УДК 537.622.5

МАГНИТНЫЕ СВОЙСТВА КВАЗИОДНОМЕРНОГО ПОЛИКРИСТАЛЛА NaFeGe₂O₆

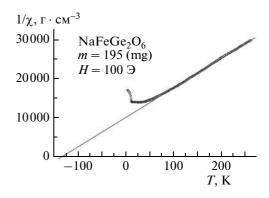
© 2009 г. Т. В. Дрокина¹, О. А. Баюков^{1,2}, Г. А. Петраковский^{1,2}, Д. А. Великанов^{1,2}

E-mail: tvd@iph.krasn.ru

Проведены синтез и исследование магнитных свойств диэлектрического поликристалла ${\rm NaFeGe_2O_6}$. Установлено, что данное соединение имеет антиферромагнитное упорядочение при температурах ниже 15 К. Мёссбауэровский спектр при 300 К представляет собой квадрупольный дублет и характеризуется величинами изомерного сдвига, характерного для высокоспинового иона ${\rm Fe^{3+}}$ в октаэдрической координации, и квадрупольного расщепления, свидетельствующего об искажении кислородного октаэдра вокруг катиона железа. Доказана квазиодномерность магнитной структуры образца.

Исследование свойств низкоразмерных магнетиков — важная задача современной физики твердого тела [1]. К квазиодномерным материалам, содержащим цепочки магнитных атомов с малым межцепочечным обменом, можно отнести и соединение NaFeGe₂O₆. Материал характеризуется общей формулой $M_1M_2\mathrm{Si}(\mathrm{Ge})_2\mathrm{O}_6$ (M_1 — катион щелочного металла, M_2 — катион переходного 3d-металла). Интерес к соединениям со структурой пироксена вызван также тем, что они представляют собой новый класс мультиферроиков — материалов, которые обладают магнитными, ферроэлектрическими и ферроупругими свойствами, что важно для фундаментальной физики и прикладных аспектов спинтроники [2].

Поликристаллический NaFe-германат синтезирован с помощью твердотельной реакции при нормальном давлении. Образцы приготовлены из шихты, содержащей 16% Na₂CO₃, 23% Fe₂O₃ и 61% GeO₂ с последующим помолом, формованием и прессованием полидисперсного порошка. Спрессованные под давлением ~10 кбар таблетки диаметром d=12 мм и толщиной h=4 мм подвергали высокотемпературной обработке. Предварительный отжиг осуществляли при $t=800^{\circ}$ C в течение 25 ч. Последующий отжиг предварительно перетертых и вновь сформованных образцов осуществляли при $t=820^{\circ}$ C в течение 24 ч.


Магнитные измерения выполнены на СКВИД-магнитометре в интервале температур $4.2-300~\rm K$ на образце весом 195 мг. На рис. 1 представлена зависимость обратной магнитной восприимчивости от температуры образца $\rm NaFeGe_2O_6$.

При охлаждении поликристалла $NaFeGe_2O_6$ наблюдается аномалия магнитной восприимчиво-

сти, что свидетельствует о магнитном фазовом переходе из парамагнитной фазы в антиферромагнитную при температуре ~15 К (рис. 1).

Мёссбауэровские исследования проведены при комнатной температуре с источником $\mathrm{Co^{57}(Cr)}$ на порошках толщиной $5{-}10\,\mathrm{mr/cm^2}$ по естественному содержанию железа $^{57}\mathrm{Fe}$. Мёссбауэровский спектр при 300 К представляет собой квадрупольный дублет (рис. 2). Величина изомерного сдвига 0.40 мм/с, что характерно для высокоспинового иона $\mathrm{Fe^{3+}}$, находящегося в октаэдрической координации. Величина квадрупольного расщепления 0.34 мм/с, она свидетельствует об искажении кислородного октаэдра вокруг катиона железа.

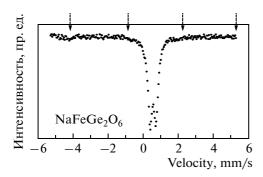

Соединение NaFeGe₂O₆ в парамагнитной фазе имеет моноклинную сингонию, пространственную группу C2/c. Характерная особенность структуры NaFeGe₂O₆ — ионы железа расположены в цепочках, удаленных друг от друга на расстояние \cong 7.60 Å [3]. Такая структура позволяет предполагать, что внутрицепочечное взаимодействие, происходящее по коротким связям Fe—O—Fe (\cong 4.12 Å),

Рис. 1. Температурная зависимость обратной магнитной восприимчивости NaFeGe $_2$ O $_6$. Эффективный магнитный момент $\mu_{2\Phi}=5.89~\mu_B$. Температура Нееля T_N =15 К. Асимптотическая температура Нееля θ = $-135~\mathrm{K}$.

¹ Институт физики им. Л.В. Киренского СО РАН, Красно-

²Сибирский федеральный университет, Красноярск.

Рис. 2. Мёссбауэровский спектр NaFeGe₂O₆.

намного больше, чем межцепочечное. В этом случае, в соответствии с выводами теории молекулярного поля, можно оценить силу внутрицепочечных обменных взаимодействий, используя связь асимптотической температуры Нееля с интегралом максимального обмена, действующего в системе [4]

$$k\Theta_C = \frac{2}{3}S(S+1)zJ_1,\tag{1}$$

где S — суммарный спин (для иона Fe3 + S = 5/2), k — константа Больцмана, z — число ближайших соседей в цепочке (z = 2). Оценка приводит к J_1 = = -11.5 K при экспериментальной величине Θ_C = =-135 K, определенной из измерений магнитной восприимчивости (рис. 1).

Температура магнитного упорядочения зависит от межцепочечных взаимодействий [5]:

$$kT_N = \frac{4}{3}S(S+1)J_1\frac{1}{I},$$
 (2)

где $I=0.64(J_1/J_{2a})^{1/2}[1+0.253~\ln(J_{2a}/J_{2b})],~J_{2a,2b}-$ определяющие межцепочечное взаимодействие интегралы обмена в направлениях a,b, перпендикулярных цепочке. Для структуры диопсида $J_{2a}=J_{2b}$, так что предыдущая формула упрощается до $I=0.64(J_1/J_{2a})^{1/2}$. Оценка, проведенная согласно этим формулам, дает величину межцепочечного взаимодействия $J_2=-0.072~{\rm K}$ при экспериментальном значении $T_N=15~{\rm K}$. Таким образом, отношение $J_2/J_1\cong 0.006$, что характерно для квазиодномерных систем.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Катанин А.А., Ирхин В.Ю.* // Успехи физ. наук. 2007. Т. 177. С. 639.
- 2. *Jodlauk S., Becker P. et al.* // J. Phys.: Condens. Matter. 2007. V. 19. 432201.
- Соловьева Л.П., Бакакин В.В. // Кристаллография. 1967. Т. 12. С. 591.
- 4. *Смарт Дж.* Эффективное поле в теории магнетизма. М.: Мир, 1968.
- Hennessy M.J., McElwee C.D., Richards P.M. // Phys. Rev. B. 1973. V. 7. P. 930.