 + σ],

ρ0 = ρ − ρ1, (62)

Etot = 〈H〉 − μN = 〈H〉 + μ0N0 + μ1N1. (63)

As to μ0, it can be found from equation of motion, I brought above:
The result is: μ0 = g[ρ + ρ1 + σ].
The densities ρ1, σ and main equation for self energy x1:

ρ1 =
1
V
〈
∑

k

a+k ak〉 = 1
V

∑

k

〈(ω2
k + v2

k)nB + v2
k〉,

=
1

2V

∑

k

[

ωk(2nB + 1)
Ek

− 1

]

, (64)

nB = 1/(eβEk − 1),

ωk =
k2

2m + x1/2
, (65)

σ =
1
V
〈
∑

k

aka−k〉 = 1
V

∑

k

ωkvk [1 + 2nB]

= − x1

2V

∑

k

(nB +
1
2 )

Ek
, (66)

x1 = 2g
[

ρ − ρ1 + σ
]

= 2g

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ − 1
V

∑

k

[

(εk + x1)(nB + 1/2)
Ek

− 1
2

]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (67)

E2
k = εk(εk + x1). (68)

∑

k → V
∫

d�k
(2π)3 : divergent for T = 0

T = 0 case

ρ1 =
1

2V

∑

k

ωk

Ek
=

V
2V

∫

d�k[εk + x1/2]

(2π)3 √εk
√
εk + x1

=
1

8V
I‖(x1), (69)

σ = − x1V
4V

∫

d�k

(2π)3Ek
= 3ρ1, (70)
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anomalous density is times larger than ρ1

Iαβ(t) =
∑

k

εkmβ−α

Ek
, (71)

In(t) =
V(2 + m)3/2

3π2
, (72)

x1 = 2g[ρ − ρ1 + σ]. (73)

Using explanation for Iα,β and x1 ≡ 2gρz, z-dimensionless

Z − 1 =
(2gpzm)(3/2)

3π2
√

2ρ
. (74)

Let g = 4πa
m , γ = a3ρ; a–s wave scattering

Z3 − 9π
256γ

(Z − 1)2 = 0 (75)

cubic equation for Z.
This equation could ba solved analytically, as a result

x1 = 2dρ −
√
π

16
√
γ
{1 + √3 cos(α) − sin(α)}, (76)

α =
1
3

arccos
384γ
π
− 1 +

π

6
, (77)

ρ1 =
(2x1m)3/2

24π2
, ρ0 = ρ − ρ1 (78)

Etot =
Vgρ2

2

[

1 − 896γz6

9π
+

128
√
γ

15
√
π

]

, (79)

P = −
(

∂E
∂V

)

. (80)

8. SMALL γ T = 0

n1 ≡ ρ1

ρ
=

8
√
γ

3
√

n
+

64γ
15π
+ · · · + O(γ3/2), (81)

Etot =
gρ2m

2

[

1 +
128
√
γ

15
√
π
+

128γ
π
+ · · ·O(γ3/2)

]

, (82)

P =
gρ2

2

[

1 +
64
√
γ

5
√
π
+

256γ
9π
+ · · ·O(γ3/2)

]

. (83)
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Text book results, based on Bogolyubov–Popov approximation.
Any γ(γ ≤ 1) T = 0.
Dependence of n1(γ) is depicted in Fig. 1 it is sees that for γ = 0, 016

BEC disappears.
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Figure 1. Dependence of n1(γ)
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Figure 2. Dependence of pressure on γ
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P(γ) is presented in Fig. 2. It is seen that at γ = γcrit = 0, 012 P〈0
(Nozie’res 1995). This signals about the instability of BEC.

9. Conclusion

1. It has been shown that H.M. dilemma for a Bose condensate system can
ba resolved by introduction of appropriate Lagrange multipliers leading
to a representative ensemble. based on the HFB approximation.

2. We show that when the coopling constant of repulsive interaction be-
comes razer large the condensate collapses. The condensate collapses.
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PHONONS AND ELECTRON–PHONON INTERACTIONS

IN SINGLE-WALLED ACHIRAL CARBON NANOTUBES
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Abstract. Exact analytical expressions for the entire phonon spectra in single walled carbon
nanotubes with achiral geometries are presented by using an approach, which mainly includes
the construction of classical lattice Hamiltonian of single walled carbon nanotubes, then its
quantization and finally diagonalization of the resulting second quantized Hamiltonian. Fur-
thermore, within this context, analytical formulas for the relevant electron–phonon interaction
coefficients are also obtained for single walled carbon nanotubes having these geometries, by
the phonon modulation of the hopping interaction.

Key words: Carbon nanotubes; Graphene

The study of phonon dispersion relations in single walled carbon nano-
tubes (SWCNTs), that is, investigation of wavevector dependence pf phonon
frequencies in whole region of the Brilliouin zone, is very important due to
their crucial role in understanding electronic and heat transport, infrared and
Raman spectra, and most importantly associated electron–phonon interaction
(Jishi et al. 1993; Woods and Mahan 2000; Lazzeri et al. 2006; Mahan 2003;
Mahan and Jeon 2004; Jeon and Mahan 2005; Jiang et al. 2005; Popov et al.
2005; Popov and Lambin 2006). In this report, I shall concentrate on a new
technique we have developed to determine phonon frequencies in achiral
SWCNTs, but the methodology described in these works can easily be ex-
tended to chiral ones. I shall not go into both theoretical details and the
discussion of huge amount of literature concerning the latest developments
in this field. The detailed description of theoretical framework together with
a survey of the related literature in detail can be found in our previous papers
(Kandemir and Altanhan 2008; Kandemir and Keskin 2008). Here, I will
rather analyze primarily phonon dispersion relations in achiral SWCNTs,
and I shall be concerned slightly with electron–phonon interaction processes.
As discussed in Kandemir and Altanhan (2008) and Kandemir and Keskin
(2008) in details, the quantization procedure of lattice vibrations of achiral
SWCNTs can be formulated precisely in terms of boson operators. Perform-
ing afterwards two subsequent unitary transformations for the phonon part of

G. Casati and D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, 177
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the resultant Hamiltonian and doing the same things for the interacting part,
i.e., for the linear electron–phonon interaction part, the Fröhlich Hamiltonian
for SWCNTs then becomes

H =
∑

k

[

E(+) (k) C†A,kCA,k + E(−) (k) C†B,kCB,k

]

+
∑

q

∑

i

�ω̃i (q)

(

a†qiaqi +
1
2

)

+
∑

q

∑

k

∑

i

Di (k, q)
(

a†qi + aqi

)

(1)

where

Di (k, q) =
[

L(−)
i+ C†B,k+qCB,k − L(+)

i+ C†A,k+qCA,k

]

+
[

exp (+iξ)L(+)
i− C†A,k+qCB,k + exp (−iξ)L(−)

i− C†B,k+qCA,k

]

(2)

with
Ψ± =

{

exp
[−iξ (k)

] ± exp
[

+iξ (k + q)
]}

/2

and

L(−)
i± = MT(+)

i Ψ∗± −MT(−)
i Ψ∗∓

L(+)
i± = MT(+)

i Ψ± +MT(−)
i Ψ∓.

To clarify the notation, we use aqi

(

a†qi

)

operators as phonon annihilation
(creation) operators. Here, the first term in (1) is, after a proper Bogoliobov
unitary transformation proposed firstly in Kandemir and Altanhan (2008),
the well-known spinless tight-binding Hamiltonian with energies E(±) (k) =
±J0 |Θ (k)|, where J0 is the hopping parameter and takes value approximately
2.4–3.1 eV, and Θ (k) is the sum of phase factors of atom A with its three
nearest neighbor B atoms or vice versa. C†A(B),k and CA(B),k are the creation
and annihilation operators for an electron with k mode, respectively. In (1)
and (2), i is the phonon band index and runs over from 1 to 6. Therefore, the
first term in (2) represents the intraband scattering of an electron from the
carbon atom A(B) with wavevector k ≡ (k, γ) to the state with wave vector
q + k ≡ (q + k, α + γ) of the carbon atom A(B), the second one describes
the interband scattering of an electron from the carbon atom A(B) with wave
vector k ≡ (k, γ) to the state with wave vector q + k ≡ (q + k, α + γ) of the
carbon atom B(A).

In obtaining phonon frequencies ω̃i (q) in (1), i.e., in second unitary
transformation stage, we have first chosen a particular frequency, say the
component i, and then taken into account the correlation of this particular
component with the others. In Fig. 1, for a (10, 10) armchair SWCNT, we
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Figure 1. For a (10, 10) armchair SWCNT with α = 0, q-dependence of the phonon spectra
according to ω(0)

i (left panel), arising from the first diagonalization. In the right panel, again
q-dependence of the phonon spectra, but after the second unitary transformation (Kandemir
and Altanhan 2008)

compare our analytical phonon modes for α = 0 obtained after the first
transformation (without phonon correlations) with those obtained after
second unitary transformation (with phonon correlations). While the left
panel of this figure shows the six non-degenerate modes, of which the two
are acoustical and the four are optical, the right panel shows how mode
crossings, i.e. degeneracy of phonon branches, are removed by taking into
account the correlation effects among the phonons.

Moreover, the overall behavior of calculated results for a (10, 0) zigzag
SWCNT are also shown in Fig. 2. In this figure, drawing the phonon dis-
persion curves so as to span the whole range of α variation, we get a three
dimensional picture, i.e., ω as function of both qc and α. We note that α quan-
tum numbers increase as the radius R of the tube increase. This is nothing but,
for very large R, α becomes continuous so that the shown projectiles create
phonon dispersions along the circumferential direction, which corresponds
to ΓK′ direction of the graphene. For tubes with large radius, such a picture
helps us to visualize two-dimensional k-vector dependence of energy surfaces
of the graphene.

To achieve the effect of electron–phonon interactions on the electronic en-
ergy spectrum, the interacting part of the total Hamiltonian can be rewritten
as terms linear in C†A(B),k+qCA(B),k and in C†A(B),k+qCB(A),k. Then the complete
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Figure 2. Plot of ω̃i (q) according to our analytical results (Kandemir and Keskin 2008) from
α = 0 to α = 10 for a (10, 0) zigzag SWCNT

Hamiltonian becomes

H =
∑

k

2
∑

j=1

E( j)(k)C†j,kC j,k+
∑

q

∑

i

�ω̃i (q)

(

a†qiaqi +
1
2

)

+
∑

k,q

∑

i, j

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Li j (k, q) aqiC
†
j,k+qC j,k+

∑

�� j

Li j� (k, q) aqiC
†
�,k+qC j,k +H.C.

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

which can easily be diagonalized by unitary transformation

U( j) = exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

q

∑

k

(

λ∗kqa†qiC
†
j,kC j,k+q − H.C.

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The detailed derivation of such a unitary transformation and its direct conse-
quences on the electronic spectrum will be given elsewhere.
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FAST-FORWARD PROBLEM IN MICROSCOPIC

AND MACROSCOPIC QUANTUM MECHANICS
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Abstract. We showed the way to speed up the time-evolution of a wave function (WF), i.e.
to fast-forward the WF in microscopic and macroscopic quantum mechanics, by controlling
the driving potential with resultant regulation of the additional phase of the WF, so that a
target state is obtained in a shorter time (Phys. Rev. A 78:062108, 2008). We first presented
a general framework of the fast-forwarding of WF in quantum mechanics and provided an
example of the fast-forward of WF in two-dimensional (2-d) free space. Then the framework
of the fast-forward was extended to macroscopic quantum mechanics described by the non-
linear Schrödinger equation. We showed the fast-forward of (1) transport of Bose Einstein
condensates trapped by a moving 2-d harmonic potential and (2) propagation of a soliton both
in free space and through a potential barrier (macroscopic quantum tunnelling).

Key words: Time-evolution; Fast-forwarding; Quantum transport

1. Theoretical Framework of Fast-Forward in Quantum Mechanics

Suppose that Ψ0(x, t) is a known function of space (x) and time (t) and is
called a standard state. Schrödinger equation is given as

i�
d
dt
| Ψ0(t)〉 = Ĥ0 | Ψ0(t)〉, (1)

with

Ĥ0 =
p̂2

2m0
+ V̂0(x̂, t). (2)

Let Ψα(x, t) be a fast-forwarded state of Ψ0(x, t) by α times, i.e.

| Ψα(t)〉 =| Ψ0(αt)〉, (3)

where α is a time-independent magnification factor of the fast-forward. The
time-evolution of the WF is speeded up for α > 1 and slowed down for
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0 < α < 1 like a slow-motion. A rewind can occur for α < 0, and the WF
pauses when α = 0.

In general, the magnification factor can be time-dependent α = α(t).
The time-evolution of a WF is accelerated and decelerated when α(t) is in-
creasing and decreasing, respectively. In this case, the fast-forwarded state is
defined as,

| Ψα(t)〉 =| Ψ0(Λ(t))〉, (4)

where

Λ(t) =
∫ t

0
α(t′)dt′. (5)

1.1. FAST-FORWARD OF AMPLITUDE OF WAVE FUNCTIONS

It is not possible to make | Ψα〉 itself by controlling the potential because the
potential to generate Ψα in (4) is complex in general. The problem is resolved
by introducing the additional phase factor. We first explored the fast-forward
of the amplitude of a WF. Let | ΨFF〈 be a realistic fast-forwarded state, which
is defined with use of Ψα multiplied by the additional phase factor ei f (x,t) as,

〈x | ΨFF(t)〉 = exp [i f (x, t)]〈x | Ψα(t)〉. (6)

ΨFF is not the exactly fast-forwarded state, but its amplitude is certainly a
fast-forwarded one of Ψ0.

The Hamiltonians operating on | Ψα〉 and | ΨFF〉 are respectively given as,

Ĥα =
p̂2

2mα
+ V̂α(x̂, t), (7)

ĤFF =
p̂2

2m0
+ V̂FF(x̂, t), (8)

where mα and V̂α, which correspond to Ψα, are defined with use of α(t) as,

mα = m0/α(t), (9)

V̂α(x̂, t) = α(t)V̂0(x̂,Λ(t)). (10)

V̂FF is the driving potential to generate | ΨFF〉. Note that the mass in ĤFF in
(8) is the same as that in Ĥ0.

From Schrödinger equations corresponding Hamiltonians in (7) and (8),
we have

�
∂ f
∂t
Ψα = w∇2Ψα + (Vα − VFF)Ψα

+η[i(∇2 f )Ψα + 2i∇ f · ∇Ψα − (∇ f )2Ψα], (11)
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with w = − �2

2m0
(α(t) − 1) and η = �

2

2m0
. Multiplying Ψα on the complex

conjugate of (11) and decomposing it into its real and imaginary parts, we
have

|Ψα|2∇2 f + 2Re[Ψα∇Ψ∗α] · ∇ f + (α(t) − 1)Im[Ψα∇2Ψ∗α] = 0, (12)

VFF = Vα − �∂ f
∂t
− η(∇ f )2 + Re[w∇2Ψα/Ψα + 2iη∇ f · ∇Ψα/Ψα]. (13)

Equation (12) should be satisfied by f (x, t). The driving potential VFF for the
fast-forward is given by (13), which is real and available in terms of f (x, t)
that is a solution of (12).

While it looks difficult to obtain ∇ f from (12), one can alternatively reach
∇ f by having recourse to the continuity equation,

∂

∂t
(Ψ∗Ψ) = − �

m
∇ · Im[Ψ∗∇Ψ], (14)

which leads to

∇ f (x, t) = (α(t)−1)
Im[Ψ∗α∇Ψα]

| Ψα |2 (x, t) = (α(t)−1)
Im[Ψ∗0∇Ψ0]

| Ψ0mid2
(x,Λ(t)), (15)

Since (15) is a solution of (12), we can obtain the driving potential VFF(x, t)
without solving (12). f (x, t) in (15) vanishes except for arbitrary purely time-
dependent terms when α(t) becomes 1 due to the factor α(t)− 1. On the other
hand, VFF(x, t) in (13) becomes V0(x, t) when ∂α

∂t (x, t) = 0 as well as α = 1,

because VFF(x, t) includes ∂ f
∂t (x, t).

1.2. FAST-FORWARD OF EXACT TARGET STATES

As mentioned above, the additional phase f (x, t) in (15) can vanish when
α = 1. Therefore, if we choose α(t) such as increasing from 1, keeping a
desired fixed value larger than 1 for a while and then decreasing back to 1,
and apply the corresponding driving potential VFF , ΨFF can reach the exact
target state at the goal without the extra phase in a desired short time, though
it has a nonvanishing additional phase on the way of fast-forwarding. There
is no additional phase also at the initial time, that is, ΨFF can now recover
the phase of the exact target state as well as its amplitude at the final time.
VFF can smoothly merges to V0 at the initial and final time when α = 1 and
∂α/∂t = 0 [see (10), (13) and (15)]. In fact, it is convenient that the extra
potential VFF − V0 for the fast-forward is gradually applied, and smoothly
removed after the fast-forwarding. Below we shall give an example of the
fast-forward of a WF in quantum mechanics.
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In numerical calculation, we chose a magnification factor α(t) as

α(t) = (ᾱ − 1) cos

(

2π
T/ᾱ

t + π

)

+ ᾱ (16)

for 0 ≤ t ≤ T/ᾱ, which starts from 1, increases up to 2ᾱ − 1 (acceleration)
and decreases gradually back to 1 (deceleration). T (standard final time) is
the time that the standard state spends to reach the target state. Because ᾱ is
equal to the time average of α(t), we can expect that ΨFF reaches the target
state in a 1/ᾱ amount of T . We call the time

TFF = T/ᾱ, (17)

as the final time of the fast-forward.

2. Fast-Forward in Macroscopic Quantum Mechanics

The theory of the fast-forward was extended to the macroscopic quantum
mechanics. Let us consider the fast-forward of a WF for the Bose-Einstein
condensates (BEC) governed by the nonlinear Schrödinger equation:

i�
∂Ψ0

∂t
= − �

2

2m0
∇2Ψ0 + V0Ψ0 − c0|Ψ0|2Ψ0, (18)

where c0 is a nonlinearity constant. In this case, the driving potential is rep-
resented as

VFF = Vα − (α(t) − 1)c0 |Ψα|2 − �∂ f
∂t
− η(∇ f )2

+Re[w∇2Ψα/Ψα + 2iη∇ f · ∇Ψα/Ψα], (19)

while the additional phase is given as (15).

2.1. EXAMPLES OF FAST-FORWARD

Using the driving potential evaluated with use of (15) and (19) together with
a numerically obtained standard state Ψ0, we showed the fast-forward of
the transport of BEC (Leggett 2001; Ketterle 2002) in a moving harmonic
potential in 2-d. Suppose an initial Gaussian WP to be static and located at
the center of the harmonic potential. If we move the trapping potential slowly
enough, the WP keeps staying around the center of the potential during and
after the transport. But if we try to transport the WP fast by moving the
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trapping potential rapidly, it moves away from the the potential minimum
during the transport, and keeps oscillating in a wide range in the trapping
region even after the movement of the potential is ceased. Such large devia-
tion from the center of the trapping potential is serious because, in practical
experiments on BEC, the confinement of WP is not complete.1 However if
we apply the driving potential VFF based on the present theory of the fast-
forward, we can transport the WP with neither giving the large unfavorable
energy transfer from the potential nor serious disturbance of the WP, that
is, we can obtain the target state of the WP in any desired short time, as
if we move the harmonic potential slowly. To evaluate the accuracy of the
fast-forward, we calculated the fidelity defined as

F =| 〈ΨFF(t) | Ψ0(Λ(t))〉 |, (20)

i.e. the overlap between the fast-forwarded state ΨFF(t) and the correspond-
ing standard one Ψ0(Λ(t)). It is unity when ΨFF agrees with the target state,
and is now around 0.9995 at the final time of the fast-forward t = TFF ,
while it is less than unity during the fast-forward (see Fig. 1). The profiles
of | ΨFF |2 at the final time TFF and the target state | Ψ0(T ) |2 are shown in
the inset in Fig. 1. They are overlapping completely. We have also confirmed
the coincidence of the phase of the WP (which is not shown here). In this way
we checked that the WP carried by the potential moving slowly, is accessible
in a half amount of time with use of VFF .

We also obtained the driving potential for the fast-forward of soliton prop-
agation and barrier penetrations, and confirmed that we could generate target
states in any desired short time.

F
id

el
it
y

1

0
0 TFF=6.25

t

12

x

Figure 1. Time-dependence of the fidelity in (20). The inset represents x-dependence of the
amplitude of ΨFF and the target state at the final time. They are overlapping precisely

1 On the other hand, a simply deepened trapping potential together with its fast movement
could transport the WP rapidly keeping it near the potential minimum, but the WP again
acquires the unfavorable transferred energy.
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COLLECTIVE OSCILLATIONS OF A QUASI ONE DIMENSIONAL

BOSE CONDENSATE UNDER DAMPING
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Abstract. Affect of the damping on collective oscillations of a quasi one-dimensional trapped
repulsive Bose gas has been studied. Based on the phenomenological damping approach (Zh.
Eksp. Teor. Fiz. 35:408, 1958a; Sov. Phys. JETP 35:282, 1958b) developed by Pitaevskii
variational equations for the parameters of the condensate wave function have been derived.
Analytical expressions for the condensate parameters in the steady-state have been obtained.
Combined effect of the resonant periodical variation of the trap strength and the damping
has been shown to change drastically asymptotical behavior of the driven norm oscillations.
Bistability in nonlinear oscillations of the condensate under periodic variations of the trap
potential is predicted.

Key words: Bose–Einstein condensate; Damping; Nonlinear oscillations

1. Introduction

The dynamics of a one-dimensional trapped ultra-cold Bose gas has attracted
a great attention for last years (Pitaevskii and Stringari 1958; Brazhnyi et al.
2003). Recently 1D regime has been realized experimentally in Moritz et al.
(2003). Measurements of the collective oscillations of such a system should
give a lot of information about the BEC dynamics. In particular this is im-
portant for the analysis of the condensate dynamics in a magnetic waveguide,
being a fundamental atom optical element (Ott et al. 2003).

A trapped 1D repulsive Bose gas is known (Moritz et al. 2003) to be char-
acterized by a single parameter ζ = mg1D/(�2n1D) which is the ratio between
interaction energy and the kinetic energy of the ground state, m, g1D and n1D

being atomic mass, the strength of interaction and 1D density, respectively.
Different regimes in one dimensional geometry are possible depending on
the density of gas. In the high density regime (ζ � 1) the dynamics at low
temperatures is described by a one-dimensional Gross–Pitaevskii equation
with cubic mean field nonlinearity. The low density regime (ζ � 1, Tonks–
Girardeau (TG) regime) is characterized by the strong quantum correlations
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and a fermionic behavior of the system (Lieb and Liniger 1963; Lieb 1963;
Girardeau 1960). Modern experiments cover both of these limiting cases.
Computations of the collective excitations frequencies of a trapped 1D re-
pulsive Bose gas for different 1D configurations varying from the mean field
regime to the TG regime were performed in Menotti and Stringari (2002).
In the present work we will concentrate our attention on the description of
the quasi-one-dimensional dynamics of a repulsive BEC in the mean field
regime.

Most of the theoretical descriptions have mainly dealt with conservative
systems (e.g. see Ott et al. 2003; Abdullaev and Garnier 2004), where col-
lective oscillations of a quasi 1D Bose–Einstein condensate (BEC) in the
low- and high-density regimes were investigated. However, the dissipation
inheres in real systems. So, theoretical study of the effect of damping on
collective oscillations of a one-dimensional trapped repulsive Bose gas is of
importance. The damping of the radial BEC oscillations in a cylindric trap
connected with the parametric resonance and leading to the energy transfer
from collective oscillations to longitudinal sound waves has been studied in
Kagan and Maksimov (2001).

We consider here the problem of using phenomenological approach
developed by Pitaevskii (1958a, b) and employed later in Choi et al. (1998).
Recently this approach has been successfully applied to a series of prob-
lems. For example, conditions for the parametric driving of dark solitons in
repulsive quasi-one-dimensional BEC were found in Proukakis et al. (2004),
the analysis of the existence of stable 3D droplets in attractive BEC with
nonlinearity management was carried out in Saito and Ueda (2004), Faradey
patterns in 2D BEC with damping were studied in Staliunas et al. (2002).

2. The Model

To take into account the damping caused by the interaction of the condensate
with the thermal cloud atoms we employ the phenomenological damping
approach developed by Pitaevskii (1958a, b). The dynamics of a trapped
one-dimensional repulsive Bose gas with the damping is described in the
framework of the modified 1D Gross–Pitaevskii equation

i�φt = (1 + iγ)(− �
2

2m
φxx + V(x, t)φ + g1D|φ|2φ − μφ), (1)

with the total number of atoms N =
∫ |φ|2dx. The constant γ is the

damping constant introduced phenomenologically to describe evolution
toward equilibrium between the thermal cloud atoms and the condensate
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(Choi et al. 1998). Approximate estimate obtained from the collision integral
is given as γ ∼ 4Cm(akT )2/(π�3),C ≈ 3 (Penckwitt et al. 2002). The
dissipation constant can vary with the changes in temperature and atomic
scattering length.

Equation (1) is obtained for the case of a highly anisotropic external
potential under the assumption that the transversal trapping potential is har-
monic: V(y, z) = mω2⊥(y2 + z2)/2 and ω⊥ � ωx. Under such conditions
we can consider the solution of 3D equation to have the form U(x, y, z; t) =
R(y, z)φ(x, t) where R2

0 = mω⊥ exp(−mω⊥ρ2/�)/(π�). Averaging the conden-
sate wave function in radial direction we come to (1) describing the dynamics
of the gas in longitudinal direction. The condition of 1D approximation is
ω⊥ � ωx, μ � �ω⊥, where μ is the chemical potential.

The potential V(x, t) is assumed to be V(x, t) = mω2
xx2F(t), where F(t)

describes the time dependence of the potential. The effective one dimensional
mean field nonlinearity coefficient is given as g1D = 2�asω⊥, where as is the
atomic scattering length, and as > 0 corresponds to the Bose gas with a
repulsive interaction between atoms while as < 0 to an attractive interaction.
In this work we will study the case of repulsive condensate. Exact expression
for this coefficient is given (Olshanii 1998) by g1D = 2�asω⊥/(1 + 1.03as/l).

It is convenient to work with the dimensionless form of (1)

iψt +
1
2
ψxx − x2

2
F(t)ψ − g|ψ|2ψ + μψ =

= iγ(−1
2
ψxx +

x2

2
F(t)ψ + g|ψ|2ψ − μψ) = R(ψ, ψ∗), (2)

by setting: t = ωxt, l =
√
�/(mωx), x = x/l, ψ =

√
2|as |ω⊥/ωxφ, with g = 1

for the repulsive two-body interaction.
Any damping process eventually leads to an equilibrium state. Corre-

sponding stationary solution of the GPE can be found from the equation:

−1
2
ψxx +

x2

2
Fψ + g|ψ|2ψ − μψ = 0, (3)

which, naturally, does not depend on the dissipative constant.

3. Moments Method

In this section we derive the moment equations for the dissipative GP equa-
tion. They are exact equations and can be useful both for deriving the equa-
tions for the wave packet parameters and for the control of the stability of
numerical simulations.
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Let us introduce the following integral quantities:

N =
∫

|ψ|2dx, P = i
∫

ψψ∗xdx,

I1 =

∫

x|ψ|2dx, I2 =

∫

(x − x0)2|ψ|2dx,

I3 = i
∫

(x − x0)(ψ∗ψx − ψψ∗x)dx, (4)

where x0 = I1/N. Taking their time-derivative and substituting ψt from (2) the
following evolution equations for the generalized moments can be derived:

dN
dt
= γ

∫

|ψx|2dx + γF
∫

x2|ψ|2dx + 2γg
∫

|ψ|4dx − 2γμN, (5)

dP
dt
= −Fx0N − iγ

∫

ψxxψ
∗
x + iγF

∫

x2

2
(ψψ∗x − ψ∗ψx)dx +

+iγg
∫

|ψ|2(ψψ∗x − ψ∗ψx)dx − 2γμP, (6)

dI1

dt
= P + γ

∫

x|ψx|2dx + γF
∫

x3|ψ|2dx +

+2γg
∫

x|ψ|4dx − 2γμx0N, (7)

dI2

dt
= −iI3 − γN + γ

∫

(x − x0)2|ψx |2dx + γF
∫

(x − x0)2x2|ψ|2dx +

+2γg
∫

(x − x0)2|ψ|4dx − 2γμI2, (8)

dI3

dt
= 2x0tP + 2FI2 − 2

∫

|ψx |2dx − g
∫

|ψ|4dx −

−
∫

(x − x0)(ψxR∗ + ψ∗xR)dx. (9)

The choice of the trial function is crucial for obtaining solutions with
the desired properties. In a harmonic trap potential taking the ansatz in the
Gaussian form is a good approximation for the condensate wave function. In
Abdullaev and Garnier (2004) the Gaussian ansatz describes well the dynam-
ics of one-dimensional BEC. Therefore, we take the Gaussian ansatz:

ψ(x, t) = A(t)exp

(

− (x − x0)2

2a2(t)
+

ib(t)(x − x0)2

2
+ ik(x − x0) + iϕ(t)

)

, (10)
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where A, a, b, k, x0 and ϕ are the amplitude, width, chirp, velocity, center of
mass and linear phase, respectively.

Let us express the moments in terms of the variable parameters of the
ansatz. Substitution (10) into the moment equations gives the following ex-
pressions:

att =
1

a3
− aF +

gN√
2πa2

− γ
(

3

a2
+ a2

t + a2F +
gN

2
√

2πa2

)

at +
γa3Ft

2
= 0,

Nt = −γN

(

1

2a2
+

a2
t

2
+

a2F
2
+

2gN√
2πa2

− 2μ

)

.

(11)

It should be noted that here the trap strength F may depend on time.
Taking into consideration that in an equilibrium state the derivatives

at = 0, Nt = 0 one can obtain the following stationary solutions:

as =

√

4μ +
√

16μ2 + 60F

10F
, Ns =

8
√
π

5g

(

μas − 1
2as

)

(12)

3.1. RESONANT SUPPRESSION OF THE NORM

Let us consider a periodical variation of the parabolic trap strength in time

F(t) = F0(1 + h sinωt), (13)

where F0 is constant part of the trap strength F, h is the relative amplitude
of oscillations which is supposed to be small, ω is the frequency of driven
oscillations. To describe evolution of the width a and norm N under periodical
variation of the trap strength we expand them near the stationary points a(t) =
as + a1(t),N(t) = Ns + N1(t). Corresponding stationary values as and Ns are
determined by expressions (12). Substituting the expansion for a into the first
equation of (11) and keeping only the first-order terms, a1, h and γ we come
to the following equation

a1tt + λ(N)a1t + ω
2
0a1 = −hasF0 sinωt, (14)

where

ω2
0 =

1

a4
s
+ 3F0, λ(Ns) = γ

(

3

a2
s
+ a2

s F0 +
gNs

2
√

2πas

)

(15)

are the eigenfrequency and effective damping coefficient, respectively. It
should be noted that λ > 0, for γ > 0.
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As readily seen, this equation describes main resonance in the width os-
cillations if ω ≈ ω0. At ω = ω0 the amplitude of the width oscillations is
maximal and determined by formula (Landau and Lifshitz 1973)

a1max =
hasF0

λ(Ns)ω0
. (16)

Substituting obtained resonant solution for a into the second equation of set
(11) and averaging it over the period T = 2π/ω, for the steady-state norm
we get

Ñs = Ns −
√

2πas

2g

⎛

⎜

⎜

⎜

⎜

⎜

⎝

μ +
1

2a2
s
+

a2
sω

2
0

4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

hF0

λ(Ns)ω0

)2

. (17)

One can see that the resonant variation of the trap strength causes decreasing
in the steady-state value of the norm, N which is in inverse proportion to the
damping, γ.

4. Numerical Simulations

We have carried out a series of time dependent simulations of the system
based on the variational approach using (11) as well as exact numerical cal-
culations using (2). In our numerical calculations we discretize the problem
in a standard way, with the time step dt, and spatial step dx, so ψk

j approxi-
mates ψ( jdx, kdt). More specifically we approximate the governing equation
(2) with the semi-implicit Crank–Nickolson scheme using split-step method
(Adhikari and Muruganandam 2002). The results of numerical simulations of
both PDE and ODE models are presented below.

Figure 1 presents the behavior of the norm when the trap strength is
periodically varied in time as in (13). An interesting behavior of the norm is
observed here. If an external periodical perturbation of the resonant frequency
is applied to a trapped BEC which is already in the equilibrium state then the
norm of the condensate starts to decrease going to new steady state. In the
figure the frequency ω of the periodical trap perturbation is taken to be equal
to the eigenfrequency ω0 of the system determined from (15). Numerical
simulations have been carried out for different values of γ at the same am-
plitude of the trap oscillations, h = 0.06. One can see that combined effect
of the damping and resonant periodical variation of the trap strength causes
suppression of the averaged steady state value of the driven norm, smaller
values of the damping constant γ leading to more strong suppression of the
norm. The effect is explained by that at smaller values of γ the amplitude
of the width oscillations becomes greater and in accordance with the second
equation of set (11) averaged value of the steady state norm decreases.
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Figure 1. Behavior of the norm of a trapped BEC when the trap starts oscillating with the
amplitude h = 0.06. Initially the BEC is in the equilibrium state. The solid lines stand for full
numerical simulations of the PDE, while the dotted lines represent the ODE results

5. Conclusions

In this paper we have studied collective oscillations of a quasi-one-
dimensional Bose gas in the presence of dissipative effects. The modi-
fied Gross–Pitaevskii equation in the framework of the phenomenological
approach (Pitaevskii 1958a, b; Choi et al. 1998) has been employed. To
describe evolution of oscillations we use the moments approach taking into
account the dissipation. The results obtained from computation of the system
of equations for the wave function parameters are confirmed direct numerical
simulations of the full GP equation.

The expressions for the width and the norm of a condensate in an equilib-
rium state have been derived analytically.

Main resonance in the condensate oscillations has been studied. We found
that periodical resonant modulation of the trap potential in the modified GP
equation (1) drastically change asymptotical behavior of the norm. As known
a ground state of the governing equation (1) does not depend on the damping
constant γ by definition and corresponding asymptotical value of the solution
norm depends only on the chemical potential μ. In the case of time dependent
modulation of the trap we have shown the combined effect of resonant peri-
odical modulation of the trap strength and the damping to change drastically
asymptotical behavior of the driven norm oscillations and cause suppression
of the averaged steady state value of the driven norm, smaller values of the
damping constant γ leading to more strong suppression of the norm.
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NONLINEAR DYNAMICS OF THE KICKED SQUARE BILLIARD
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Abstract. Nonlinear dynamics of a kicked particle in a square billiard with the central
symmetric kick source is studied. Time-dependence of the average energy is explored and
compared with that for a kicked free particle. Dependence of the acceleration on different
localizations of the kick source is considered.

Key words: Nonlinear dynamics; Delta-kicked systems; Billiards

Kicked particle dynamics is one of the simplest systems which provides
comprehensive study of nonlinear dynamics and quantum chaos.

Extensive studies of a paradigm of nonlinear dynamics, kicked rotor show
that the dynamics of the kicked system can be regular, mixed and chaotic
depending on the kick parameters (Chirikov 1979; Escande 1985; Lieberman
and Lichtenberg 1972; Izrailev 1990). In particular, in the chaotic regime the
average energy of the kicked rotor is a monotonically growing linear function
of time. However, corresponding quantum system quantum system exhibits
localization of classical chaos (Izrailev 1990; Casati et al. 1979).

In this work we investigate an extension of the previous studies of kicked
system dynamics to the case of confined systems. Namely, we explore non-
linear dynamics of a kicked particle whose motion is confined by rectangular
billiard boundaries, by calculating time dependence of the energy both for a
single trajectory and ensemble of the trajectories. Also, we treat momentum
transfer distribution for this system and compare it with that of kicked rotor.

The obtained results show that depending on the type of the kick potential,
localization and strength of the perturbation force the dynamics can be differ-
ent. It is found that the average energy of the kicked particle grows diffusively
as a function of time, as does the kicked rotor average energy. However, this
growth is more rapid than that of kicked rotor.

In this work, we treat a system consisting of a particle moving inside a
two-dimensional square billiard with an additional kicking source located at
the center of the billiard. The kicking potential is given by

V(x, y, t) =

{

α cos(8πρ
a )

∑

n δ(t − nT ), ρ ≤ a/4
0, ρ > a/4

(1)
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with

ρ =

√

(

x − a
2

)2
+

(

y − a
2

)2
,

where α, T and a are the coupling constant, the kicking period and the side
length of the square, respectively. The Hamiltonian of the system can be
written as

H = H0 + V(ρ, t), (2)

with H0 being the Hamiltonian of the particle moving in the square billiard
without any kicking. Since particles move balistically in between collision
with the billiard boundary as well as in between kicks, a discrete mapping is
used to solve the corresponding equations of motion. In Fig. 1, the energy
E(t) as a function of time for a typical trajectory is shown. The curve can
be decomposed in characteristic segments, each corresponding to a represen-
tative dynamics of the particle: Firstly, parts with rapid oscillations of the
energy can be seen, see the inset of Fig. 2. During such phases, the particle is
trapped for certain time inside the kicking area and experiences successive
kicks, leading to the typical oscillations of the energy shown in the inset
of Fig. 1. Secondly, single vertical lines in the curve of Fig. 1 correspond
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Figure 1. Time-dependence of the energy for a typical particle in the kicked billiard (α = 0.2,
T = 0.01). Inset: rapid oscillations of the energy, the particle is trapped for a certain time inside
the kicking area
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Figure 2. Distribution of constant energy time intervals. Circles are the results of direct
numerical calculations, solid line is the linear regression

to single kicks, the energy of the particle is either increased or decreased,
depending on where the kick happens. Finally, parts of the curve where the
energy remains constant. During such times, the particle moves outside the
kicking area (quasiperiodic orbits) or crosses the kicking area without getting
a kick, the latter means it is in a way not synchronized with the kicking period.

To understand the kicked billiard dynamics more deeply we need to ex-
plore distribution, N(t) of the time intervals during which the energy remains
constant, i.e. constant-energy-time intervals. Figure 2 presents the plot of
such distribution in double logarithmic scale obtained using direct numeri-
cal computation. In addition, this figure compares also N(t) with the curve
N(t) obtained from the linear regression. Such power law (with the exponent
equal to −3) behavior of N(t) can be explained as follows: appearing constant
energy intervals is caused by two factors. One of them corresponds to the
situation when billiard particle moves along the quasiperiodic orbits which
initially doesn’t cross the kicking area. For this case one can obtain the esti-
mate N(t) ∼ t−1. However, we found that the probability for appearing such
orbits in our system is quite small. Therefore such regime of motion doesn’t
make contribution to the above distribution of constant-energy-time intervals.
Second type of motion corresponds to the above mentioned synchronized
motion. It is easy to show that the distribution for the constant energy time
intervals for this case behaves as N(t) ∼ t−3.

When considering not only a single trajectory, but rather an ensemble
of particles, a diffusive growth of the ensemble averaged energy 〈Eb(t)〉
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(averaged of 1,000 trajectories) can be observed, see Fig. 2. More precisely,
the energy growth linearly (normal diffusion) with the time t. The propor-
tionality constant is naturally just the diffusion coefficient Db(α, T ), so that
〈Eb(t)〉 = Db(α, T ) · t. As indicated, Db depends on the coupling constant α
and the kicking period T . Db increases monotonically with increasing α and
decreases monotonically with increasing T .

It is reasonable to compare the diffusive growth of the ensemble averaged
energy 〈Eb(t)〉 = Db(α, T ) · t of the kicked billiard with the evolution of
energy 〈Er(t)〉 of the kicked rotor (again with α being the coupling constant
and T being the period between two successive kicks). From Fig. 3, it can be
seen that 〈Er(t)〉 = Dr(α, T ) · t, but with Dr(α, T ) � Db(α, T ), so the energy
growths much faster in the case of the kicked billiard. We note that in the case
of the kicked rotor the dynamics is effectively governed by a single parameter
Kr = αT only, see e.g. Izrailev (1990). The energy of the kicked rotor as a
function of the dimensionless time n = t/T can than for Kr ∼> 5 be written as
Er(n) = K2

r /4 · n, so

Dr(α, T ) = Dr(Kr) = K2
r /4. (3)

In the kicked billiard the situation is different, the dynamics depends on α and
T individually, thus there is no simple representation for Db(α, T ) as in (3)

Figure 3. Comparison of the time-dependence of the ensemble averaged energy of the kicked
billiard and kicked rotor for α = 5.0, T = 1.0
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Figure 4. Time-dependence of the ensemble averaged energy for different localizations of
the center of the kicking source in the billiard (α = 5, T = 1): The central localization is
compared to the case, when kicking source is shifted to the left (position of the center at
(0.6; 0.5)) and when it is shifted along the diagonal of billiard (center at (0.6; 0.6))

possible. The large deviation between Db and Dr becomes immediately clear
when considering the maximum momentum transfer ΔPmax at a single kick.
In the case of the kicked billiard, ΔPmax = 8πα/a, whereas for the kicked
rotor, ΔPmax = α. In Fig. 4, the time-dependence of the average energy 〈E(t)〉
is plotted for different localizations of the kicking source and compared to
the one when kicking source is located at the center of the billiard. The shift
of the kick source leads to minor changes in 〈E(t)〉 only, so the dynamics is
rather robust against this shift. We tested this for other delocalizations as well,
with similar results, thus there are not shown here.

Summarizing, in this work we studied nonlinear dynamics of a kicked
particle whose motion is confined in a square billiard with a kick source
localized inside the billiard with central symmetric spatial distribution. We
showed that for this type of kick potential the average energy of the particle
as a function of time grows diffusively.

The above studied model is relevant to the particle transport in quantum
dots, and other confined systems. Time-dependent external field can be used
in these systems as an additional tool for manipulating by particle dynamics
and transport.
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CHAOTIC INSTANTONS AND EXPONENTIAL WIDENING

OF THE GROUND QUASIENERGY DOUBLET IN KICKED

DOUBLE WELL POTENTIAL
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Abstract. Kicked double-well system is investigated both analytically and numerically. For-
mula for ground quasienergy splitting is obtained using resonances’ overlap criterion in the
framework of chaotic instanton approach. Results of numerical calculations for the ground
quasienergy splitting dependence on both the perturbation strength and frequency are in good
agreement with the derived analytical formula. Thus providing a support for the further devel-
opment of chaotic instanton approach to tunneling in quantum systems with mixed classical
dynamics.

Key words: Instantons; Kicked well; Tunneling

1. Introduction

The connection between the semiclassical properties of perturbed nonlinear
systems and purely quantum processes such as tunneling is a reach rapidly
developing field of research nowadays. Our insight in some novel phenom-
ena in this field was extended during the last decades. The most intriguing
among them are the chaos assisted tunneling (CAT) and the closely related
coherent destruction of tunneling (CDT). The former in particular is an en-
hancement of tunneling in the perturbed low-dimensional systems at rela-
tively high external field strengths and high driving frequencies (in order
the singlet-doublet crossing to occur) (Lin and Ballentine 1990). The later
is a suppression of tunneling when values of amplitude and frequency of
driving force belong to some one-dimensional manifold in the perturbation
parameters’ space (Grossmann et al. 1991).

CAT phenomenon as well as CDT were experimentally observed in a
number of real physical systems: CAT for ultracold atoms (Steck et al. 2001;
Hensinger et al. 2001), both phenomena in two coupled optical waveguides
(Vorobeichik et al. 2003; Valle et al. 2007). The most common methods
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which are used to investigate the CAT are numerical methods based on
Floquet theory (Shirley 1965). Among other approaches to CAT we would
like to mention the scattering approach for billiard systems (Frischat and
Doron 1998), quantum mechanical amplitudes in complex configuration
space (Shudo and Kensuke 1998) and resonance assisted tunneling (Brodier
et al. 2002).

In this paper we will consider the original approach based on instanton
technique, which was proposed in Kuvshinov et al. (2002, 2003) and inde-
pendently used in Igarashi and Yamada (2006). Alternative approach based
on quantum instantons which are defined using an introduced notion of quan-
tum action was suggested in Jirari et al. (2001). The purpose of the present
study is to prove the ability of proposed chaotic instanton approach to give
quantitative analytical description of tunneling well agreed with independent
numerical calculations based on Floquet theory. It will give additional support
and pulse for the further development of analytical methods to investigate
tunneling phenomenon in quantum systems with mixed classical dynamics.

2. Chaotic Instantons and Ground Quasienergy Splitting

Hamiltonian of the particle in the double-well potential with kick-type per-
turbation can be written in the following form:

H = H0 + V =
p2

2m
+ a0 x4 − a2 x2 + ε x2

+∞
∑

n=−∞
δ(t − nT ), (1)

where H0 – nonperturbed part of the Hamiltonian, V – perturbation, m – mass
of the particle, a0, a2 – parameters of the potential, ε – perturbation strength,
T – perturbation period, t – time.

Euclidean equations of motion of the particle in the nonperturbed double-
well potential (ε = 0) have a well known solution – instanton. In the phase
space it lies on the separatrix. Perturbation destroys the separatrix forming
stochastic layer. In this layer a number of chaotic instantons appears. Chaotic
instanton solution is a solution of the Euclidean equations of motion and it
can be written in the following form:

xchaos = xinst + ε Δxchaos,

where xchaos and xinst – chaotic and nonperturbed instanton solutions, re-
spectively, Δxchaos – stochastic correction assumed to be small for small ε.
These solutions are used in chaotic instanton approach (Kuvshinov et al.
2002, 2003) for description of the dynamical tunneling in the system. We
use this approach in our paper.
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In this section we will use Euclidean space-time only. Thus we introduce
an Euclidean time (t → −iτ) and use the following assumptions: small value
of the perturbation strength (ε < 0.1), uniform stochastic layer, Euclidean
chaotic instanton action is put equal to nonperturbed instanton action corre-
sponding to some nonmaximal energy. It can be approximated by the follow-
ing linear form (see Kuvshinov et al. 2003)

S [xchaos(τ, ξ)] = S [xinst(τ, 0)] − α
√

m
a2

ξ, (2)

where S [xinst(τ, 0)] = 2
√

m a3/2
2 /(3 a0) – nonperturbed instanton action, α =

(1+18 ln 2)/6 – numerical coefficient, E – energy, Esep – energy on separatrix
and ξ = Esep − E.

In the framework of the chaotic instanton approach the width of the
stochastic layer determines the contribution of these chaotic solutions of
Euclidean equations of motion to the tunneling amplitude (Kuvshinov et al.
2003). The stochastic layer width is estimated using Chirikov’s resonances
overlap criterion and it can be write down in the following form

ΔHs = Esep − Ebor ≈ k̃ ε ν, (3)

where Ebor is the estimated energy on the “border” between stochastic and
regular regions, k̃ – some numerical parameter which cannot be rigorously
obtained in the framework of the criterion used.

In the framework of the chaotic instanton approach the tunneling ampli-
tude for the perturbed system is assumed to be a sum of the amplitude in the
nonperturbed case and the contribution of chaotic instantons. The borders of
the integration are lie on the separatrix and on the “border” between stochastic
and regular regions. Using expression (2) this integral can be transformed
to the integral over the energy difference from zero up to the width of the
stochastic layer (3):

Achaos = α

√

m
a2

Ñ
∫ ΔHs

0
d ξ

∫ +∞

−∞
d c0

√

S [xchaos(τ, ξ)] e−S [xchaos(τ,ξ)],

where Ñ is a normalization factor. In order to estimate the contribution
of chaotic instantons we use the approximate expression for the chaotic
instanton action (2). Integration over c0 gives the contribution of zero
modes (Vainshtein et al. 1982). As the result we get the following expression
for the amplitude:

A = Ainst + Achaos ≈ Ñ
√

S inst e−S inst
Γ exp

(

α

√

m
a2
ΔHs

)

, (4)
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where Ainst is well known tunneling amplitude in the nonperturbed system,
Γ – is a time of the tunneling which is put to infinity at the end of the
calculations. The last exponential factor in expression (4) is responsible for
the tunneling enhancement in the perturbed system when the width of the
stochastic layer (ΔHs), i.e. perturbation strength, is small. In the nonper-
turbed case the width of the stochastic layer is equal to zero and expression (4)
coincides with the well known expression describing the ordinary tunneling
amplitude.

Using expressions (3) and (4) we can write down analytical formula for
the quasienergy splitting

Δη(ε, ν) = 2

√

6
π

√

S inst e−S inst
ek ε ν, (5)

where k = α
√

m/a2 k̃.
We fix this parameter value k using the results of numerical calculations.

For this purpose we perform the linear fitting of the numerical data for the
dependencies of ground quasienergy splitting on the perturbation strength and
take average value of the parameter over these dependencies. As the result
we have the single numerical parameter k for our formula (5) explaining
the dependencies of ground quasienergy splitting on both the perturbation
strength and frequency.

3. Numerical Calculations

For the computational purposes it is convenient to choose the eigenvectors of
harmonic oscillator as basis vectors. In this representation matrix elements of
the parts (H0 and V) of the full Hamiltonian (1) are real and symmetric. They
have the following forms (n ≥ m):

H0
m n = δm n

[

�ω

(

n +
1
2

)

+
g
2

(

3
2

g a0 (2m2 + 2m + 1) − a′2(2m + 1)

)]

+δm+2 n
g
2

(

g a0(2m + 3) − a′2
) √

(m + 1)(m + 2)

+δm+4 n
a0g2

4

√

(m + 1)(m + 2)(m + 3)(m + 4),

Vm n = ε
g
2

(

δm+2 n

√

(m + 1)(m + 2) + δm n(2m + 1)
)

,

where g = �/mω and a′2 = a2 + mω2/2, � is Planck constant which we put
equal to 1, ω – frequency of harmonic oscillator which is arbitrary, and so
may be adjusted to optimize the computation. We use the value ω = 0.2 with
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Figure 1. Quasienergy splitting as a function of the strength (a) and frequency (b) of the
perturbation. Lines – analytical formula, points – numerical results. The model parameters are
m = 1, a0 = 1/128, a2 = 1/4

parameters m= 1, a0 = 1/128, a2 = 1/4. The matrix size is chosen to be equal
to 200 × 200. Calculations with larger matrices give the same results. System
of computer algebra Mathematica was used for numerical calculations.

We calculate eigenvalues of the evolution operator on the one-period
e−iHT e−iV and obtain quasienergy levels (ηk) which are related with the
evolution operator eigenvalues (λk) through the expression ηk = i ln λk/T .
Then we get ten levels with the lowest one-period average energy which is
calculated using the formula 〈vi|H0 +V/T |vi〉 (|vi〉 are the eigenvectors of the
one-period evolution operator).

Performed numerical calculations give the dependence of the ground
quasienergy splitting both on the strength (Fig. 1a) and the frequency (Fig. 1b)
of the perturbation. These dependencies are exponential as it is predicted
by chaotic instanton approach and obtained analytical formula (5). Using
least square technique we calculate the single numerical parameter k which
describes all numerical dependencies demonstrated in Fig. 1a, b. Relative
error in determining of the parameter k from numerical results is less than 2%.
Analytical results are plotted in Fig. 1a, b by straight solid lines. Numerical
points lie close to these lines. The agreement between numerical simulations
and analytical expression is good in the parametric region considered.

4. Conclusions

Double-well system is investigated in presence of external kick-type pertur-
bation. Analytic chaotic instanton approach is extended and applied for this
system in order to obtain the analytical formula for the ground quasienergy
splitting dependence on both the perturbation strength and frequency. This
formula predicts exponential dependence of the ground quasienergy splitting
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on these parameters for small perturbation strength values. It has the single
numerical parameter which is determined from the numerical calculations.
Numerical results for the quasienergy splitting as a function of the pertur-
bation frequency and strength demonstrate exponential dependence as well.
They are in a good agreement with formula (5).
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Abstract. We briefly describe the state-of-the-art concerning Fermi acceleration in two-
dimensional driven billiards by reviewing the corresponding literature with a focus on our
recent work on the time-dependent ellipse and some new results on the breathing mode of a
certain oval billiard. In a way, these two systems represent the “missing links” in the studies
of two-dimensional driven billiards and help to clarify the conditions under which Fermi
acceleration will arise.
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1. Introduction

Fermi acceleration (FA) is the unbounded energy gain of an ensemble of
particles exposed to time-dependent external forces. It was first proposed by
Fermi (1949) to explain the high energies of cosmic ray particles interacting
with a time-dependent magnetic field. The simplest system which allows
the investigation of FA is the one dimensional Fermi-Ulam model (FUM)
(Lieberman and Lichtenberg 1972; Lichtenberg and Lieberman 1992), where
non-interacting particles move between an oscillating and a fixed wall. Note
that the corresponding static system, particles bouncing between two static
walls, is integrable. The FUM and its variants have been the subject of exten-
sive theoretical (see Lieberman and Lichtenberg 1972 and references therein)
and experimental (Kowalik et al. 1988; Carvalho and Zimmerman 1987) stud-
ies. It has been proven (Lichtenberg and Lieberman 1992) that as long as the
driving law of the oscillating wall is sufficiently smooth, invariant spanning
curves in phase space prohibit the unlimited energy growth of particles. In
particular, a stochastic driving law, which is obviously non-smooth, will lead
to FA. This means that in one dimensional billiards the existence of FA ex-
clusively depends on the driving law, since the corresponding static system is
always integrable.
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In two dimensions, the phase space structure of static billiard systems is
already much richer than for one dimensional billiards and can range from
integrable over mixed to fully chaotic (Berry 1981). This leads to the ques-
tion whether already a smooth, especially harmonic, driving law is sufficient
in two dimensional billiards to obtain FA. In Loskutov and Ryabov (2002),
the existence of FA was shown for a harmonically oscillating stadium-like
billiard and the authors conjectured that a sufficient condition for the occur-
rence of FA in a 2D smoothly driven billiard is the existence of a chaotic part
in the phase space of the corresponding static system. This so-called “LRA
conjecture” is supported by the absence (presence) of FA in the oscillating
circular billiard (Kamphorst and Carvalho 1999) (eccentric annular billiard,
Carvalho et al. 2006), where the corresponding static system is integrable
(has a mixed phase space).

2. Billiard Geometries and Driving Laws

We consider six different static billiards. The circle, the ellipse and the con-
centric annular (Fig. 1a–c) are integrable, the oval and the eccentric annular
(Fig. 1d, e) possess a mixed phase space, whereas the stadium (Fig. 1f) is
fully chaotic. For details on these static systems, see e.g. Berry (1981) for the
circle, the ellipse and the stadium, Carvalho et al. (2006) for the concentric
and eccentric annulus and Kamphorst et al. (2007) for the oval. The energy
is conserved in all six billiards (due to elastic reflections upon collisions with
the billiard boundary). Additionally, in the circle and concentric annulus the
angular momentum is conserved, whereas in the static ellipse the product of

Figure 1. Billiard geometries, thick lines represent the equilibrium position, thin lines are
the minimal and maximal extension of the driven billiards, respectively: circle (a), ellipse (b),
concentric (c) and eccentric annulus (d), oval (e), stadium (f)
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the angular momenta around the two foci is a constant of motion. Due to
ballistic motion in between collisions, the dynamics can be described by an,
in general, implicit 2D map using e.g. the variables (φn, αn), where φn is a
2π-periodic parameter specifying the position on the boundary (e.g. the polar
angle) and αn is the angle between vn and the tangent on the boundary at the
n-th collision, vn is the velocity of the particle.

When driving these billiards, the resulting mapping is four dimensional
and a suitable choice for the variables is (ξn, φn, αn, vn), where vn = |vn| is
the modulus of the particles velocity and ξn = ωt mod 2π is the phase of
the boundary oscillation. The circle and the annuli are driven by letting the
radius, the radii, respectively, evolve harmonically, i.e. r(t) = r0 + c sin(ωt),
where c is the driving amplitude. In the stadium, the two parallel line seg-
ments change their length harmonically. The boundary of the time-dependent
ellipse is given by

(

x(t, φ)
y(t, φ)

)

=

(

a(t) cos φ
b(t) sin φ

)

=

(

(a0 + c sinωt) cos φ
(b0 + c sinωt) sin φ

)

, (1)

and the one of the driven oval by

(

x(t, φ)
y(t, φ)

)

=

(

cos φ
[

1 + η2 cos t + ε(1 + η1 cos t) cos 2φ
]

sin φ
[

1 + η2 cos t + ε(1 + η1 cos t) cos 2φ
]

)

. (2)

For η1 = η2 = 0 the static oval is recovered and the geometry can be described
in polar coordinates by r(φ) = 1 + ε cos 2φ. The parameter ε ∈ [0, 1) controls
the amount of chaos in phase space (for ε = 0 the integrable circle is ob-
tained). In the driven case, η1 = η2 corresponds to a breathing billiard, since
(2) reduces to r(t, φ) = [1 + η1 cos t](1 + ε cos 2φ), whereas for η1 � η2 the
billiard changes its shape. The different billiards together with their minimal
and maximal extension are shown in Fig. 1.

3. Fermi Acceleration

When studying FA, an ensemble of particles is propagated for a certain num-
ber of collisions and the evolution of the ensemble averaged energy is the
main quantity of interest. For the initial conditions, usually a fixed modu-
lus of the velocity v0 is chosen, whereas the remaining variables ξ0, φ0, α0

are distributed uniformly randomly. In Kamphorst and Carvalho (1999), the
breathing circle is investigated. The authors rigorously proof that there is no
FA, i.e. any admissible initial condition will have a bounded velocity. The
key ingredient of the proof is the fact that the angular momentum, which
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is a constant of motion of the static circle, is also in the driven case pre-
served. This effectively reduces the dimensions of the phase space to two
and allows the construction of invariant spanning curves that limit the energy
growth. The driven concentric annular billiard is considered in Carvalho et al.
(2006). The ensemble averaged modulus of the velocity 〈v〉(n) as a function
of the number of collisions n saturates for all considered parameters, so there
is no FA. Like in the breathing circle, invariant spanning curves in phase
space prohibit unlimited energy growth. In contrast, the eccentric annulus
(Carvalho et al. 2006) shows FA, with 〈v〉(n) ∼ nδ. The exponent δ depends
on the geometry parameters of the billiard, but not on v0. A similar behav-
ior (FA with 〈v〉(n) ∼ nδ) is obtained in Loskutov and Ryabov (2002) and
Loskutov et al. (2000) for the oscillating stadium billiard and in Kamphorst
et al. (2007) for the driven oval in the case η1 � η2. Surprisingly, Kamphorst
et al. did not observe FA in the breathing mode (η1 = η2), which contradicts
the LRA-conjecture (see Sect. 1).

According to the LRA-conjecture, all driven billiards with a static coun-
terpart that has a mixed phase space will show FA, whereas this it not clear
for integrable (in the static case) billiards when they are driven. Besides the
static circle, the ellipse is also integrable and it is worthwhile testing whether
there will be FA when driving the system. The ensemble averaged modulus
of the velocity 〈v〉(n) as a function of the number of collisions n for two
different driving amplitudes (c = 0.1 and 0.5) is shown in Fig. 2a (v0 = 0.1).
Clearly, the system exhibits FA, after an initial transient 〈v〉(n) ∼ nδ (Lenz
et al. 2008). The system shows a crossover after approximately 108 collisions
from amplitude dependent subdiffusion to universal normal diffusion. This
means that the diffusion exponent δc < 0.5 depends on the driving amplitude c
for n < ncr ≈ 108, whereas for n > ncr , δ = 0.5 independent of the amplitude.

Figure 2. Ensemble averaged velocity 〈v〉(n) as a function of n (collisions) in the driven
ellipse (a) and oval (b). Two different driving amplitudes c are shown in (a), different initial
velocities v0 in (b)
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The crossover is caused by a change of the phase space composition with
increasing velocity. The phase space geometry evolves from a large chaotic
sea with rich stickiness structures due to regular islands (low v), to large
dominating regular domains with thin chaotic acceleration channels (high v).
The underlying mechanism is in detailed described in Lenz et al. (2009).

Since already the ellipse shows FA, it is rather unlikely that the oval,
which has a static counterpart with mixed phase space, does not show FA
in the breathing mode. We thus rechecked the results of Kamphorst et al.
(2007) by numerically simulating an ensemble of particles in the driven oval,
with the same parameters as used by Kamphorst et al. While we are able
to reproduce the results in the η1 � η2 case, we did find FA even in the
breathing case (η1 = η2), see Fig. 2b. Possibly, the long transient of the order
of 107 collisions (v0 = 5) has been misinterpreted by Kamphorst et al. as the
absence of FA. As can be seen from Fig. 2b, the ensemble averaged velocity
will eventually, after a transient, follow a power law 〈v〉(n) = dnδ, where the
exponent δ is independent of v0 (d is the diffusion constant). The length nt of
the transient depends on v0 and scales as nt ∼ (v0/d)1/δ (Petri et al. 2009).

4. Conclusion and Outlook

Whether a time-dependent two-dimensional billiard will show Fermi accel-
eration (FA) or not depends on the specific driving law and on the phase
space of the underlying static system. When restricting the driving laws to
harmonic ones, solely the composition of phase space of the corresponding
static system is decisive for the occurrence of FA. In that sense, the LRA-
conjecture (Loskutov and Ryabov 2002) states that a chaotic part in the phase
space of the underlying static billiard is sufficient for the presence of FA
in the driven counterpart. The absence of FA in the breathing mode of the
oval (Kamphorst et al. 2007) seemed to disprove the LRA-conjecture. While
resolving this contradiction by showing that the breathing oval does exhibit
FA, our discovery of FA in the driven ellipse demonstrates that the LRA-
conjecture cannot be the full story, since there are clearly no chaotic parts
in the phase space of the static ellipse. Unlike in the circle, where the an-
gular momentum is conserved in the static and in the driven case, in the
ellipse the product of the angular momenta around the foci is conserved in
the static billiard only but not in the driven one. This difference explains why
there is FA in the time-dependent ellipse but not in the circle, although the
static counterparts are both integrable. The phase space of the static ellipse
possesses two hyperbolic fixed points, whereas there are no hyperbolic fixed
points in the phase space of the static circle. Note that if the phase space of a
static billiard is mixed or chaotic, it contains always hyperbolic fixed points.
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We thus conjecture that a necessary and sufficient condition for the presence
of FA in a driven billiard is the existence of at least one hyperbolic fixed point
in the phase space of the corresponding static counterpart.
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Abstract. A one dimensional massless Dirac equation with time-dependent boundary condi-
tion is treated. An exact analytical wave functions and eigenvalues are obtained for the case
of linear time-dependence of the boundary position.
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Neutrino billiard was discussed first by Berry and Mondragon in the
context of time-reversal symmetry breaking and quantum chaos in relativistic
systems (Berry and Mondragon 1987). Recently it become extensively
developing topic because of its relevance to so-called graphene billiard.
Graphene is a planar monolayer of carbon atoms tightly packed into a
two-dimensional honeycomb lattice. Electron dynamics in graphene is
described by massless Dirac equation, i.e. quasielectrons in graphene can
be treated as relativistic massless spinors (Katsnelson and Novoselov 2007;
Brey and Fertig 2006). In this work we address the problem of neutrino
billiard with moving boundaries. Besides its relevance to graphene bil-
liard such system is of importance in the context of relativistic quantum
Fermi acceleration, too. Time-dependent quantum billiard problem requires
solution of the two-dimensional Schrödinger or Dirac equation with time-
dependent boundary conditions. Quantum mechanical wave equations with
time-dependent boundary conditions have been subject of extensive study
during past three decades in the context of nonrelativistic quantum mechanics
(Doescher and Rice 1969; Scheiniger and Kleber 1991). The early treatment
of the one-dimensional Schrödinger equation with non-stationary boundary
conditions dates back to Doescher and Rice (1969) who explored quantum
dynamics of a particle in square well with moving walls. Later Munier et al.
(1981) and Pinder (1990) studied this problem for some special cases. More
comprehensive treatment of the Schrödinger equation with time-dependent
boundary conditions has been done in a series of papers by Makowski and
Dembinski (1991) and Makowski and Peptowski (1992). Seba has studied
this problem in the context of quantum Fermi acceleration (Seba 1990).
The case of time-periodic boundary condition is treated by Scheiniger and
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Kleber (1991). Three-dimensional case was treated by Yuce for the case of
spherical boundaries (Yuce 2004). Despite the progress made in the study of
Schrödinger equation with time-dependent boundary conditions, conditions,
relativistic extension of this problem for the case of Dirac equation with
moving boundary conditions has not yet been considered. We note that
Klein–Gordon equation with time-dependent boundary conditions has been
extensively studied in the literature in the context of dynamical Casimir
effect and related problems (Moore 1970; Cole and Schieve 1995). Here we
address the Dirac equation for massles particle with time-dependent boundary
conditions. To solve the Dirac equation with time-dependent boundary
condition we use the same prescription as that used by Makowski et al.
in the case corresponding Schrödinger equation (Makowski and Dembinski
1991). For the case of special time-dependence of the boudnary conditions
we obtain analytically eigenfunctions and eigenvalues of the Dirac equation
for massless particle.

1. One Dimensional Box

Thus we intended to solve the following Dirac system (� = c = 1)

i
∂Ψ

∂t
= (αp + mβ)Ψ, (1)

with Ψ(t, x) = (Ψ1(t, x),Ψ2(t, x))T being two-component spinors, in the do-
main

D = {(t, x), 0 < t < T, 0 < x < L(t)},
where the right boundary L(t), is time-dependent and

p = −i
∂

∂x

and

α =

(

0 −i
i 0

)

, β =

(

1 0
0 −1

)

,

are the Dirac matrices. For which the boundary conditions are given as

Ψ1(t, 0) = 0, Ψ1(t, L(t)) = 0, 0 ≤ t ≤ T (2)

The Dirac equation for (fixed) boundary conditions, given in the one-
dimensional box, (L(t) = const) was treated in Alonso et al. (1997) and
Alonso and de Vincenzoz (1999) where the solution of the Dirac equation

(αp + mc2β)Ψ = EΨ
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is obtained as

Ψn(x) = An

(

sin(knx)
− ckn

En+mc2 cos(knx)

)

,

with An being the normalization constant and kn = nπ/L, n = 1, 2, ..., En =

[k2
n + (mc2)2]1/2.

To solve (1) we will restrict ourselves by considering the massless case,
i.e. we assume that m = 0. Equation (1) with the boundary conditions (2)
cannot be solved until time-dependent boundary conditions are not replaced
with fixed ones. To do this we use in (1) the following substitution: y = x

L(t)
that reduced the domain D to D1 = {(t, x), 0 < t < T, 0 < y < 1}.

In this case (1) can be rewritten as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

i∂Ψ1
∂t = L−1 ∂Ψ2

∂y + iL̇L−1y∂Ψ1
∂y ,

i∂Ψ2
∂t = −L−1 ∂Ψ1

∂y + iL̇L−1y∂Ψ2
∂y ,

(3)

where L̇ = dL
dt , and the boundary conditions are given as

Ψ1(t, 0) = 0, Ψ1(t, 1)) = 0, (4)

Time and coordinate variables in (3) cannot be separated for arbitrary
time-dependence of L(t). The only case for which variables can be separated
is L(t) = at + b.

Introducing new time variable

τ =

t
∫

0

ds
L(s)

=
1
a

ln

(

at + b
b

)

,

and using the substitutions Ψ1(τ, y) = e−iλτ f (y), Ψ1(τ, y) = e−iλτg(y) we get
from (3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dg
dy + iayd f

dy = λ f ,

− d f
dy + iaydg

dy = λg.
(5)

This system can be reduced to the second-order equation as
{

(1 − a2y2)
d2

dy2
− 2ay(iλ + a)

d
dy
− iaλ

}

f = −λ2 f . (6)

Using the substitution

z =
1 − ay

2
,
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Equation (6) for | a |< 1 can be reduced to the following equation

z(1 − z) f ′′ + (c − (a + b + 1)z) f ′ − ab f = 0

whose solutions are hypergeometric functions.
In our case the hypergeomtric series can be written as

F1(z) = F(α1, β1, γ1, z) =
+∞
∑

k=0

(β1)k

k!
zk = (1 − z)β1 .

Second solution can be found as

F2(z) = zβ1 .

Then the general solution of (6) can be written as

f (y) = A

(

1 − ay
2

)−iλ/a

+ B

(

1 + ay
2

)−iλ/a

, (7)

where ai = exp(i ln(a)).
Then from the boundary conditions given by (4) we get

A = −B,

(

1 − a
2

)−iλ/a

−
(

1 + a
2

)−iλ/a

= 0. (8)

Solving this equation we obtain the eigenvalues as

λn = 2aπn |ln |1 − a| − ln |1 + a||−1 . (9)

Corresponding eigenfunctions are

fn(y) = M
(

(1 − ay)−iλn/a − (1 + ay)−iλn/a
)

,

gn(y) = M
iλn−a

(

(1 − ay)−iλn/a+1 + (1 + ay)−iλn/a+1
)

−
iayM

(

(1 − ay)−iλn/a − (1 + ay)−iλn/a
)

(10)

We note that for a → 0 the eigenvalues coincide with λn → πn, and
eigenfunctions become

fn(y)→ A sin(πny),
gn(y)→ − A

πn cos(πny).

Then the complete set of solutions of (1) for linearly moving boundaries
can be written as

Ψ1n(t, x) = M exp
[

− iλn
a ln

(

at+b
b

)]

(

(

1 − ax
at+b

)−iλn/a −
(

1 + ax
at+b

)−iλn/a
)

,

Ψ2n(t, x) = M exp
[

− iλn
a ln

(

at+b
b

)]

·
·
{

1
iλn−a

(

(

1 − ax
at+b

)−iλn/a+1
+

(

1 + ax
at+b

)−iλn/a+1
)

−
−iay

(

(

1 − ax
at+b

)−iλn/a −
(

1 + ax
at+b

)−iλn/a
)}

.

(11)
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Thus we have treated the Dirac equation for massless particle in one-
dimensional infinite square well with a time-dependent wall.

2. Time-Dependent Circular Billiard

Consider the dirac equation with the boundary conditions given at the circle
with time-dependent radius x2 + y2 < r2

0(t). Radial equation can be written as

i∂P(r,t)
∂t =

∂Q(r,t)
∂r − k

r Q(r, t),
i∂Q(r,t)

∂t = −∂P(r,t)
∂r − k

r P(r, t),
(12)

where k is an integer number. Boundary condition is given by

P(r0(t), t) = 0. (13)

Using substitution

y =
r

r0(t)
, τ =

t
∫

0

ds
r0(s)

,

Equations (12) and (13) can be rewritten as

i∂P(y,τ)
∂τ = iṙ0y∂P(y,τ)

∂y +
∂Q(y,τ)
∂y − k

y Q(y, τ),

i∂Q(y,τ)
∂τ = iṙ0y∂Q(y,τ)

∂y − ∂P(y,τ)
∂y − k

y P(y, τ),
(14)

where the boundary condition is time-independent now and given as

P(1, t) = 0. (15)

Separating time and coordinate variables in (14) for ṙ0(t) = 0 and r0(t) = at+b
and reducing the obtained first-order system into second order equation we
have

y2(a2y2 − 1)
d2 f

dy2
+ 2a(a + iλ)y3 d f

dy
+ [(iaλ − λ2)y2 + k(k + 1)] f = 0 (16)

Solution of this equation can be written in terms of (regular at y = 0) hyper-
geometric function as

fλ(y) = yγF

(

α, α +
1
2
, γ, a2y2

)

,

where

α =
1
2

∣

∣

∣

∣

∣

k +
1
2

∣

∣

∣

∣

∣

+
iλ
2m
+

1
4
γ =

∣

∣

∣

∣

∣

k +
1
2

∣

∣

∣

∣

∣

+ 1.
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For second component we have

gλ(y) = (λ − i(1 − k)a)yk

y
∫

0

fλ(s)ds

sk
− iay fλ(y).

The eigenvalues λn can be found from the boundary condition:

F

(

1
2

∣

∣

∣

∣

∣

k +
1
2

∣

∣

∣

∣

∣

+
iλ
2m
+

1
4
,

1
2

∣

∣

∣

∣

∣

k +
1
2

∣

∣

∣

∣

∣

+
iλ
2m
+

3
4
, γ, a2

)

= 0. (17)

For k = 0 the solution of (17) can be found analytically:

λn = 2πn a/ ln

(

1 + a
1 − a

)

The solutions of (12) and (13) for k = 0 can be written as

Pn(r, t) = N exp

(

− iλn

2a
ln

(

at + b
b

))

fλn

(

r
r0(t)

)

,

Qn(r, t) = N exp

(

− iλn

2a
ln

(

at + b
b

))

gλn

(

r
r0(t)

)

,

where N is the normalization constant. Thus we have obtained analytically
the solution of the massless Dirac equation for time-dependent circular bil-
liard. The circle is considered as monotonically expanding (contracting) with
constant velocity. For general case solution can be obtained numerically. The
above system is of importance due to two reasons. The first one is related to
the fact that it can be used for describing time-dependent graphene billiard,
while another important point is caused by its relevance to relativistic quan-
tum Fermi acceleration. In this context the extension of the above problem to
the case of non-integrable billiard geometries and oscillating boundaries is of
importance. Currently such studies are in progress.
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STATISTIC THEORY OF MULTIPLE EXCITON GENERATION

IN QUANTUM DOT BASED SOLAR CELLS
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Abstract. In this work the statistical theory of multiple exciton generation in quantum dots is
presented based on the Fermi approach to the problem of multiple generation of elementary
particles at nucleon–nucleon collisions. Our calculations show that the quantum efficiencies
of multiple exciton generation in various quantum dots at absorption of single photon are in a
good agreement with the experimental data.

Key words: Solar cells; Quantum dots; Exciton generation

Carrier multiplication (CM) effect in quantum dot(QD)-based solar cells
is one of the conceptual ways to improve dramatically the efficiency of third
solar cells generation (Lewis and Crabtree 2005) beyond the Schottky–Quiser
limit. This CM phenomenon was predicted by Nozik of NREL in 2002 (Nozik
2002). In 2004, Klimov, et al. reported that PbSe nanocrystals could respond
to absorption of a single photon by producing two or more electron-hole
pairs with 200% efficiency (the carrier multiplication (CM) phenomenon, also
known as multiple exciton generation (MEG) (Schaller and Klimov 2004).
Later, the effect of MEG has been confirmed also by NREL team of Nozik
(Elingson et al. 2005) in PbSe and PbS QDs of three various sizes and quan-
tum yield was increased up to 300%. Most recently it was found by Schaller
et al. (2006) that MEG is a real phenomenon with generation up to seven
excitons in PbSe QDs (Eg = 0.3 eV, R = 20 nm) in absorption of a single pho-
ton (with the energy hν = 7.8 Eg). Using the carrier multiplication Schaller
and Klimov (2006) has demonstrated “exotic” non-Poissonian distributions
of carrier populations. Recently an activation threshold near the two-energy-
gap 2Eg limit (as defined by the energy conservation) has been also observed
(Schaller et al. 2006). Following all these initial spectroscopic observations,
several groups have reported the formation of multiple excitons in device
structures (Schaller et al. 2005a, 2006; Allan 2007; Jiang et al. 2007), and sev-
eral attempts have been made to construct solar cells, based on Polymer/QD
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mixtures for separation of multiple excitons into several electrons and holes
(Schaller et al. 2005a, 2006, 2007; Allan 2007; Jiang et al. 2007).

The high efficiency of such solar cells which have QDs as absorbers can
be determined not only by single e–h pair, but by the MEG effect in QDs in
single photon absorption, too. Therefore the power efficiency of solar cells
can exceed the Schottky–Quiser limit that is a great promise, which needs to
be demonstrated yet.

The theoretical analysis of MEG effect related to two- or three- excitons
generation was made by Schaller et al. (2005b) and by Elingson et al. (2005).
The problem of theoretical explanation of MEG of higher multiplicities in
QDs remains as open question, since the application of the perturbation the-
ory to the charge multiplication effect (e.g. as used in Schaller et al. 2005b)
is complicated for the higher multiplicity processes (Lewis et al. 1948). Re-
cently some other approaches to theoretical understanding the mechanisms
of MEG have been considered. In particular, the spectral densities of multi-
exciton states have been calculated and the possibility for direct and instanta-
neous photo-generation of multi-excitons has been explored.

They confirm the importance of the multi-exciton spectral densities in
the MEG problem caused by their (multiexciton densities) rapid variation
(several orders of magnitude) as a function of the energy. Also, recently Allan
(2007) showed that the high MEG efficiencies in PbSe and Si nanocrys-
tals (up to seven excitons per photon), would imply a very efficient relax-
ation in multi-exciton states into other lower energy states, whereas they
are characterized by a negligible density. So, the overall conclusion is that
the mechanisms of MEG generation and relaxation are not fully understood
yet, and other mechanisms must be considered to explain the highest MEG
efficiencies.

In the present paper as one of possible mechanisms of MEG we propose
a statistical theory of MEG in QDs based on Fermi approach (Fermi 1950)
originally coming from the theory of multiple elementary particle(such as
nucleons and mesons) generation, in nucleon–nucleon collisions. Unlike to
perturbation theory used in Schaller et al. (2005b) this approach is based on
the strong interaction of correlated electrons with electromagnetic field in
QD. We argue that the Fermi theory seems more realistic at high energy range
when the number of possible exciton states with given energy is large, and
this factor sharply increases the probability for establishing of the statistic
equilibrium.

Based on the analogy with the Fermi approach we suppose that in the
case of multiple excitons generation a high energetic photon is absorbed by
QD and according to statistic laws the absorbed energy is rapidly distributed
among the various degrees of freedom which are presented in QD volume Ω,
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so that n/2 excitons are generated (n is the total number of produced elec-
trons and holes). In this case we can calculate the probability of n particles
generation with a given energy distribution in such a small volume on the
basis of the Fermi formula for statistic weights. In our case of MEG the total
kinetic energy is defined by the difference of photon energy and energy gap
multiplied by the number of excitons

(

T = hν − n
2 Eg

)

. Finally, we can show
that the probability of n particles generation in the volume Ω is proportional
to the statistic weight:

S (n) =
m3n/2Ωn

(

hν − n
2 Ẽg

) 3n
2 −1

23n/2π3n/2
(

3n
2 − 1

) .

Here m is the electron mass, Ẽg = Eg − 1.78×e2

εR (Suzdalev 2006). The second
term in the last expression describes the electron interaction energy with hole
in exciton. The number of particles, n should be even.

n = 2, 4, 6, 8, 10, 12, 14.

The relative probability of n particles generation is given by

W(n) =
S (n)

∑

n
S (n)

.

The quantum efficiency(QE) of multiple excitons production by a single pho-
ton can be defined by the expression QE = 100%× 〈Nexc〉, where the average
number of excitons in QD 〈Nexc〉 is calculated using the following equation:

n̄ =

∑

n
nS (n)

∑

n
S (n)

Let us consider some cases of MEG in various QDs using the above statistical
approach.

1. We can first calculate the statistic weights for small numbers of excitons,
i.e. for 〈Nexc〉 = 1, 2, 3 excitons generation in PbSe QDs in the absorption
of single photon (hν = 3.63 Eg) (Table 1) with the experimentally mea-
sured parameters (Eg = 0.64 eV and R = 3.9 nm) (Schaller et al. 2005b).
To estimate the quantum efficiency we choose the following values of
m = me, Eexc = 0.14 eV.
In this case the quantum efficiency can be easily obtained using the rela-
tion QE = 100%× 〈Nexc〉 = 210% which is in a good agreement with the
experimental data (QE = 200%) from Schaller et al. (2005b).
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Table 1. Statistical weights (in J−1) of MEG in PbSe QDs

n S (n) W(n) 〈Nexc〉 (theory) 〈Nexc〉 (exper.)

2 1.06 × 1022 0.04

4 2.198 × 1023 0.829 2.10 2.00

6 3.469 × 1022 0.131

Eg = 0.64 eV, R = 3.9 nm, hν = 3.63 Eg

Table 2. Statistical weights (in J−1) of MEG in PbSe QDs

n S (n) W(n) 〈Nexc〉 (theory) 〈Nexc〉 (exper.)

2 2.215 × 1022 1.916 × 10−3

4 2.409 × 1024 0.208

6 8.442 × 1024 0.73 2.85 3.25

8 6.891 × 1023 0.06

10 1.402 × 1020 1.213 × 10−5

Eg = 0.64 eV, R = 3.9 nm, hν = 4.9 Eg

2. Statistical weights of 1-, 2-, 3-, 4- and 5-excitons generation (with the
parameters, Eg = 0.64 eV and R = 3.9 nm of PbSe QDs taken from
the experiment, Schaller et al. 2005b) in the absorption of single photon
(hν = 4.9 Eg) are presented in Table 2. The following values of m = me,
Eexc = 0.14 eV are chosen to estimate QE of MEG.
The quantum efficiency calculated on the basis of statistical weights is
QE = 100% × 〈Nexc〉 = 285% that is slightly different than that of
experimental one (QE=325%) (Schaller et al. 2005b).

3. In Table 3 the statistic weights of 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-excitons
generation in PbSe QDs calculated using the following experimentally
measured parameters (Schaller et al. 2005b): (Eg = 0.3 eV and R =
20 nm and hν = 7.8 Eg) are presented. For the estimation of QE we
choose the following values of the parameters: m = me, Eexc = 0.063 eV.

The efficiency of seven excitons generation is estimated as QE = 100%×
〈Nexc〉 = 684%. This estimate is in good agreement with the experimental
data QE=700% from Schaller et al. (2005b).

4. For the Si NCs with the parameters Eg = 1.2 eV, R = 9.5 nm, hν = 3.4 Eg

we have calculated the probabilities for 1-, 2-, 3-excitons generations.
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Table 3. Statistical weights of (in J−1) MEG in PbSe QDs

n S (n) W(n) 〈Nexc〉 (theory) 〈Nexc〉 (exper.)

2 2.339 × 1026 0

4 3.37 × 1032 0

6 3.706 × 1037 7.011 × 10−11

8 4.82 × 1041 9.119 × 10−7 6.84 7.00

10 7.284 × 1044 1.378 × 10−3

12 9.155 × 1046 0.173

14 4.26 × 1047 0.806

16 1.03 × 1046 0.019

Eg = 0.3 eV, R = 2.0 nm, hν = 7.8 Eg

Table 4. Statistical weights of (in J−1) MEG in Sin Cs QDs

n S (n) W(n) 〈Nexc〉 (theory) 〈Nexc〉 (exper.)

2 4.256 × 1024 6 × 10−5

4 2.667 × 1028 0.379 2.62 2.6 ± 0.2

6 4.371 × 1028 0.621

Eg=1.2 eV, R = 9.5 nm, hν = 3.4 Eg

The results are presented in Table 4. The parameters are chosen as m =
me/10, Eexc = 0.067 eV.
For the quantum efficiency we have an estimate QE = 100% × 〈Nexc〉 =
262% and this that is in a good agreement with the experimental data
QE = (260 ± 20)% (Beard et al. 2007).

Conclusion

Thus we have developed a statistical approach to MEG in quantum dots effect
based on the simple assumption that the probability for n particles generation
in the volume QDs is defined by its statistic weight S (n), which depends on
such parameters as the size of QD, photon energy, gap energy, exciton bind
energy, electron and hole effective masses. By analyzing the above results
we can conclude that in statistic approach the probability of multiple exciton
generation is very sensitive to the changes of the exciton binding energy and
electron (hole) effective mass.
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MODELLING OF QUANTUM WIRES IN THE INTERFACE LAYER

OF THE SEMICONDUCTOR-OXIDE STRUCTURES

WITH CHARGE BUILT IN OXIDE
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Abstract. In this we study formation of a nanoscale potential well with nanowires near the
oxide-semiconductor interface by special a charge distribution built-in in oxide. The SiO2-
Si structure with a cylindrical substrate covered by a coaxial oxide layer is considered. The
dependence of the potential well parameters on the geometry, size and built-in charge density
is analyzed. The case of two charged rings also is considered. Parallel rings is also considered

Key words: Quantum wires; Semiconductor nanostructures; Charge density

1. Introduction

Study of quantum wire formation in solid state structures is of importance
because of their relevance to the nanoscale device technologies. Tradition-
ally, nanoscale structures in semiconductors are created using multilayer
and local epitaxy technologies (Alferov 1998), high precision lithography
(Kawamato 1999; Thompson 1994), precision doping (Broers 1984; Kazor
et al. 1994) and others (Ledentsov et al. 1998; Emeleus et al. 1998; Deng and
Krishnamurthy 1998; Shi et al. 1999). Also, it is important in constructing
of nanostructures controlling properties (e.g. geometry, charge density, size,
etc.) of the structure.

Recently principally different (than that above mentioned) method for
constructing stable and transformable semiconducting nano-scale structures,
such as quantum dost, wells, wires and superlattices has been developed
(Goldman et al. 2001) on the basis of regular and spontaneous variation
of the charge distribution near the surface of semiconductor. Achieving of
the surface density of the built in charge 3 × 1013 s m−2 which is possible
using the space-charge ionic polarization (Verwey et al. 1990; Nicolian and
Brews 1982) or tunnel (or avalanche) injection into the oxide layer in not
destroying electrical fields less than 5 × 106 V/s m (Sah 1990). Scanning tun-
nel microscope also have the same possibility (Di Maria and Stasiak 1989).
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The local charge injection into dielectric structures is also possible in tip-
dielectric-semiconductor system in a strong electric field at the maintenance
of positioning accuracy of a metal tip on the surface. Such method pro-
vides selecting and positioning of the charged area with the size of few tens
nanometers (Binning et al. 1982; Guntherodt and Wiesendanger 1991) and
creation of the potential wells with needed parameters. By using opposite
polarity voltage to the tip-dielectric-semiconductor system one can remove
built-in charge.

In this work we discuss one of the ways for simulation of the above
methods on the oxide-silicon system.

Namely, we treat formation of nanosized potential well under built-in
oxide charge by using analytical and numerical methods.

For simplification of computations the charge in oxide layer is supposed
to be distributed at one and two finite thickness rings. The dependence of the
parameters of quantum wires created by a potential well on the distribution
and density of the built-in charge is analyzed.

2. Theoretical Analysis

To simplify our calculations we consider a structure consisting of a semicon-
ductor substrate of the cylindrical form covered by a coaxial oxide layer with
inner and external radiuses, R1 and R2, respectively (Fig. 1). The charge with
the density ρ is built-in on the ring shaped oxide layer with the longitudinal
thickness d = Zb − Za. The potential distribution of a resulting field of these
charges in the semiconductor can be found from the Poisson equation written
in cylindrical coordinates:

∂2ϕ

dr2
+

1
r
∂ϕ

∂r
+
∂2ϕ

∂z2
= −4πρ (1)

Figure 1. The longitudinal cross section of SiO2-Si coaxial cylindrical structure. The charged
ring areas are shaded
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The equation can be solved numerically using the finite difference scheme
suggested in Huges (1971). Consider (r, z)-plane covered by a uniform mesh
with a constant spacing Δr Δz along the r and z directions

z =

(

i +
1
2

)

· Δz, i = 0, 1, ...NZ−1,

r = j · Δr, j = 0, 1, ...NR,

where Δz = L
NZ

, Δr = R2
NR

and L is the length of the structure along Z axis, R2

is the external radius of the structure (see Fig. 1). Furthermore, we will use
the following expansion for the potential:

ϕ(r, z) =
2

NZ

NZ−1
∑

K=0

ϕ̃k(r)cos
πkz
ΔzNz

. (2)

Substituting of (2) into Poisson equation (1), after straightforward simplifica-
tion we obtain equation for ϕ̃k, j-factors

∂2ϕ̃k

∂r2
+

1
r
ϕ̃k

∂r
− 1

Δz2

(

πk
Nz

)2

ϕ̃k = −4πρ̃k (3)

where ρ has been similarly transformed.
Applying the above mentioned finite-difference scheme to (3) we get the

following algebraic system

ϕ̃k, j·
[

2 +
Δr2

Δz2

(

πk
Nz

)2]

− ϕ̃k, j−1

(

1 − 1
2 · j

)

−ϕ̃k, j+1

(

1 +
1

2 · j

)

= 4πΔr2ρ̃k, j. (4)

In this system there are NR − 1 equations, while number of unknown function
is NR + 1. Therefore to solve this system one should know the value of the
potential on the wall of the cylinder ( j = NR). However, in most of the cases it
is not possible to find such value and we will introduce an additional equation
following from the continuity condition with respect to normal part of the
field on oxide-semiconductor border. This condition is given as

ε1
∂ϕ1

∂n
= ε2

∂ϕ2

∂n
(5)

where ε1, ε2 are the dielectric constants for semiconductor and oxide, ϕ1,
and ϕ2 are the potentials near the borders of semiconductor and oxide, re-
spectively. In the finite-difference form (5) can be written as

ϕ̃N+2 = (ε + 1)ϕ̃N − ε,̃ϕN−2 (6)
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where we assumed that the semiconductor-oxide border correspond to the
point j = N and ε = ε1/ε2. Equation (6) can be solved together with the
system (4).

Solving (4) and (6) by giving the value of ϕ(r, z) on the cylinder’s axis
and using inverse Fourier transformation we can find the distribution of the
potential on the plane ϕ(r, z).

The potentials on the axis can be found analytically by integrating the
field strength of the charged annulus. The field on the axis can be found from
the superposition principle, dq = ρ dV (dV = dy dr dl, dr = R2 − R1) for
the fields of the elementary space charges with account of the cylindrical
symmetry of the system (see Fig. 2).

Thus the resulting field can be found by integrating charge distribution
over the ring: for the interval between Za and Zb (Fig. 1) we have

EI(z) =
drρR0
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and for the left side of the point Za we have

EII(z) =
drρR0
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Figure 2. The charged ring in the oxide layer and elementary charged volume in this layer.
The selected area can be considered elementary space charge by choosing the width, dr of a
ring along radius smaller than that of ring radius
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Figure 3. The normalized potential distributions along z-axis for charged ideally thin ring
(curve 1) and for the charged rings with the (same) thickness (along z-axis), 3 nm (curve 2),
6 nm (curve 3), 9 nm (curve 4), 12 nm (curve 5), 16 nm (curve 6)

Where R0 = (R1 + R2)/2 and ε1ε0 is the dielectric constant of the semicon-
ductor. For corresponding potentials we have

ϕI(z) =
drρR0

2ε1ε0

(

Arsh
Z − Za

R0
− Arsh

Zb − Z
R0

)

(8a)

and

ϕII(z) =
drρR0

2ε1ε0

(

Arsh
Za − Z

R0
− Arsh

Zb − Z
R0

)

(8b)

In Fig. 3 the normalized potential distributions along Z axis for the charged
rings with limited different thickness calculated using (8) are plotted for dif-
ferent thicknesses of the ring and for the circle (for which the thickness is
zero). It is clear from this plots that for small thicknesses our results becomes
closer to the potential of the circle which implies the high accuracy of (8).

3. Numerical Results and Discussion

Using (8) we have numerically computed the potential distribution on the
cylinder axis for different various thickness of the charged rings and charge
densities. In Figs. 4 and 5 the results of such calculations are plotted. It is
clear from these figures that for considered charge distributions the one-
dimensional potential well consisting of a system of quantum wires localized
under the charged surface is formed.

The potential distribution on volume and on a surface of the semiconduc-
tor near oxide-semiconductor interface is numerically calculated using the
obtained potential distributions as the boundary conditions for (4) (Fig. 6).
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Figure 4. The potential distribution on the cylinder axis for different thicknesses of the
charged ring: 120 nm (curve 1), 80 nm (curve 2), 40 nm (curve 3)

Figure 5. The potential distribution on an axis of the cylinder for different charge densi-
ties (the thickness of the ring is 120 nm): 5 × 107Q/m3 (curve 1), 2.5 × 107Q/m3 (curve 2),
107 × Q/m3 (curve 3)

As is seen from this plot nanowires are formed near the Si-SiO2 interface,
on distance approximately 0.05 R1 from the interface. Nanowires are located
on a plane which is parallel to the basis of the cylinder on circles with the
centre on an axis. Width and depth of the potential of quantum wires depend
on the width of charged ring (Fig. 7). Increasing of the distance from the
oxide-semiconductor interface leads to disappearing if quantum wires.

Also, we have considered the case of two parallel (with the same sizes)
two parallel charged rings located along the axis of cylinder. In this case the
number of nanowires in the well increases near the surface of semiconduc-
tor. The density of quantum wires is increased by increasing of the distance
between the rings, while their width is decreased.



MODELLING OF QUANTUM SIZED WIRES 235

0.5
po

te
nt

ia
l, 

a.
u.

1

0

200

Z, n
mR, nm

400 0

200

400

Figure 6. The two-dimensional distribution of the potential along the radius R and axis of
the cylindrical structure for surface charge density 9.5 × 1012 s m−2

Figure 7. The potential distribution along z-axis in semiconductor at the distance 20 nm from
the oxide-semiconductor interface for the thicknesses of the ring: 120 nm (curve 1), 80 nm
(curve 2), 40 nm (curve 3)

4. Conclusion

Thus in this work we have studied quantum wire formation near the semicon-
ductor surface in oxide-semiconductor structures. It is shown that potential
wells consisting of the system of quantum wires can appear in such structures
for certain charge distributions in the oxide layer.

Formation of the quantum wells is possible by creating of the nanosized
charged areas. Such wells can be reconstructed by changing the position, size
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and the charge density of the structure. The depth of the well is basically
defined by the charge density, while its width depends on width of the charged
area. In the case of two charged parallel rings it depends also on the distance
between the rings.
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NONLINEAR RESPONSES IN HARD DISK SYSTEMS

T. Miyaguchi
Department of Applied Physics, Osaka City University, Japan;
tomo@a-phys.eng.osaka-cu.ac.jp

Abstract. Periodically driven shear flow of hard disk systems is numerically studied using
the fluctuation theorem (FT). Relations between the cumulants of integrated momentum flux,
which can be derived from FT, are used in the numerical analysis. It is found that the system
exhibits nonlinear responses (NRs). Moreover, non-dissipative components of the momentum
flux as well as the dissipative component (entropy production) are found to obey a relation
between NRs and nonequilibrium fluctuations even for far from equilibrium states.

Key words: Hard disks; Shear flow; Dissipation

Understanding macroscopic responses to perturbations, such as temper-
ature gradients and electric fields, in terms of microscopic dynamics is one
of the most important tasks of statistical mechanics. For near equilibrium
systems (linear response regimes), the fluctuation-dissipation theorem (FDT)
tells us that linear responses are related to correlation functions of equilibrium
states (Kubo et al. 1991). By contrast, for systems far from equilibrium (NR
regimes), FT has been considered to be important, because it is a general-
ization of the linear response theory (LRT). In fact, FDT (Gallavotti 1996;
Hayashi and Sasa 2006) and a NR formula (Andrieux and Gaspard 2007)
have been explicitly derived from FT.

The steady state FT (SSFT) was first observed for a thermostatted steady
shear flow (Evans et al. 1993), and then derived analytically for Anosov
systems (Gallavotti and Cohen 1995a, b). In addition to the results for these
deterministic systems, SSFT was proved for Markovian stochastic models,
such as Langevan systems and jump processes (Kurchan 1998; Lebowitz and
Spohn 1999; Maes 1999). A generalization to time-dependent perturbations
has been established in Crooks (1999), in which a connection to the Jarzynski
equality (Jarzynski 1997) has also been clarified. Furthermore, FT has been
verified numerically for various systems (Bonetto et al. 1997, 1998; Bonetto
and Lebowitz 2001; Lepri et al. 1998; Sano 2000; Ayton et al. 2001), and
there are also some experimental studies (Goldburg et al. 2001; Carberry
et al. 2004).
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In this paper NRs for the shear flow of hard disk systems are investigated
numerically with emphasis on their relation to nonequilibrium fluctuations
(correlation functions). For our settings of the parameters, the kinetic the-
ory is not applicable, because the system size is too small and therefore the
boundary effects are not negligible. The main purpose of the present paper is
as follows. Many of the numerical studies concerning FT so far devoted to
steady nonequilibrium systems (Evans et al. 1993; Ayton et al. 2001; Bonetto
et al. 1997, 1998; Bonetto and Lebowitz 2001; Lepri et al. 1998; Sano 2000)
(see, Mittag and Evans 2003; Crooks 1999 for exceptions). In the present
paper, however, a system with time periodic perturbations is investigated.
Moreover, we study non-dissipative Fourier components of the flux as well
as the dissipative component (entropy production). It should be noted that FT
has information only of the dissipative component of the flux.

Now, the statement of FT is briefly explained. Let σt be the entropy pro-
duction rate of the system at time t. We also define the integrated entropy

production qτ as qτ ≡
∫ τ/2
−τ/2 σsds, where τ is the observation time. We assume

that the perturbation, γ(t), is symmetric, γ(−t) = γ(t). Then, FT states that
πτ(q)/πτ(−q) ≈ eq,where πτ(q) is the probability density of qτ (Crooks 1999).
For non-symmetric perturbations, we should take into account time-reversed
paths (Crooks 1999). From FT, we can derive the following relations between
the cumulants (k = 1, 3, ...):

〈qk
τ〉c = 〈qk+1

τ 〉c/2 − 〈qk+2
τ 〉c/12 + 〈qk+4

τ 〉c/720 + ..., (1)

where 〈·〉c is the cumulant. This linear equation system is formally equivalent
to FT. From the cumulant (1), we have the following equation:

〈 j(t)〉 =
∫ ∞

0
dsΦγ,1(t, s)γ(t − s)

+

∫ ∞

0
ds1

∫ ∞

s1

ds2Φ
γ,2(t, s1, s2)γ(t − s1)γ(t − s2) + f γ(t), (2)

where j(t) is the flux associated with the perturbation γ(t), that is, qτ =
∫ τ/2

−τ/2 dtγ(t) j(t), and the functions Φγ,1(t, s) and Φγ,2(t, s1, s2) are defined as

Φγ,1(t, s) = 〈 j(t) j(t − s)〉c (3)

Φγ,2(t, s1, s2) = 〈 j(t) j(t − s1) j(t − s2)〉c/2. (4)

The function f γ(t) is a non-dissipative part of the flux and satisfies
∫ Tp/2

−Tp/2
dt

f γ(t)γ(t) = 0, where Tp is the period of the periodic perturbation γ(t). With-
out further assumptions, we can not determine the function f γ(t) explicitly.
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Therefore, the above relation has been numerically checked for the time peri-
odic shear flow. Note that the functions Φγ,1(t, s) and Φγ,2(t, s1, s2) depend on
the perturbation γ(t), and periodic with respect to t. In the derivation of (2),
the fifth and higher order terms were neglected, and we have assumed that the
correlation functions 〈 j(t) j(t − s)〉c and 〈 j(t) j(t − s1) j(t − s2)〉c decrease as
s→ ∞ and s1, s2 → ∞, respectively.

Next, let us consider the following Fourier representations: γ(t) ≡
∑∞

n=−∞ γneiωnt, j(t) ≡ ∑∞
n=−∞ jneiωnt, and f γ(t) ≡ ∑∞

n=−∞ fneiωnt, where
ω = 2π/Tp. Using these representations for (2), we have

〈 jk〉 =
∞
∑

k′=−∞
γ−k′Φ̂

γ,1
k′ ,k+k′ +

∞
∑

k′,k′′=−∞
γ−k′γ−k′′Φ̂

γ,2
k′ ,k′′,k+k′+k′′ + fk, (5)

where Φγ,1k′ ,k and Φγ,2k′ ,k′′,k are defined using the Fourier–Laplace transforms of

the correlation functions Φγ,1(t, s) and Φγ,2(t, s1, s2).
In what follows, we consider the case that the only single mode (γ±1) is

applied as the perturbation. In this case, the above equation is rewritten as

Re〈 jk〉 = γ1

∑

k′=±1

ReΦ̂γ1 ,1
k′,k+k′ + γ

2
1

∑

k′,k′′=±1

ReΦ̂γ1 ,2
k′,k′′,k+k′+k′′ + Re fk, (6)

Im〈 jk〉 = γ1

∑

k′=±1

ImΦ̂γ1 ,1
k′,k+k′ + γ

2
1

∑

k′,k′′=±1

ImΦ̂γ1 ,2
k′,k′′,k+k′+k′′ + Im fk, (7)

where γ1 and γ−1 are real (γ1 = γ−1), i.e. γ(t) = γ1 cos(ωt). Note that (6) with
k = 1 is equivalent to the cumulant equation (1) with k = 1, that is, the mode
Re〈 j1〉 is just the total entropy production. On the other hand, the other modes
do not contribute to the entropy production, because they are orthogonal to
the perturbation γ(t).

Now, let us consider the hard disk system in a two-dimensional square
box [−l, l]2. The disks obey the Hamiltonian dynamics inside the box with
hard core interactions. The left and right walls (x = ±l) are identified by
the periodic boundary condition, while stochastic boundary conditions are
employed at the top and bottom walls (y = ±l). Namely, if a hard disk collides
with the top or bottom wall, it is reflected with a random velocity according to
the Maxwell-Boltzmann distribution at the wall (Lebowitz and Spohn 1978;
Goldstein et al. 1985; Chernov and Lebowitz 1997; Bonetto and Lebowitz
2001), f (vx, vy) = (2πT 3)−1/2|vy | exp(−{(vx − v0(t))2 + v2

y}/2T ), where T is
the temperature of the heat reservoirs. The time dependent function v0(t)
represents the effect of shear stress induced by the moving walls; we consider
the situation that the two walls always move in the opposite directions to one
another with the same velocity.
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In simulations, system parameters are set as follows: the hard disks are
assumed to be identical, and the diameter r and the mass m of each disk are
fixed as r = m = 1. The volume fraction ρ, the total number of particles N,
and the temperature of the walls T are fixed as ρ = 0.3, N = 20 and T = 1.0
in all the following numerical simulations. The amplitude of the function
v0(t) is changed as a perturbation parameter; the perturbation γ(t) for the time
periodic shear flow is defined as γ(t) = 2v0(t)/T . The associated current j(t)
is given by the momentum flux jm(t). More precisely, the momentum flux
is defined as jm(t) = ( jT (t) + jB(t))/2, where jT (t) ( jB(t)) is the momentum
transfer to (from) the top (bottom) wall from (to) the system. In numerical
simulations, the frequency ω was fixed as ω = 0.05. Integrations with respect
to s, s1 and s2 were performed over the range [0, Tp/10]. It was confirmed
that the correlation functions (3) and (4) sufficiently decay in this range.

In Fig. 1a, the real part of the first Fourier mode of the momentum flux
Re〈 j1〉 is shown as a function of the perturbation intensity γ1 (solid curve).
The dashed line is the prediction of LRT, and a deviation from LRT, i.e. NRs,
can be observed. This is clearer in Fig. 1b, in which the deviation from LRT
is plotted. This deviation is mainly caused by the third order NR, because
there is no second order response due to a symmetry of the system. In the
same figure, the first term of RHS of (6) is shown by circles. These values
are consistent with a solid curve [Re〈 j1〉] for small values of γ1, but deviates
for larger values. The sum of the first and second terms of RHS of (6) is also
shown in Fig. 1a by squares, which are consistent with Re〈 j1〉 (solid curve)
in a wider range. The imaginary part Im〈 j1〉 is also shown in Fig. 1c (solid
curve). In this case, LRT (dashed line) is consistent with the solid curve, and
NR does not seem to exist. However, the first and second terms of RHS of
(7) with k = 1 have the third and higher order dependence on γ1, because, as
shown in Fig. 1c by circles, the first term deviates from the solid curve. But
the sum of the first and second terms (squares) coincides well with this curve,
and thus Im f1 ≡ 0.

Similarly, the real and imaginary part of the second Fourier component
〈 j2〉 is displayed (solid curves) in Fig. 1d, e, respectively. In these figures, the
values are almost vanishing. The linear response theory predicts that there
are no higher harmonics of the linear order, but NR can not be also observed.
Each term of the RHSs of (6) and (7) with k = 2 also vanishes. Thus, (6) and
(7) are also valid in this case, in particular f2 ≡ 0. Finally, the real part of the
third Fourier component Re〈 j3〉 is shown in Fig. 1f (solid curve). There are
no first and second order responses as explained above, and the third order
NR appears. The first term of RHS of (6) with k = 3 (circles) deviates from
the solid curve even for small values of γ1. This is because the first term
is only the second order approximation. On the other hand, the sum of the
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Figure 1. (a) The real part of the first Fourier coefficient Re〈 j1〉 vs perturbation intensity
γ1 (solid curve). The dashed line is the prediction of LRT. The symbols represent the values
of RHS of (6): the circles are the values of the first term (second order approximation), and
the squares the sum of the first and second terms (fourth order approximation). (b) The same
as (a), but deviations from LRT are plotted. (c) The same as (a), but for the imaginary part
Im〈 j1〉. (d) Re〈 j2〉 (solid curve). The meanings of the symbols are the same as those in (a). (e)
The same as (d), but for the imaginary part Im〈 j2〉. (f) Re〈 j3〉 (solid curve). The meanings of
the symbols are the same as those in (a)

first and second terms (squares), which is the fourth order approximation, is
consistent with the solid curve in more wider region, in which the relation
Re f3 ≡ 0 holds.
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In conclusion, nonequilibrium properties of the hard disk systems driven
by the time periodic shear was investigated in this paper. In particular, prop-
erties of NRs were studied for the first three Fourier modes, and it was found
that NRs exist in the first and third modes. Moreover, (2) was numerically
checked and it is found that f γ(t) ≡ 0. But there is no theoretical explana-
tion of this relation – exception is the linear response regime, in which this
relation is obviously valid from LRT. It is also found that the second Fourier
component vanishes as shown in Fig. 1d, e, but this is easy to understand
from a symmetry of the system.
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STOCHASTIC LANDAU–LIFSHITZ–GILBERT EQUATION

WITH DELAYED FEEDBACK FIELD: EFFICIENCY

FOR MAINTAINING A UPO

H. Tutu
Department of Applied Analysis and Complex Dynamical Systems,
Graduate School of Informatics, Kyoto University; tutu@acs.i.kyoto-u.ac.jp

Abstract. A control method to cause a stability-change between the Ising and the XY-like
states in a single-domain magnetic system is studied. It is assumed that the magnetization
prefers the Ising state without control due to the uniaxial anisotropy. Then, using a time-
delayed feedback method and the AC field in parallel to the anisotropy axis, we consider
to stabilize an oscillation of the magnetization across the equatorial plane perpendicular to
the anisotropy axis (swinging motion), which possesses the XY-like symmetry. Employing
a stochastic Landau–Lifshitz–Gilbert equation, we investigate effects of thermal fluctuation
on the controlled state. It is suggested that the method of the delayed feedback control can
maintain the controlled state with a low energy consumption.

Key words: Stochastic Landau–Lifshitz–Gilbert equation; Delayed-feedback

1. Motivation

Delayed feedback control (DFC) (Pyragas 1992) is one of the powerful meth-
ods for stabilizing an unstable periodic orbit (UPO). A brief introduction
of DFC is as follows. Suppose a system in which its dynamical variables
X(t) obey Ẋ = F (X), and which has a T -periodic UPO satisfying Xu(t) =
Xu(t − T ). Then, the UPO can be stabilized with an delayed-feedback input
u = K[g{X(t − T )} − g{X(t)}] under the controlled system Ẋ = F (X)+u,
where g{·} is a function represent a conversion from X to the feedback signal,
the feedback acts to stabilize the UPO with the period T . If the UPO Xu(t)
is stabilized, Ẋu = F (Xu) and u → 0. Thus, it can maintain the UPO with
almost vanishing force.

Thus, in comparison with conventional control methods with some ex-
ternal force, a distinctive feature of DFC is its “non-invasiveness.” This fea-
ture comes from the capability of this method to stabilize an intrinsically
unstable periodic state of the target system and maintain it with a low energy
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consumption. The DFC has been studied over the last 15 years, and many
applications of the DFC are proposed, see for example Schöll and Schuster
(2007) and references cited therein.

There are also a lot of interest for application of the DFC in nano-scale
or small scale systems, e.g., to suppress chaos in semiconductor systems [see
an article in Schöll and Schuster 2007], or to regulate a motion of the micro-
cantilever in AFM (Yamasue and Hikihara 2004). Here, one may ask what
are differences in controls between nano- or micro-scopic and macroscopic
systems. In feedback controlled systems, relevant problems may be (1) a
latency period of feedback loop is not necessarily negligible in comparison
with the characteristic relaxation time of the system, (2) some influences of
thermal noise, (3) heat production. These problems may be severe on control
in a usual sense. Then, our question is how these factors are influence on
a stabilization of UPO under DFC (Tutu and Horita 2008). In particular,
in the presence of thermal noise, does the DFC has a robustness with non-
invasiveness? This study is devoted to a theoretical investigation of the DFC
to stabilize a certain unstable state in a classical spin system in a thermal
environment, and to clarify the energetic efficiency of the DFC.

2. Model

As a physical system, we consider a single domain magnetic system (SDMS).
The SDMS is actively studied in various purposes, e.g., application to mag-
netic storage element. Its typical size is 10–100 nm. It has an anisotropy
depending on its shape. Below, we assume SDMS has an anisotropy axis
in z-direction, and the uneasy-plane is the xy-plane.

As shown in Fig. 1, let us consider a physical system to stabilize an
swinging oscillation of the magnetic orientation across uneasy-plane with the
schematic device consisting of SDMS, DFC, and an applied AC-field. This
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Figure 1. (a) Schematic representation of the controlled system. By use of the sinusoidal
periodic field and the DFC, the XY-like state takes the place of the Ising one. (b) The time
series of Mz demonstrates the switch from the Ising to the SRO state after the control is applied
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can maintain a XY-like spin state with a possibly weak AC-field under appro-
priate conditions. This system can be regarded as a model controlled system
with the DFC in small-scale magnetic systems. Namely this corresponds
to the inverted pendulums which often studied in the control of mechanical
systems, such a model enables us to examine new control methods or estimate
their efficiencies.

For a theoretical argument, let us write down a model with a classical
N-spin system consisting of a set {S j}Nj=1, S j = (S x

j , S
y
j, S

z
j)

T (|S j| = 1). The
motion of each spin is assumed to obey the Landau–Lifshitz–Gilbert (LLG)
equation:

αṠ j = (1 + α2)S j ×H j − α2S j × Ṡ j (1)

where the first and second terms represent torque and damping. α (= 1) is
the damping constant. The equation is normalized in a certain way. The total
field reacting on the jth spin is H j = H i

j + Hacez + Hfbez + Hn
j , where

H i
j = −∂H/∂S j, i.e., the internal field is generated from the HamiltonianH :

H = − 1
2N

N
∑

j,k=1

[

J⊥
{

S x
jS

x
k + S y

jS
y
k

}

+ JzS
z
jS

z
k

]

− 1
2

N
∑

j=1

(S z
j)

2,

Hac = h cos(Ωt): the periodic driving field with the period T = 2π/Ω, Hfb =

−K[Mz(t) + Mz(t − T/2)]: the feedback field with the characteristic strength
K using the mean field Mz(t) =

∑

j S z
j/N, and Hn

j (t) represents the thermal

noise satisfying 〈Hn,β
j (t)〉 = 0, 〈Hn,β

j (t)Hn,β′
j′ (t′)〉 = 2Dδ(t − t′)δ j, j′δβ,β′ (β, β′ =

x, y, z).
In order to clarify the target state to be stabilized and its mechanism, let

us consider a noise-free case with N = 1, Jz = J⊥ = 0 (a single spin case).
This case is described with only the z-component of the single spin variable
S, then, we have

Ṡ z = (1 − S 2
z )

[

S z + h cos(Ωt) − K {S z(t) + S z(t − T/2)}] (2)

There are two characteristic solutions in this system. One is the Ising state,
S z = ±1, and another is a state which satisfies

S z(t) = −S z(t − T/2). (3)

The latter is the symmetric state with the invariance for the conversion t →
t + T/2 and S z → −S z, thus we call this “symmetry restored oscillation”
(SRO) state. The Ising state is stable in the absence of the feedback, K = 0,
and it is stabilized while K is in appropriate range, or both state is unstable
if K is too large. The latter phase corresponds to quasi-periodic state, which
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is caused by the emergence of a new oscillatory mode. In the N-spin system,
the major phases consist of Ising state (all spins up or down), SRO state [the
z-components of all spins satisfy (3), and their orientations align a certain
direction in the xy-plane], anti-ferromagnetic state (a half number of spins up
and the remains down), and the quasi-periodic state.

Figure 1b shows the switch from the Ising state to the SRO state after the
feedback field is applied. This is a time series of Mz(t) ≡ Mz, and the Ising
state corresponds to Mz ≈ 1, and the SRO state Mz ≈ 0.

2.1. STABILITY CRITERIA

Let us show the linearly stability conditions (LSC) in which the SRO state
is stable. The condition can be obtained from a set of linearized equations
for the deviation from the SRO state. Here, the z-component of the SRO
state satisfies (2) for K = 0 with (3), and its xy-component takes an orbital
orientation in the xy-plane. Letting S z be the z-component in the SRO state,

we have the LSC as follows J⊥ >
{

(1 − S 2
z )−1

}−1
and

ε <
cos−1 ((1 + Jz − J⊥)/K − 1)

τ
√

(1 + Jz − J⊥)(2K − 1 − Jz + J⊥)
0 < 1 + Jz − J⊥ < 2K (4)

or, 1 + Jz − J⊥ < 0, where the overline means the temporal average over the

period T , and ε ≡
(

1 − S 2
z

)

> 0 is the Floquet exponent of the SRO state as

mentioned above. The derivation of these condition is omitted here because it
requires more pages. If the latter inequality is satisfied the SRO state is stable
without control. Thus, the relevant conditions are the former two inequalities.
The exponent ε is a monotonic function of h and Ω as ε = ε(h,Ω). Hence, the
inequalities can be rewritten into the equivalent inequalities between h and K
with the other parameters fixed, as a consequence, we can obtain the stability
diagram as shown in Fig. 2a. The bifurcation diagrams based on Fig. 2a are
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Figure 2. (a) Stability diagram for the SRO state in the K–h plane for Ω = 1.7, J⊥ = 1.7,
and Jz = 1. (b) Bifurcation as h increases and decreases. (c) Bifurcation as K changes
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also shown in Fig. 2b, c: the former exhibits that the SRO (XY) state becomes
unstable and gets into the quasi-periodic (QC) state as h decreases, and the
latter exhibits that the Ising, the SRO, and the QS states appears in this order
as K increases.

3. Energetic Efficiency to Maintain the Controlled State

In order to evaluate the energetic efficiency of the DFC, let us investigate the
work carried out by applied fields, Htot(t) = Hac(t) + Hfb(t), as defined by
Wx(t) =

∑

j

∫

dS j(s) ·Hx(s), [Hx(s) = Hx(s)ez], where the suffix x stands
for “tot,” “ac,” and “fb” for the total external field Htot(t), the AC-field Hac(t),
and the feedback field Hfb(t), respectively. For a relative assessment, let us
compare the DFC with another feedback method without delay. Then, for Hfb,
we examine two methods, the DFC and externally applied anisotropic-field
(EAF) as

Hfb =

{ −K[Mz(t) + Mz(t − T/2)] DFC
−2KMz(t) EAF

The EAF corresponds to the case with the vanishing delay period. In com-
parison, all the other parameters is set to be the same between two methods.
Together with the work, we also define power as Px = limt→∞ t−1Wx(t) with
x = tot, ac, fb.

Figure 3a shows the time series of the work done by the AC-field under
the DFC and the EAF methods in the regime in which the SRO state is stable.
Since the slope of the work with respect to time corresponds to the power,
this exhibits that the power fed by Hac under the DFC method is smaller than
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vs. the noise intensity (D). The squares and triangles correspond to Ptot in the DFC and EAF
methods



250 H. TUTU

that in the EAF. Figure 3b shows the power fed by the total fields under two
methods as a function of the strength of noise D. This also equivalent to the
energy consumption to maintain the SRO state if it is stable. This exhibits
that, for a small-D region, the energy consumption 〈Ptot〉 under the DFC is
lower than that under the EAF. In such situation, the fluctuation is neglectable
in comparison with the amplitude of the SRO state. Thus, the difference in the
energy consumption under two methods results in a property of the realized
periodic orbit. The expression of the work is written as

〈Wtot〉t = N
∫ t

0
(1−S 2

z )
(

Hac)2 ds+N(γ+ Jz− J⊥)
∫ t

0
(1−S 2

z )S zH
acds+O(D).

Below, we omit the terms of order O(D), because we concern the small-noise
situation. The integrand in the first term is always positive, and the integral
linearly increases with t. The second term gives the most relevant contribution
to the difference in the two methods. Here, the coefficient in the second term
is positive, and whether the integral increases or decreases with t crucially
depends on the sign of the factor S zHac in the integrand. Then, we may extract
the essential part of the internal with

∫ t

0 S zHacds.

Ṡ z ≈ εS z + Hac Ṡ z ≈ −|ε|S z + Hac

limt→∞ t−1
∫ t

0 S zHacds < 0 limt→∞ t−1
∫ t

0 S zHacds > 0

As shown in the left figure, the integral decreases in the case that the UPO is
stabilized with the DFC. The orbit is approximated as a linear response from
Hac. On the other hand, it increases in the case the UPO is stabilized with
the EAF, because the EAF makes a potential well structure. The key role of
DFC is that it does not change the property of UPO, which is just of non-
invasiveness, and this contributes to the decrease of the energy consumption.

4. Summary

We considered the DFC for maintaining XY-like state in a globally coupled
spin system in the situation where Ising state is stable. We showed that the
energy consumption in the DFC is lower than that in the EAF.
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SPIN DYNAMICS AND QUANTUM TRANSPORT IN QUANTUM

SPIN CHAINS UNDER AN OSCILLATING FIELD
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Abstract. Quantum spin-chains subjected to external oscillating fields exhibit a wide range
of dynamical behavior depending on the strength and frequency of the field. We investigate
here the particular case of a Heisenberg model with a single spin flip; this maps onto a tight-
binding model with an oscillating field, which, in turn, is equivalent to a driven-Harper model
with sinusoidal time-driving. The Harper models can be mapped to image classical phase-
spaces. We find that peculiar structures called “shearless tori” feature very prominently in the
classical phase space of the driven-Harper model. We show that quantum-spin wave packets
initially located on a “shearless torus” can travel for a quite long time without broadening. The
behavior has potential applications as it may provide a mechanism for non-dispersive transfer
of quantum information.

Key words: Quantum spin chains; Shearless torus; Quantum information

1. Introduction

Quantum dynamics of spin chains are, these days, frequently studied in the
context of quantum information (Bose 2003; Amico et al. 2008). Applica-
tions of nonlinear dynamics in quantum information have also been attracting
considerable attention. For example, it has been realized that a many-body
Hamiltonian can be analyzed in terms of the dynamics of one-body image
quantum and classical Hamiltonians (Prosen 1998, 1999, 2002; Boness 2006;
Kudo and Monteiro 2008).

In this work, we have investigated quantum spin dynamics and quantum
transport for a ferromagnetic Heisenberg system, with a single excitation,
subjected to an additional magnetic field oscillating in time and position
(Kudo and Monteiro 2008). Although we solve for the full quantum spin
Hamiltonian, we show that the observed behavior in this case is closely
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related to the structure of an underlying classical image phase-space which is
a variant of the well-known Harper map. Because of the sinusoidal driving,
we term it the driven-Harper map. A remarkable feature of the classical
phase-space of the driven Harper map (and which are much less prominent in
the better known kicked-Harper map) are classical barriers termed “shearless
tori.” We find that there is non-dispersive quantum transport for a spin wave
packet initially localized on or close to a shearless torus. In contrast, when
the initial wave packet is located on a normal torus, it rapidly delocalizes
along the length of the torus.

We show that the non-spreading of quantum wave packets moving on
shearless tori is due to the harmonic character of the underlying Floquet spec-
trum. We also calculate the time evolution of entanglement corresponding to
the dynamics of the non-dispersive spin wave packets.

2. Models

We consider a ferromagnetic Heisenberg spin chain under an oscillating mag-
netic field. In a spin-1/2 and one-spin-flip case, the model corresponds to a
tight-binding model with an oscillating field. The Hamiltonian is written as

H(t) =
J
2

N
∑

j=1

(c†j c j+1 + c†j+1c j) + B0 sinωt
N

∑

j=1

cos

(

2π
N

j

)

c†j c j, (1)

where c†j and c j are the creation and annihilation operators of a fermion at the
jth site, respectively. The amplitude and frequency of the field are denoted
by B0 and ω, respectively. Equation (1) maps onto the one-body classical
“image” Hamiltonian,

H(x, p) = J cos p + B0 sinωt cos[(2π/N)x]. (2)

We call this model “driven Harper model” (Kudo and Monteiro 2008). The
corresponding classical equations of motion are given by

{

ẋ = −J sin p (0 < x ≤ N),
ṗ = (2π/N)B0 sinωt sin[(2π/N)x] (−π < p ≤ π).

(3)

We set J = −1, B0 = 2 and N = 100 in the numerical calculations.

3. Quantum Dynamics and Classical Phase Space

We calculate the time evolution of a spin wave packet, using the quantum
spin Hamiltonian equation (1), and thus obtain the quantum spin distribution

P( j, t) = |〈 j|ψ(t)〉|2, (4)
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Figure 1. Dynamics of quantum wave packets ((a1) and (b1)) and the corresponding classical
surfaces of section ((a2) and (b2)) (Kudo and Monteiro 2008). The frequency of the field is
ω = 0.12 for (a1) and (a2), and ω = 0.2 for (b1) and (b2)

where | j〉 is the state where the jth spin is down, and |ψ(t)〉 is calculated by
the Schrödinger equation. Here, the initial state is given as a Gaussian spin
wave packet centered at j = 25 with width Δ j = 5. Figure 1a1, b1 show the
time evolution of P( j, t) for ω = 0.12 and 0.2, respectively.

Classical surfaces of section are obtained by plotting values of (x, p) at
integer multiples of the period. They are shown in Fig. 1b1, b2 for ω = 0.12
and 0.2, respectively. The patched circles in the figures correspond to the
initial Gaussian spin wave packets. The regular channels in the chaotic sea in
Fig. 1a2 contain shearless tori.

The dynamics of the spin wave packet shows non-dispersive traveling
when it is initially localized at the region near a shearless torus (Fig. 1a1). In
contrast, the spin distributions show delocalization for the spin wave packet
whose initial condition corresponds to normal tori (Fig. 1b1).

The difference of the quantum dynamics of Fig. 1a1, b1 can be also un-
derstood from their quasi-energy spectra. Since the system is temporally pe-
riodic, the stationary states of the system are represented by the eigenstates
of the one-period unitary evolution operator (Floquet states) φm(x, t) and as-
sociated eigenphases (quasi-energies) εm.
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Figure 2. Low-resolution quasi-energy spectra for (a) ω = 0.12 and (b) ω = 0.2 (Kudo and
Monteiro 2008)

Figure 2 shows the local Floquet spectra for the initial Gaussian wave
packets. It is obtained by calculating the overlap between initial wave packet
and the Floquet states, Am = 〈φm(x, t = 0)|ψ0〉. The probability |Am|2 and
its low-resolution smoothed spectra are plotted in Fig. 2. Figure 2a, which
corresponds to Fig. 1a1, is obtained for the wave packet initially localized
near a shearless torus. The low-resolution spectrum has equally-spaced peaks.
The interval of the peaks is 2π/5; this corresponds to the fact that the wave
packet traveling along the spin chain returns at the initial position after about
five cycles. On the contrary, the spectrum of Fig. 2b, which is for the wave
packet on normal tori, has no equal spacings.

4. Entanglement

The entanglement is also transported when the spin wave packet travels. The
concurrence Ci, j is a measure of the bipartite entanglement of two sites i and
j (Wootters 1998). Figure 3 shows the time evolution of C25,26. Figure 3a
corresponds to the spin dynamics for the spin wave packet initially located
in the region near a shearless torus (Fig. 1a1). It shows periodic sharp peaks
corresponding to the non-dispersive transport of the spin wave packet. In con-
trast, Fig. 3b, which corresponds to the dynamics on normal tori (Fig. 1b1),
shows no sharp peaks.
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Figure 4. Quantum and classical distributions for two spin wave packets

5. Quantum and Classical Distributions

So far we have considered the dynamics of one wave packet. In this section,
we consider the situation that the initial state is the superposition of two wave
packets. Namely, the initial state is given as

|ψ(0)〉 = Anorm

N
∑

j=1

[g( j − j1) + g( j − j2)]| j〉, (5)

g(x) = exp[−x2/2Δ2
j ],

where j1 = 25, j2 = 75 and Anorm is a normalization factor.
Figure 4 shows the time evolution of the quantum and classical distribu-

tions. The classical distributions show the classical dynamics of the particles
whose distribution of starting points consists of two Gaussian ones. At the
initial time, both the quantum and classical distributions coincide. The two
wave packets move approaching each other. When they meet around x = 50,
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the quantum distribution shows interference, while the classical distribution
looks like just one large wave packet. After the collision, the two wave packet
continues to travel. The centers of mass of quantum and classical distributions
seem to coincide. The essential difference between quantum and classical
dynamics is the appearance of interference.

6. Conclusions

The dynamics of a quantum wave packet in a Heisenberg system with a single
spin flip can be explained well by the corresponding classical phase space.
The spin wave packet initially located in the region near a shearless torus
shows approximately non-dispersive behavior. The shearless tori can also
provide an advantage in transporting entanglement around the spin chain.
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EXTRACTION OF PARTIAL WAVES AND FLUXES

OF THE HYDROGEN ATOM IN A STRONG MAGNETIC FIELD
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Abstract. The preliminary results to extract partial waves and fluxes of the resonances using
the complex rotation method are presented in the example of the hydrogen atom in a mag-
netic field.

Key words: Atomic resonances; Complex rotation method

1. Introduction

Apart from the fundamental question of quantum chaos – classical-quantum
correspondence, rapid development in semiconductor-microstructure de-
vices, based on quantum dots (Nakamura and Harayama 2004) or tunneling
structures (Fromhold et al. 1994) demand a deeper knowledge about the be-
havior of quantum chaotic systems (Blümel and Reinhardt 1997; Stöckmann
1999; Haake 2001).

Resonances are very common phenomena in atomic physics. For exam-
ple, resonances are observed in the hydrogen atom in a static electric field
(Alvarez et al. 1991), in a static magnetic field (Delande et al. 1991; Friedrich
and Wintgen 1989; Hasegawa et al. 1989). And the physical properties of the
system are dominated by its resonances. This is true especially for highly
excited Rydberg states of atoms, where the density of states is very large.
That is why the ability to compute the energies and lifetimes of resonances is
an important step in describing a number of physical phenomena.

For determining resonance parameters, direct methods are efficient. These
direct methods aim at calculating the complex pole of the Green function,
or equivalently, of the S -matrix, the real part of which is identified as the
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energy of the metastable state and the imaginary part as its width (Isaacson
et al. 1978; Ho 1983). The character of direct methods is that they don’t
require approximations inherent to golden rule expressions and Feshbach
type projection operators (Feshbach 1962; Hickmann et al. 1976). A number
of authors used R-matrix theory to investigate the structure of the scattering
matrix (Schneider 1981; Morgan and Burke 1988; McCartney et al. 1990).

One of such direct approaches is the method of complex rotation (Ho
1983). When the complex rotation is applied to the resonance state (a solution
of the Schrödinger equation obtained under outgoing boundary conditions),
the exponentially diverging wavefunctions become convergent. And bound
state methods can be used to compute resonances. In this way the resonances,
which are unphysical solutions of the Schrödinger equation, can be mapped
onto square integrable eigenfunctions of the complex rotated Hamiltonian
(Ho 1983). The exterior complex scaling has been applied to study three-body
breakup problem (Rescigno et al. 1999).

The helium atom is the simplest atom for which an analytic solution of the
Schrödinger equation is impossible. A major open problem is to understand
the consequences of the classically chaotic dynamics (Richter et al. 1993;
Tanner et al. 2000) on the quantum properties of the system when the two
electrons are simultaneously highly excited (Jiang et al. 2008).

The method of complex rotation was applied to obtain the positive energy
spectrum of the hydrogen atom in a magnetic field, the total photoionization
cross-section was obtained (Delande et al. 1991) and found a perfect agree-
ment with experimental results (Iu et al. 1991). Currently the method provides
only the total decay rate, but is unable to compute partial decay rates cor-
responding to different open channels. This isn’t fundamental limitation, as
the complex rotation gives the Green function of the system, which contains
all the information on the dynamics (Buchleitner et al. 1994). The practical
problem is to extract the partial decay rates from the knowledge of the Green
function. In this work we present preliminary results on the calculation of
partial fluxes of the hydrogen atom in a magnetic field by the complex rotation
method.

2. Extraction of Partial Waves and Fluxes

The hydrogen atom in a magnetic field is an ideal system to construct and test
new computational techniques because of the availability of highly accurate
calculations (Delande et al. 1991; Friedrich and Wintgen 1989). The Hamil-
tonian of the hydrogen atom in a magnetic field (which is directed along z
axis) is (in atomic units)

H =
p2

2
− 1

r
+
γ

2
Lz +

γ2

8
ρ2, (1)
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where γ is the magnetic field and it is given by γ = B
Bc

, Bc = 2.35 × 105 T. Lz

is the z component of the angular momentum and Lz = 0 case is considered.
At very strong magnetic field, diamagnetic field dominates and shrinks the
atom in the ρ plane. That is why the rapid motion in the ρ direction can be
adiabatically separated from the slow one along z axis. Eventually, an infinite
set of Landau thresholds appear each supporting one-dimensional Rydberg
series. All these series (except the lowest one) are composed of resonances.
The application of the complex rotation r = reiθ, p = pe−iθ to the Hamiltonian
equation (1) gives the rotated one

H(θ) =
p2

2
e−2iθ − e−iθ

r
+
γ2

8
ρ2e2iθ. (2)

The rotated Hamiltonian H(θ) is a non-Hermitian operator, whose spec-
trum is complex and depends on the rotation angle θ. The great property of
the complex rotation method is that the spectrum of H(θ) can be related to
the resonances of the Hamiltonian H (Ho 1983). The spectrum of H(θ) has
the following properties (Fig. 1): (1) The continua are rotated by the angle 2θ
around the Landau thresholds; (2) the discrete spectra of H(θ) and H coincide
below the first Landau threshold; (3) The resonances of H coincide with the
complex eigenvalues of H(θ). The real part (the energy) and the imaginary
part (negative of the half width) of the resonance are θ independent, if the
rotation of the continua has uncovered the resonances.

H(θ) is diagonalized in Sturmian functions basis (Buchleitner et al. 1994;
Halley et al. 1993). Because of the non-orthogonality of the Sturmian func-
tions, the Schrödinger equation written in this basis corresponds to a gen-
eralized eigenvalue problem. The advantage of the Sturmian basis is that

Im(E)

0

-0.01

-0.02

-0.2 -0.1 0.1 0.2 0.3
Re(E)

0.40

2q

N=0 N=1 N=2 N=3

Figure 1. Odd parity spectrum of the rotated Hamiltonian H(θ), γ = 0.1, θ = 0.03, α = 0.5
(the scaling parameter of the Sturmian functions) (Delande et al. 1991). The arrows indicate
the Landau thresholds
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the strong selection rules of the operators in the Hamiltonian on the quan-
tum numbers give sparse matrices, allowing efficient Lanczos diagonalization
algorithm (Delande et al. 1991; Halley et al. 1993).

At sufficiently large distances from the nucleus the wavefunction is purely
outgoing and decay properties are contained in the wavefunction. In the case
of the hydrogen atom in a magnetic field, the transverse to the field (along ρ)
behavior of the wavefunction is defined by Landau eigenfunctions

ϕN(ρ) = L0
N

(

γρ2

2

)

exp

(

−γρ
2

4

)

, (3)

where L0
N are associated Laguerre polynomials. Projection of the total wave-

function (ψ(ρ, z)) on the corresponding Landau eigenfunctions gives partial
waves

φN(z) =
∫ +∞

−∞
ψ(ρ, z)ϕN(ρ)ρdρ. (4)

From the knowledge of partial waves we are able to compute partial fluxes

FN(z) = Im

(

φN(z)
dφN (z)

dz

)

. (5)

Let’s take a resonance with energy E = 0.3381−i0.237×10−3 for γ = 0.1,
which has three open channels. The partial waves for this resonance is shown
in Fig. 2.

Figure 2. Partial waves for the resonance with energy E = 0.3381 − i0.237 × 10−3, solid and
dashed lines denote the real and imaginary parts of the wavefunction, respectively
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Figure 3. Scaled fluxes for three consecutive resonances E = 0.3381 − i0.237 × 10−3 (a),
E = 0.3410 − i0.159 × 10−3 (b) and E = 0.3430 − i0.112 × 10−3 (c). Solid, dashed and dot
lines denote partial fluxes corresponding to N = 0, N = 1, N = 2 channels respectively

To estimate the accuracy of the calculations we apply the above described
technique to three consecutive resonances with energies E = 0.3381−i0.237 ×
10−3, E = 0.3410 − i0.159 × 10−3 and E = 0.3430 − i0.112 × 10−3. In
Fig. 3 the normalized partial fluxes (i.e. the resonance and γ dependencies are
removed) are given for these resonances. The sum of the normalized partial
fluxes shows that the inaccuracy of the calculations is a few percent.

3. Conclusion and Perspectives

We have described the direct technique to extract partial waves and to com-
pute partial fluxes from the complex rotation method. The accuracy of partial
fluxes signals about the efficiency of the complex rotation for determining
resonance parameters. Currently the studies to compute partial cross-sections
for this system is in progress. Future application of the above described tech-
nique to compute partial cross-sections for the doubly excited states of helium
(for which there are some experimental data and theoretical calculations Jiang
2006; Czasch et al. 2005) is expected.
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MARKOVIAN LIMIT OF A SPATIO-TEMPORAL CORRELATED

OPEN SYSTEMS

T. Monnai
Department of Applied Physics, Waseda University, Tokyo, Japan;
monnai@aoni.waseda.jp

Abstract. Large fluctuation of Brownian particles is affected by the finiteness of the
correlation length of the background noise field. Indeed a Fokker–Planck equation is derived
in a Markovian limit of a spatio-temporal short correlated noise. Corresponding kinetic
quantities are renormalized due to the spatio-temporal memory. We also investigate the case
of open system by connecting a thermostat to the system.

Key words: Spatio-temporal colored noise

1. Introduction

Largely fluctuating Brownian particle can experience locality or decorrelation
of the background noise (Golubovic et al. 1991; Deutsch 1985; Arvedson
et al. 2006; Bezuglyy et al. 2006; Monnai et al. 2008; Rosenbluth 1992;
Monnai 2008). Even in equilibrium, the background noise field fluctuates
both spatially and temporally. For a Markovian limit of the diffusion caused
by a spatio-temporal short correlated noise and a systematic force, a well-
defined Fokker–Planck description has been derived (Monnai et al. 2008;
Rosenbluth 1992; Monnai 2008). Indeed, so-obtained Fokker–Planck equa-
tion shows subtle correction to that of the thermal diffusion induced by a
temporally stochastic noise.

In this paper, a thermostat is connected to the system, and the equilibrium
condition is explored. Especially, we shall derive a Fokker–Planck equation
for the total system, and show that a nontrivial potential condition uniquely
determines the temperature which guarantees the equilibrium canonical dis-
tribution of the total system.

This paper is organized as follows. In Sect. 2, we briefly review the deriva-
tion of the Fokker–Planck equation in a Markovian limit for a thermally
isolated system. In Sect. 3, similar short correlation limit of a spatio-temporal
correlated open system is discussed as well.
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NATO Science for Peace and Security Series B: Physics and Biophysics,
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2. Fokker–Planck Equation of a Spatio-Temporal Short Correlated
Noise

In this section, we review the Markovian limit of the spatio-temporal corre-
lated noise (Monnai et al. 2008; Rosenbluth 1992).

2.1. MODEL

Let us consider a one-dimensional overdamped Langevin equation

ηẋ(t) = −U′(x(t)) + f (x(t), t), (1)

where η is the friction coefficient, and U is the potential of external pertur-
bation. The noise f depends on the present position, as well as the time. In
Fourier representation, f (x, t) =

∫

dkdωc(k, ω)ei(kx−ωt) , the coefficient c(k, ω)
is a stochastic variable. As a noise statistics, we assume that f (x, t) is Gaus-
sian for both x and t with the mean and variance

〈 f (x, t)〉 = 0, 〈 f (x, t) f (x′, t′)〉 = C(x − x′, t − t′). (2)

Here, we assume that the noise is invariant under the uniform translation.
Also, the correlation function is sufficiently smooth, and has a characteristic
correlation length ξ and a correlation time τ. For concreteness, we consider
the case of Gaussian kernel,

C(x, t) = C0e
− x2

ξ2
− t2

τ2 , C0 =
2ηkBT√

πτ
. (3)

The noise strength T equals the thermodynamic temperature in the absence
of the spatial randomness ξ → ∞.

2.2. POPULATION DYNAMICS

It is convenient to formulate the time evolution of the probability density
p(x, t) to find the particle at a position x at a time t. This is achieved with the
use of stochastic Liouville equation (Zwanzig 2001) ∂

∂t p(x, t) = −Lp(x, t) −
1
η
∂
∂x f (x, t)p(x, t). L = 1

η
∂
∂x U′(x) is the Liouville operator. Then with the aid of

the formula p(x, t) = e−tL p(x, 0)− 1
η

∫ t

0 dse−(t−s)L ∂
∂x f (x, s)p(x, s), the stochas-

tic Liouville equation is given as

∂

∂t
p(x, t) = −Lp(x, t) − 1

η
e−tL p(x, 0)

+
1
η2

∂

∂x
f (x, t)

∫ t

0
ds

∂

∂x
f (e(t−s)L x, s)p(e(t−s)L x, s). (4)
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Note that the time evolution operator acting on the noise and the population is
time reversed as e−tL f (x, s) = f (etL x, s). Averaging over the noise, P(x, t) =
〈p(x, t)〉, and neglecting the coupling between the noise f and the population
at earlier time p, one has

∂

∂t
P(x, t) = −LP(x, t) +

1
η2

∂

∂x
〈 f (x, t)

∫ t

0
dse−(t−s)L ∂

∂x
f (x, s)〉〈p(x, s)〉. (5)

The neglect of the O(τ) correlation between the explicit noise and implicit
noise in the population is justified in the Markovian limit τ → 0. In terms of
the correlation function, the corresponding Fokker–Planck equation is

∂

∂t
P(x, t) =

1
η

∂

∂x
(U ′(x)− 1

η

∫ ∞

0
ds
∂C
∂x

(
U ′(x)
η

s, s)+
1
η

∫ ∞

0
dsC(

U ′(x)
η

s, s)
∂

∂x
)P(x, t)

2.3. RENORMALIZED FOKKER–PLANCK EQUATION

For the Gaussian noise correlation (3), the lowest order truncation of the
hierarchy of the stochastic Liouville equation is available in the Markovian
limit defined as τ → 0, ξ → 0, and κ ≡ 2ητkBT√

πηξ2 kept finite. In this case, the
Fokker–Planck equation is

∂

∂t
P(x, t) =

1
η

∂

∂x
(U′(x)(1 − κ) + kBT

∂

∂x
)P(x, t). (6)

Intuitively, this limit can capture the finiteness of the spatial correlation ξ
of the background noise expressed by the important parameter κ. Note that
unlike slow diffusion in disordered systems, the spatio-temporal correlated
system can show accelerated diffusion since the kinetic barriers are low-
ered. In Fig. 1, for a double well potential U(x) = x4/4 − x2/2, the renor-
malized canonical distribution is compared with the steady state distribution
calculated from the stochastic simulation.

3. Spatio-Temporal Correlated Open System

In this section, we generalize the Markovian limit approach to the case of
open system. As far as the system is driven only by the external perturbation
−U′(x), the drift velocity seems to be renormalized. In contact with a spatially
uncorrelated heat bath, however, it is unknown how does the interaction with
the reservoir is affected. We explore this issue with the use of the Fokker–
Planck equation for total system.
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Figure 1. The histogram shows the steady state distribution calculated from the col-
ored Langevin equation (1). The solid-line indicates the renormalized canonical distribution
1
Z e−U(x)(1−κ)/T . The canonical distribution without potential renormalization κ = 0 is plotted as
the broken-line

3.1. MODEL OF AN OPEN SYSTEM

The spatio-temporal correlated system is connected to a thermostat at a tem-
perature T0. The thermostat is composed of a Brownian particle suspended
to a Langevin heat bath. Let us denote the position of this particle as y(t).
Another particle introduced in the previous section x(t) is linearly couples
with the particle y(t)

η1 ẋ = −U′(x) + f (x, t) − k(x − y)

η2ẏ = −V ′(y) + k(x − y) + fy(t), (7)

where f (x, t) is the spatio-temporal noise and fy(t) is the thermal white
noise. We assume that f (x, t) and fy(t) are independent Gaussian pro-
cesses. The spring constant k is small-enough, i.e. coupling is weak-enough.
As a concrete example, we consider the case of the Gaussian memory

〈 f (x, t) f (x′, t′)〉 = 2ηkBT√
πτ

e
− (x−x′ )2

ξ2
− (t−t′)2

τ2 , and the delta correlation, 〈 fy(t) fy(s)〉 =
2η2kBT0δ(t − s).

3.2. FOKKER–PLANCK EQUATION

The stochastic Liouville equation for the distribution of x and y coordinates is

∂

∂t
p(x, y, t) = −L2 p(x, y, t) − ∂

∂x
1
η1

f (x, t)p(x, y, t) − ∂

∂y
1
η2

fy(t)p(x, y, t). (8)
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Here L2 =
1
η1

∂
∂x U′(x) + 1

η2

∂
∂yV ′(y). With the use of the truncation for the

hierarchy of the stochastic Liouville equation as in the previous section, the
Fokker–Planck equation is given as

∂

∂t
P(x, y, t) =

1
η1

∂

∂x
((U′(x) + k(x − y))(1 − κ) + kBT

∂

∂x
)P(x, y, t)

+
1
η2

∂

∂y
(V ′(y) + k(y − x) + kBT0

∂

∂y
)P(x, y, t), (9)

where κ ≡ 2τkBT√
πξ2η1

. The correlation between f and p is O(τ) and is neglected
in the Markovian limit.

It is remarkable that the interaction force acting on the x particle is
k(x− y)(1 − κ), while that on the y particle is just k(x − y). This is one
of the main result of this paper. With the linear transformation of the

coordinates x′ = √η1x, y′ =
√

η2T
T0

y, the Fokker–Planck equation is rewritten

as ∂
∂t P = −∇ · �J, − �J = �DP + kBT∇P.

Then the potential condition ∇ × �D = 0 is rewritten as

∂

∂y′

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂U
∂x′
+ k(

x′

η1
−

√

T0

η1η2T
y′)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1 − κ) = ∂

∂x′

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

T
T0

∂V
∂y′
+ k(

y′

η2
−

√

T
η1η2T0

x′)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(10)

or equivalently T0 = T/(1 − κ). This condition guarantees vanishing current
�J = 0 at the stationary state,

P(x, y) =
1
Z

e−(U(x)+V(y)+k(x−y)2 /2)/T0 . (11)

Therefore, there is a unique thermodynamic temperature specified by the
noise strength and the spatial correlation T0 = T/(1 − κ).

3.3. NUMERICAL RESULTS

Numerical simulation shows that for T0 = T/(1 − κ), (1) the canonical distri-
bution (11) is achieved, and (2) energy dissipated to the reservoir is zero. We
have used the harmonic trapping potentials U(x) = 0.5(x + 3)2, V(y) = 0.5y2,
k = 0.5, and the parameters τ = 0.01, ξ = 0.05, T = 0.1, T0 = T/(1 − κ),
η1 = η2 = 1, and the time step δt = 0.08 (Fig. 2).
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Figure 2. The stationary position distributions of (a) x-particle P(x), and (b) y-particle P(y).
(c) shows stationary distribution on the x–y plane P(x, y). The histograms are obtained by the
stochastic simulation of the Langevin equations. Fifty-one trajectories are sampled for 300
time steps. Parameters are τ = 0.01, ξ = 0.05, T = 0.1, T0 = T/(1 − κ), η1 = η2 = 1, and
time step is 0.08. The histograms well agrees with the canonical distribution indicated as a
solid-line (a, b), and as a smooth surface (d)

4. Summary

In summary, for the spatio-temporal short correlated noise field, a largely
fluctuating particle experiences the decorrelation, which amounts to the
renormalization of the drift velocity appearing in the Fokker–Planck equa-
tion. In the presence of the thermostat, the renormalization of the interaction
yields a nontrivial potential condition, which determines a well-defined
temperature T0 = T/(1 − κ).
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