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Abstract. Several experimental and theoretical studies indicate the existence of a

critical point separating the underdoped and overdoped regions of the high-Tc cuprates’

phase diagram. There are at least two distinct proposals on the critical concentration

and its physical origin. First one is associated with the pseudogap formation for p < p∗,

with p∗ ≈ 0.2. Another one relies on the Hall effect measurements and suggests that the

critical point and the quantum phase transition (QPT) take place at optimal doping,

popt ≈ 0.16. Here we have performed a precise density of states calculation and found

that there are two QPTs and the corresponding critical concentrations associated with

the change of the Fermi surface topology upon doping.

PACS numbers: 71.10.Ay, 75.30.Cr, 74.25.Ha, 74.25.Jb

1. Introduction

The mystery of high-Tc superconductivity in layered cuprates is tightly related to

their common pattern of the doping-dependent transition from the antiferromagnetic

insulator at zero doping to the overdoped metal. A number of experimental and

theoretical studies indicate that the transition is not smooth and a critical point

separates the underdoped (UD) and overdoped (OD) regions. It is tempting to associate

such critical point with the pseudogap formation for p < p∗, with p∗ = 0.19 ÷ 0.24

[1, 2, 3, 4, 5]. No doubt that the proximity of the pseudogap and the superconductivity

with two energy scales, T ∗ and Tc, is essential for high-Tc superconductivity [6]. On

the other hand, the Hall effect measurements suggest that the critical point and the

quantum phase transition (QPT) take place at optimal doping, popt = 0.16 [7, 8]. To

resolve this controversy, here we study the doping-dependent electronic structure of

the single-layer cuprate like La2−xSrxCuO4 in the regime of strong electron correlation

within the t− t′ − t′′ − J∗ model. By a very precise density of states (DOS) calculation

we have found two QPT associated with the changes of the Fermi surface (FS) topology.

http://arxiv.org/abs/0908.0576v2
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At optimal doping, xc1 = popt = 0.151, the DOS reveals the logarithmic divergence while

at the pseudogap QPT, xc2 = p∗ = 0.246, there is a Heaviside-type step in the DOS.

Angle-resolved photo-emission spectroscopy (ARPES) reveals a change of the FS

topology from the small hole pockets to the large hole FS near the optimal doping [9, 10].

This provides a link between the QPT and changes of the FS. Here we apply the general

Lifshitz ideas [11] on the QPT induced by the FS transformations. But first of all, we

will discuss how these transformations are induced by doping.

It is easy to obtain the large FS in cuprates by a single-electron approach like the

local density approximation (LDA) or the tight-binding method. However, to get the

small hole pockets around the (±π/2,±π/2) points of the Brillouin zone one have to go

beyond the weak-coupling approximations and take the strong electronic correlations

into account. Such small pockets have been found in a doped antiferromagnetic (AFM)

Mott insulator by exact diagonalization [12, 13] and Quantum Monte-Carlo calculations

[14, 15] for the finite clusters as well as by a perturbative treatment of the infinite

lattice [16, 17, 18, 19] and by using the slave-particles [20, 21]. According to these

studies, after the long-range AFM order vanishes with increasing hole concentration

nh = 1 + p (in La2−xSrxCuO4, p = x), a short-range AFM order still persists even at

optimal doping [22]. The short-range magnetic order determines the self-energy and hole

dispersion resulting in the small hole pockets around the (±π/2,±π/2) points in the

UD cuprates, its fluctuation results in the pseudogap formation [23, 24, 25]. Due to the

strong electronic correlations intrinsic for cuprates a theory of the electron dynamics has

to fulfill a “no-double occupancy” constraint. This constraint is introduced explicitly in

the mean-field theory of a d-type superconductivity within the RVB approach [26] for

the t− J model [27], and in the variational Monte-Carlo studies [28].

2. Method

Contrary to the phenomenological approaches, like assuming that the second order QPT

exists at p = pc [29], we deal with a microscopically derived t−t′−t′′−J∗ model without

free parameters. To properly fulfill the “no-double occupancy” constraint at every step

of our calculations we use the Hubbard X-operators, Xhg = |h〉 〈g|, where |h〉 and |g〉 are

the local eigenvectors corresponding to three states: one-hole states |σ〉, σ = ±1/2, and

the Zhang-Rice singlet, |S〉, which is a two-hole state. The relation between X-operators

and single-electron annihilation operators is given by afσ =
∑

h,g
γσ(h, g)X

hg
f , where the

coefficients γσ(h, g) determine the partial weight of the quasiparticle excitation g → h in

the process of a particle annihilation on site f with spin σ. The “no-double occupancy”

constraint means the absence of direct excitations from and to the lower Hubbard band

and the exclusion of the two-electron (zero-hole) state |0〉 = d10p6 from the local Hilbert

space. It is demonstrated straightforwardly by the exact calculation of the two-electron

state occupation number that 〈nf↑nf↓〉 =
〈

X00
f

〉

= 0; this constraint is provided by the

X-operators algebra. Nevertheless the virtual interband (between the lower and upper
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Hubbard bands) hopping t12fg results in the exchange interaction Jfg =
(

t12fg
)2

/Ueff .

For La2−xSrxCuO4, all intraband and interband hopping parameters (t11fg and t12fg),

single-site energies of holes in p- and d-orbitals, and the charge transfer gap Ueff have

been calculated by the ab initio LDA+GTB approach [30] which combines LDA and

the generalized tight-binding (GTB) method for strongly correlated systems. The low

energy effective model is the t − t′ − t′′ − J∗ model where J∗ means that besides

the Heisenberg exchange term a three-site correlated hopping H3 is also included,

Ht−J∗ = HtJ +H3, where

HtJ =
∑

f,σ

(ε− µ)Xσσ
f +

∑

f

2(ε− µ)XSS
f

+
∑

f 6=g,σ

[

t11fgX
Sσ̄
f X σ̄S

g +
Jfg

4

(

Xσσ̄
f X σ̄σ

g −Xσσ
f X σ̄σ̄

g

)

]

,

H3 =
∑

f 6=m6=g,σ

t12fmt
12
mg

Ueff

(

XσS
f X σ̄σ

m XSσ̄
g −XσS

f X σ̄σ̄
m XSσ

g

)

.

Here hole creation operator is now ã†fσ = 2σXSσ̄
f and its algebra is different from the

bare fermion’s one (2σ = ±1 for σ =↑, ↓). The spin operators are also easily expressed

via X-operators, S+

f = Xσσ̄
f , Sz

f =
(

Xσσ
f −X σ̄σ̄

f

)

/2.

Our approach is essentially a perturbation theory with the small parameter t/U

contrary to the usual Fermi liquid perturbation expansion in terms of U which is large

in cuprates. We use a method of irreducible Green functions which is similar to the

Mori-type projection technique, with the zero-order Green function given by the well-

known Hubbard I approximation. Beyond it there are spin fluctuations. To provide a

description of them, the self-energy was calculated in the non-crossing approximation

by neglecting vertex renormalization that is equivalent to the self-consistent Born

approximation (SCBA) [31]. Resulting electron self-energy contains the space-time

dependent spin correlation function C(q, ω) and results in the finite quasiparticle

lifetime, ImΣ(k, ω) 6= 0. Note that at low temperatures T ≤ 10K the spin dynamics is

much slower than the electron one. A typical spin fluctuation time, 10−9 sec, is much

larger than the electronic time 10−13 sec [32]; that is why we can safely neglect the time

dependence of the spin correlation function, C(q, ω) → Cq. The self-energy becomes

static, Σ(k, ω) → Σ(k), and we have ImΣ = 0. Note that Σ(k, ω) here is the object

completely different from the one in the Fermi liquid approach because the here it is build

by the diagrams for the X-operators, not the standard Fermionic annihilation-creation

operators afσ. In the usual Fermi liquid expansion dynamical self-energy definitely plays

a crucial role in the lightly doped cuprates. Here, our theory starts from a different limit

where the lowest order approximation is represented by the Hubbard I solution. The

corrections to the strongly-correlated mean-field approach are small because the starting

point is already a reasonable approximation for the Mott-Hubbard insulator. That is

proved by the small effect of the frequency dependence of the self-energy in Refs. [34, 31].

Moreover, the doping-dependence of the FS is determined by ReΣ, and it is qualitatively

similar in our approach [33] and in the approach which properly takes ImΣ into account
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[34, 31].

The vertex corrections to the self-energy are small far from the spin-density wave

or the charge-density wave instabilities, that is true for the moderate doping. Our

approximation for the self-energy is done in the framework of the mode-coupling

approximation which has been proved to be quite reliable even for systems with strong

interaction [35, 36]. As shown in the spin-polaron treatment of the t − J model, the

vertex corrections to the non-crossing approximation are small and give only numerical

renormalization of the model parameters [37].

Green function
〈〈

X σ̄S
k

∣

∣

∣XSσ̄
k

〉〉

ω
for a hole moving on the background of short-range

AFM order is

G(k, ω) =
(1 + x)/2

ω − ε+ µ− 1+x
2
tk −

1−x2

4

t̃2
k

Ueff
+ Σ(k)

, (1)

where

Σ(k) = −
2

1 + x

1

N

∑

q

{[

tk−q −
1− x

2
Jq +

1− x

2

t̃2k−q

Ueff

−
1 + x

2

2t̃kt̃k−q

Ueff

]

(

3

2
Cq +Kk−q

)

−
1 + x

2

t̃2q
Ueff

Kq

}

.

Here, tk and t̃k are the Fourier transforms of hoppings t11fg and t12fg, respectively. The

self-energy is determined by static spin correlation function C0n =
〈

S+
0 S

−
n

〉

and kinetic

correlation function K0n =
∑

σ

〈

ã†0σ ãnσ
〉

between sites 0 and n. These correlation

functions and their Fourier transforms Cq and Kq represent the AFM short-range

order and the valence-bond order, respectively. In contrast to approach of Ref. [31], we

calculate these correlation functions self-consistently up to n = 9 (ninth coordination

sphere) together with the chemical potential µ. To get the spin correlation function

we also obtain the spin Green function
〈〈

Xσσ̄
q

∣

∣

∣X σ̄σ
q

〉〉

ω
in a spherically-symmetric spin

liquid state [38, 39] with 〈Sz〉 = 0 and the equal correlation functions for each spin

component,
〈

S+
0 S

−
n

〉

= 2 〈Sz
0S

z
n〉 = C0n. Both C0n and K0n are essentially doping-

dependent and C0n decrease with the doping [33]. While the nearest neighbor function

C01 is finite for all studied x up to x = 0.4 with a kink at x = p∗ = 0.24, more distant

spin correlations fall down to zero for x > p∗.

The calculated FS twice changes its topology with doping [33], see Fig. 1. Small

hole pockets around (±π/2,±π/2) points are present at small doping; then they

increase in size and touch each other in the non-symmetric points k = ±π(1,±0.4)

at xc1 = popt = 0.151. Above popt, there are two FSs around (π, π) with outer being a

hole-like and inner being an electron-like. The electron FS collapsed at xc2 = p∗ = 0.246,

and at x > p∗ we have only one large hole surface around (π, π). Similar conclusion

on the coexistence of hole and electron FS at some intermediate doping have been

also drawn recently [40, 41], and earlier for the spin-density wave sate of the Hubbard

model [42].

It should be stressed that the standard DOS calculations with routine precision

(400 × 400 points in the quarter of the Brillouin zone) which we used before to solve
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Figure 1. (Color online) Mean-field Fermi surface transitions with doping x as

calculated from poles of Eq. 1. There are two topological changes: first one between

x = 0.13 and 0.16, and second one between 0.22 and 0.25; see Ref. [33] for detailed

discussion.

the Tc equation for magnetic mechanism of dx2−y2-wave pairing [46] is not enough to

find the effect of QPT on DOS. To get the results presented below we used 104 × 104

k-points which lead to the increase of precision by 625 times.

3. Results

From the previous consideration it follows that the FS topological transitions in

cuprates are induced by doping and they are due to the non-rigid band behavior of

the quasiparticles in the strongly correlated systems. According to the general Lifshitz

analysis [11] for the three dimensional (3D) system, a change of topology at the energy

ε = εc either by appearance of a new segment (like we found at p∗) or by change of

its connectivity (like at popt) would result in the additional DOS, δN(ε) ∼ (ε− εc)
1/2,

and the change in the thermodynamic potential, δΩ ∼ (εF − εc)
5/2 (the QPT of the

2.5-order), where εF is the Fermi energy. However, due to the strong anisotropy of

electronic and magnetic properties, cuprates are quasi-2D and not isotropic 3D systems.

The electron hopping perpendicular to the CuO2 layers in a single-layer La2−xSrxCuO4

(LSCO), Bi2Sr2CuO6+δ (Bi2201), etc. is negligibly small. We do not consider here

YBa2Cu3O7−δ (YBCO) and Bi2Sr2CaCu2O8+δ (Bi2212) with two CuO2 layers in the

unit cell where the bilayer splitting of the FS appears, so we calculate DOS for the

electrons in the doped single CuO2 layer.

The change of the FS topology at xc1 = popt results in the logarithmic divergence

of DOS (Fig. 2), while the emergence of the new electron-like pocket below xc2 = p∗

results in a step in DOS (Fig. 3). The total DOS is a sum of the singular and regular
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Figure 2. (color online) Regular, singular, and total density of states N (ε− εc1)

near the optimal doping, εc1 = εF (popt), as calculated from the Green function (1).

Dotted line shows the logarithmic fitting. In the inset, the doping dependence of the

superconducting critical temperature Tc(x) is shown; the optimal doping is 0.151. Note

that the energy ε− εc1 is the energy of holes.
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Figure 3. (color online) Regular (hole pocket), singular (electron pocket), and total

density of states N (ε− εc1) near the pseudogap critical point εc2 = εF (p
∗). Below

p∗ = 0.24 (ε < εc2) a singular step-like contribution to the total DOS appears. Note

that the energy ε− εc1 is the energy of holes.
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Figure 4. (color online) The doping dependence of the dimensionless kinetic energy

Ekin(p)/Ekin(p
∗). Calculated dependence shown by the filled (red) circles. Above p∗

it obeys a conventional law and is proportional to (1+p). The extrapolation of this law

to the region p < p∗ (blue dashed line) emphasizes the depletion of part of the kinetic

energy in the pseudogap region. Calculation for the idealized triangular pseudogap

model (3) is shown by the filled triangles.

contributions. We would like to stress that both logarithmic and step DOS singularities

are in perfect agreement with the general properties of the van Hole singularities for the

2D electrons [43]. Contrary to the 3D systems, the thermodynamical potential for the

2D electrons has a singular contribution δΩ ∼ (εF − εc)
2 for the step singularity and

δΩ ∼ (εF − εc)
2 ln |εF − εc| for the logarithmic singularity [44]. Thus QPT at xc2 = p∗

is of the second order, while at xc1 = popt the singularity is stronger. It is immediately

follows that the Sommerfeld parameter γ in the electronic heat capacity γ = Ce/T has

also a singular step contribution at x ≤ p∗, and

δγ ∝ ln (εF − εc) ∝ ln |x− xopt| (2)

near xc1 = popt. Similar divergence in the specific heat was found within the dynamical

cluster approximation for the Hubbard model [45].

To check whether the coincidence of xc1 with popt and xc2 with p∗ is occasional or not,

we have calculated the superconducting critical temperature dependence Tc(x) in the

same model [46] and the kinetic energy as a function of doping. The Tc(x) dependence is

an inverse parabola with the maximum at xopt (see inset in Fig. 2), which indeed equals

to xc1. Note that it is not a coincidence since like in the BCS theory the maximum in

Tc(x) is determined by the maximum DOS, and at xc1 we have a logarithmic singularity.

Kinetic energy, Ekin =
∑

n
t110nK0n, reveals a remarkable kink at xc2 = p∗ (Fig. 4). Above
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Figure 5. (color online) Comparison of experimental (blue squares) singular Hall

coefficient [8] for Bi2Sr0.51La0.49CuO6+δ (a) and for La2−xSrxCuO4 (b) and our

calculated (red filled circles) singular DOS, Nsing (εF (x)), near the optimal doping

as follows from Eq. (2). Agreement with results on bulk single crystals (a) is better

than with results on thin films (b).

p∗, Ekin(p)/Ekin(p
∗) ∼ 1+ p that is expected for a conventional 2D metal with the hole

concentration nh = 1 + p and Ekin ∼ εF ∼ nh. The extrapolation of this law below

p∗ (shown in Fig. 4 by the blue dashed line) reveals that actual Ekin is smaller. We

associate this depletion of the kinetic energy with the pseudogap formation and try to

fit it with a simple free electron gas with a triangular pseudogap DOS (Loram-Cooper

model [1, 2]):

N(ε) =







g, |ε− εF | > Eg

g |ε−εF |
Eg

, |ε− εF | < Eg.
(3)

Here Eg = J(p∗ − p)/p∗ is a doping dependent pseudogap and J is the nearest-

neighbor exchange parameter. This fitting is shown by the filled triangles and it

reflects some decrease of the kinetic energy due to the pseudogap but do not provide

a quantitative agreement. Apparently, better fitting is given by the exponential law,

Ekin(p)/Ekin(p
∗) = exp [−4Eg(p)/J ]. This analysis confirms that the QPT at xc2 is

indeed related to the pseudogap and the coincidence of xc2 and p∗ is not occasional.

A singular contribution to the Hall coefficient near the optimal doping has been

measured for Bi2Sr0.51La0.49CuO6+δ single crystals and for La2−xSrxCuO4 thin films

under strong magnetic field of 60T [8]. According to our theory, these extra carriers

are induced by the singular DOS. To continue discussion in terms of the critical points,

not the critical energies, we note that near the critical point εF (x)− εc1 = k(x− xopt).

In Fig. 5 we plot the calculated singular DOS Nsing(z), z = x− xopt, together with the
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singular contribution to the Hall coefficient, nHall(1.5K)−nHall(100K) [8]. The optimal

doping in the LSCO thin film xopt = 0.17 is shifted from the bulk value xopt = 0.15 in

the Bi2201 which may be due to the strains in the films. The general agreement of the

calculated singular DOS and Hall data provides further support for our analysis.

4. Discussion

Now we are going to compare our results with the other relevant studies and discuss

the retardation effects for the electronic self-energy. These effects determine ImΣ(k, ω)

and hence the quasiparticle spectral weight and line width. Our approach allows to

go beyond the static limit and to get the frequency dependent real and imaginary

parts of the self-energy by the Mori-type projection technique; for the Hubbard model

calculations of such type have been done in Ref. [31]. The authors of Ref. [31] get very

similar concentration dependence of the Fermi surface (see Fig. 6 in their paper) as we

have. This agreement proves that ImΣ(k, ω) is not so important for the shape of the

Fermi surface. Nevertheless it is important for the spectral weight. In particular, the

spectral weight of the inner pocket around (π, π) is small due to the finite quasiparticle

lifetime. Thus the ARPES intensity for this pocket is small and that may be the reason

why it has never been observed by ARPES.

The energy dependence of the electron self-energy is crucial and determines the

Mott-Hubbard transition in the Hubbard model as was convincingly demonstrated

by the dynamical mean-field theory (DMFT) [47]. Cluster generalization of DMFT

[48, 49, 50, 51] is necessary to study electron correlations in a two-dimensional CuO2

layer where the nearest neighbor spin correlations require the momentum dependent

self-energy. The cellular DMFT (CDMFT) method provides k-dependent self-energy

and results in the phase diagrams that have features similar to the ones experimentally

observed in cuprates [52, 53, 54, 55, 56]. Recently, the exact diagonalization version of

CDMFT (CDMFT+ED) was used to study the electronic structure of the doped Mott-

Hubbard insulator [57, 58]. The sequence of the FS transformations with doping in

Refs. [57, 58] is very similar to ours. At a small doping x, four hole pocket expand with x

until they touche the Brillouin zone boundary (|kx| or |ky| equal to π). Then at xc1 = popt
they merge into two concentric Fermi surfaces around (π, π). With further doping, the

smaller surface disappears leaving a large hole-like FS which lately transforms into a

normal electron-like one through one more Lifshitz QPT. In spite of many differences

in details (for example both poles and zeros of the Green function are obtained in

Refs. [57, 58]) the similarity of the FS transformations in our work and papers [57, 58]

proves the validity of our approach at least at low temperatures. We believe that it is the

simplest approach that allows to obtain the Fermi surface transformation from the lightly

doped Mott insulator up to the Fermi liquid. Nevertheless our static approximation

cannot treat the quasiparticle spectral weight (see discussion of Ref. [31] above). It does

not work in the Fermi liquid regime either. We start our perturbation theory with the

small self-energy in the atomic limit and then the self-energy will be large in the band
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limit.

One more agreement between our work and the dynamical cluster approximation

is the T 2 log T singularity in the thermodynamic potential at xc1 in Ref. [45] and our

z2 log z [see Eq. (2)] at the Lifshitz QPT. At zero temperature, z is given by the energy

difference of the Fermi level and the critical energy that is proportional to (x−xc1). At

finite temperature z ∝ T .

5. Conclusion

We have shown that there are two critical points in the cuprate’s doping dependence.

The first one is related to the change of the FS connectivity and logarithmic divergences

of DOS and of electronic heat capacity parameter γ at the optimal doping popt =

0.151. Also, we associate this QPT with the experimentally observed singular doping

dependence of the Hall coefficient [8]. Moreover, the logarithmic enhancement of DOS

leads to the maximum in the doping dependence of superconducting critical temperature

Tc at the same critical point x = popt. This is in agreement with the previous calculations

of Tc for the magnetic mechanism of dx2−y2 pairing. The second QPT is associated with

the collapse of the electron-like FS pocket at p → p∗ = 0.246 and results in the step

singularities in DOS and in Sommerfeld parameter γ. We have found the depletion of

the hole’s kinetic energy below p∗ and ascribe it to the pseudogap formation at p < p∗.

Thus the two energy scales in cuprates measured by Tc and T ∗ are both related to the

QPTs and to the changes of the cuprate’s electron structure with doping. The very

existence of both logarithmic and step singularities in DOS are in perfect agreement

with the general properties of the van Hole singularities for the 2D electron systems.

But the concentrations of doping at which these singularities approach the Fermi level

and start to govern the behavior of the system are determined by the strong electronic

correlations and scattering on the associated short-range AFM order.

Note that our analysis is appropriate for cuprates that have one CuO2 layer in the

unit cell. The question arise whether the model parameters and corresponding critical

concentrations are the same for e.g. LSCO and Bi2201? In the conventional single

electron tight-binding model with the rigid band the hopping parameters depend on

doping significantly. That is why the ratio t′/t extracted from ARPES is usually different

for Bi2201 and LSCO. In general, the hopping parameters depend on the interatomic

distance that is almost the same in these two crystals. That is why we use the same

parameters for all doping concentrations. The doping dependence of the band structure

and its non-rigid behavior comes up as the effect of strong electronic correlations.
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[53] Kancharla S S, Kyung B, Sénéchal D, Civelli M, Capone M, Kotliar G, and Tremblay A-M S 2008

Phys. Rev. B 77 184516

[54] Haule K and Kotliar G 2007 Phys. Rev. B 76 104509

[55] Macridin A, Jarrell M, Maier T, and Sawatzky G A, 2005 Phys. Rev. B 71 134527
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