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We study the doping evolution of the electronic structure in the normal phase of high-Tc cuprates.
Electronic structure and Fermi surface of cuprates with single CuO2 layer in the unit cell like
La2−xSrxCuO4 have been calculated by the LDA+GTB method in the regime of strong electron
correlations (SEC) and compared to ARPES and quantum oscillations data. We have found two
critical concentrations, xc1 and xc2, where the Fermi surface topology changes. Following I.M.
Lifshitz ideas of the quantum phase transitions (QPT) of the 2.5-order we discuss the concentration
dependence of the low temperature thermodynamics. The behavior of the electronic specific heat

δ(C/T ) ∼ (x− xc)
1/2 is similar to the Loram and Cooper experimental data in the vicinity of

xc1 ≈ 0.15.

PACS numbers: 71.27.+a; 74.72.-h; 75.40.-s

I. INTRODUCTION

Nowadays high-Tc cuprates is the second most studied
class of condensed matter after semiconductors. Both
the nature of the superconductivity and the abnormal
pseudogap feature of the normal phase are not clear
yet1,2,3,4,5,6,7,8. A lot of experimental data on the elec-
tronic structure have been obtained by ARPES that re-
veals the doping evolution of the Fermi surface (FS)
from small arcs near (π/2, π/2) at small doping to the
large FS around (π, π) at large doping9. Quantum os-
cillations measurements in strong magnetic fields on the
single crystals YBa2Cu3O6.5

10 and YBa2Cu4O8
11 have

proved the existence of small hole pockets in the under-
doped (UD) cuprates that looks as a contradiction to
the ARPES arcs. This contradiction has been explained
by the interaction between holes and spin fluctuations in
the pseudogap state with the existing short-range anti-
ferromagnetic (AFM) order12,13,14,15. It occurs that the
part of the hole pocket related to the shadow band has
smaller quasiparticle (QP) lifetime due to the QP scatter-
ing on spin fluctuations. Recently VUV laser ARPES16

has found a closed FS pocket in the UD La-Bi2201 with
the small intensity at the shadow band part. The strong
interaction of the electrons with the spin fluctuations is
a general property of SEC systems and takes place not
only in cuprates but also e.g. in manganates17.
The conventional LDA (local density approximation)

approach to the electronic structure in the regime of SEC
fails. Various realistic multiband models of CuO2 layer
in cuprates in the low energy region result in the effec-
tive Hubbard and t−J models18,19,20,21,22. In the hybrid
LDA+GTB scheme23 that combines the LDA calcula-
tions of the multiband p − d model parameters and the
generalized tight-binding (GTB) treatment of SEC the
low energy effective t − t′ − t′′ − J∗ model has been ob-

tained from microscopic approach with all parameters
being calculated ab initio.

Small hole pockets in the UD case with area ∼ x ap-
pear in a theory considering the hole dynamics in the
AFM spin background and have been obtained by the
exact diagonalization24 and the Quantum Monte Carlo
studies of the finite clusters25,26 as well as by various
variational and perturbation calculations for the infinite-
dimension lattice27,28,29,30,31. Once the long-range AFM
order disappears with doping the electronic structure cal-
culations in the paramagnetic phase results in the disper-
sion of the valence band with the top at (π, π) and the
large FS32. Still there are apologists of the “universal
metal dispersion” calculating the LDA band structure
and the FS and claiming the rigid band behavior with
Fermi level shift of the fixed band dispersion33. After
the small hole pockets were discovered in the Landau
oscillations experiments10,11, the rigid band scenario be-
comes evidently unconvincing. In place of conventional
Fermi liquid state of the normal metal, the pseudogap
state appears in the phase diagram of cuprates beside
the long-range AFM phase. Though the origin of the
pseudogap state is still debated, the contribution of the
fluctuating short-range AFM order is clear5. The short-
range AFM order is essential not only in the UD region.
Even at the optimal doping the AFM correlation length
ξAFM ≈ 10Å34. At low temperatures T ≤ 10K, spin
fluctuations are slow with the typical time scale 10−9sec.
and on the spatial scale of ξAFM (size of the AFM mi-
crodomain)35. This time is large in comparison to the
fast electronic lifetime in ARPES (∼ 10−13sec.)36 and
to the cyclotron period T ∼ 2πω−1

c ∼ 10−12 with ωc

being a cyclotron frequency in quantum oscillations ex-
periments10,11. Thus we safely consider that the spin
fluctuations are frozen at low T and take into account
only the spatial dependence of the short-range AFM or-
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der. It means that the electronic self-energy Σ (k, ω) will
depends only on momentum, Σ (k, ω) → Σ(k).
We use this approach to study the concentration de-

pendence of the electronic structure and the FS. In Sec-
tion 2 we present the electronic structure and the change
of the FS topology within t − t′ − t′′ − J∗ model. The
FS area and the Luttinger theorem are also discussed.
In Section 3 we give the qualitative picture based on
the interaction between hole and spin fluctuations. In
Section 4 we use the Lifshitz ideas37,38 on the QPT to
study the low temperature thermodynamics. The elec-
tronic specific heat singularity near QPT is compared to
the experimental data39.

II. THE FERMI SURFACE OF La2−xSrxCuO4

AND ITS DOPING EVOLUTION

Within the LDA+GTB approach we start from the
ab initio LDA calculations and construct the Wannier
functions in the basis of oxygen p-orbitals and copper
eg-orbitals. The multiband p − d model40 parameters
are calculated ab initio. Then we apply the cluster per-
turbation approach18,41 and introduce the Hubbard X-
operators constructed within the full set of eigenstates of
the unit cell (the CuO6 cluster) that is obtained by exact
diagonalization of the multiband p − d model Hamilto-
nian of the cluster. By the GTB method we construct
the low energy effective Hubbard model with U = ECT ,
where ECT is the change transfer gap42. In the Hub-
bard model, the X0σ

f operator describes the hole annihi-

lation at the site f in the lower Hubbard band (LHB) of
holes that corresponds to the electron at the bottom of
the conduction band. The hole annihilation in the up-
per Hubbard band (UHB) is given by the X σ̄2

f operator
and corresponds to the electron at the top of the valence
band. In the limit of SEC, Ueff ≫ t (t is the effec-
tive intersite hopping), we may exclude either two-hole
state |2〉 and obtain the effective Hamiltonian for LHB
or two-electron state |0〉 (hole vacuum d10p6) and to get
the effective Hamiltonian for UHB. Latter case is inter-
esting for the hole doped cuprates. We emphasize that
the effective t − t′ − t′′ − J∗ model is derived from the
microscopic approach and its parameters are calculated
ab initio. Here J∗ means that we take into account the
3-site correlated hopping that is of the same order as the
superexchange interaction J .
The model Hamiltonian is given by

Ht−J∗ = Ht−J +H(3), (1)

Ht−J =
∑

f,σ

[

(ε− µ)Xσσ
f + (ε2 − 2µ)X22

f

]

+
∑

f 6=g,σ

t11fgX
2σ̄
f X σ̄2

g +
∑

f 6=g

Jfg

(

~Sf · ~Sg −
1

4
nfng

)

H(3) =
∑

f 6=m 6=g,σ

t01fmt01mg

Ueff

(

Xσ2
f X σ̄σ

m X2σ̄
g −X σ̄2

f Xσσ
m X2σ̄

g

)

.

Here Jfg = 2
(

t01fg

)2

/Ueff , t01fg is the interband (LHB

↔ UHB) hopping parameter between two sites f and g,
~Sf is the spin operator, ε and ε2 are one- and two-hole
local energies, and µ is the chemical potential. The in-
traband hopping parameters t11fg have been calculated up
to 6-th nearest neighbors. It appears that only 3 coor-
dination spheres are important and contribution to the
hole dispersion of the more distant neighbors is negligi-
ble. The calculated from ab initio model parameters for
La2−xSrxCuO4 are (in eV):

t = 0.932, t′ = −012, t′′ = 0.152,
J = 0.298, J ′ = 0.003, J ′′ = 0.007.

(2)

We introduce the hole Green function in the UHB (here
σ̄ ≡ −σ)

Gσ(k, E) =
〈〈

X σ̄2
k

∣

∣X2σ̄
k

〉〉

E
. (3)

The analysis of the whole set of diagrams in the X-
operators diagram technique results in the following ex-
act generalized Dyson equation43

Gσ(k, E) =
Pσ(k, E)

E − ǫ0 + µ− Pσ(k, E)tk − Σσ(k, E)
. (4)

Here tk is the Fourier transform of the hopping, Pσ(k, E)
and Σσ(k, E) are the strength and the self-energy oper-
ators. In the simplest Hubbard I approximation Σσ = 0,

Pσ = Fσ̄2 =
〈

X σ̄σ̄
f

〉

+
〈

X22
f

〉

. The QP spectral weight

is determined by the filling factor Fσ̄2. In the diagram
technique, Fσ̄2 corresponds to the so-called “terminal fac-
tors”44.

To incorporate the effect of the short-range AFM order
on the QP dynamics we go beyond the Hubbard I ap-
proximation. The calculation scheme is given in Ref. 45.
We use the Mori-type method to project the higher or-
der Green functions to the single particle function (3).
A similar approach that took spin dynamics into the ac-
count was used in Refs. 22,46. The hole concentration in
La2−xSrxCuO4 (LSCO) per unit cell is nh = 1 + x. The
completeness condition for the local Hilbert space in the
t− J model is

∑

σ

Xσσ
f +X22

f = 1. (5)

Thus we easily obtain
〈

Xσσ
f

〉

= (1 − x)/2,
〈

X22
f

〉

= x,

and Fσ̄2 = (1 + x)/2. The Green function (3) becomes

Gσ(k, E) =
(1 + x)/2

E − ε0 + µ− 1+x
2 tk − 1−x2

4

(t01
k
)
2

Ueff
− Σ(k)

,

(6)
with the self energy given by
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Σ(k) =
2

1 + x

1

N

∑

q

{[

tq −
1− x

2
Jk−q − x

(

t01q
)2

/Ueff − (1 + x)t01k t01q /Ueff

]

K(q) (7)

+

[

tk−q −
1− x

2

(

Jq −
(

t01k−q

)2
/Ueff

)

− (1 + x)t01k t01k−q/Ueff

]

·
3

2
C(q)

}

. (8)

Here K(q) and C(q) stand for the Fourier transforms of
the static kinetic and spin correlation functions,

K(q) =
∑

f−g

e−i(f−g)q
〈

X2σ̄
f X σ̄2

g

〉

,

C(q) =
∑

f−g

e−i(f−g)q
〈

Xσσ̄
f X σ̄σ

g

〉

= 2
∑

f−g

e−i(f−g)q
〈

Sz
f S

z
g

〉

. (9)

For the LHB which corresponds to the electron-doped
cuprates, the similar Green function has been obtained
previously47. We assume that the spin system is an
isotropic spin liquid with any averaged component of
the spin being zero and the equal correlation functions

for any component of the spin,
〈

Sα
f S

α
g

〉

, α = x, y, z.

We calculate this correlation function following Ref. 47
by the method developed previously for the Heisenberg
model48,49. The resulting static magnetic susceptibility
agrees with the other calculations for the t−J model50,51.
As concerns the kinetic correlation function it is ex-
pressed via the same Green function (3).
The self-consistent treatment of the electronic and spin

systems results in the evolution of the correlation func-
tions (9), the chemical potential, and the FS as function
of doping (Fig. 1). At a small doping we get 4 hole pock-
ets close to (π/2, π/2) point as was expected for the AFM
state. At the critical concentration xc1 ≈ 0.15 the con-
nection of this pockets appears along the (π, 0) − (π, π)
line and the FS topology changes. At xc1 < x < xc2 ≈
0.24 we obtain two FS centered around the (π, π) point.
The smaller one is the electronic FS; it shrinks with dop-
ing and collapsed when x → xc2. The larger one is the
hole FS; with increasing x it becomes more rounded. At
x > xc2 only a large hole FS remains. Finally there is
one more change of the topology at x = xc3 when the FS
touches the (π, 0) point and becomes of electronic type
centered around the (0, 0) point.
Note that the values of critical concentrations are ob-

tained with the finite accuracy. First of all, model param-
eters are deduced by the complicated procedure involv-
ing the projection of the LDA wave functions in Wannier
function basis and may vary with the change of this ba-
sis. Second, the equation for the Green function (6) is
approximate and taking into account higher order cor-
rections may change values of the critical concentrations
quantitatively. On the other hand, the qualitative picture
should remain unchanged since it is due to the general

properties of the electron scattering by the AFM fluctu-
ations. Also, the qualitatively similar transformation of
the FS with doping has been obtained for the Hubbard
model in the regime of SEC (Fig. 15 in Ref. 46), in the
spin-density wave sate of the Hubbard model64, for the
spin-fermion model65, and in the ab initio multielectron
quantum chemical approach66. Qualitative agreement of
our results and results of calculations in different approx-
imations46,64,65,66 is basically due to the common under-
lying idea: the change of the electron dispersion caused
by the interaction with the short-range AFM order. How-
ever, in our approach both magnetic and electronic prop-
erties are treated self-consistently.

In Fig. 1 we also show the ARPES data on
Bi2Sr2−xLaxCuO6+y (Bi2201) from Ref. 52 and the re-
cent data16 on LSCO for doping concentrations 0.10,
0.12, and 0.16. The single crystals of Bi2201 have
been studied experimentally with different hole concen-
trations, 0.05 < p < 0.18. This crystal has one CuO2

layer in the unit cell - that is why our calculations ap-
propriate for LSCO can be used for Bi2201 with the con-
dition x = p. The question arise whether the model pa-
rameters are the same or different for the two crystals? In
the conventional single electron tight-binding model used
in Ref. 52 to fit the ARPES data the hopping parameters
depend on doping significantly. That is why the authors
of Ref. 52 claim that the ratio t′/t is different for Bi2201
and LSCO. However, as evident from figures 5a and 5b
of Ref. 52, for the lowest doping the hopping values are
close to each other for both substances. The reason is
that hopping parameters depend on the interatomic dis-
tance that is almost the same in Bi2201 and LSCO. That
is why we use the same parameters for all doping concen-
trations. The doping dependence of the band structure
and its non-rigid behavior comes up as the effect of SEC.
One of the main players in this game is the filling factor
Fσ̄2.

Comparing our calculated FS with the experimental
data in Fig. 1 we notice that for x =0.05, 0.07, 0.10,
and 0.12 the experimental Fermi arc position is close to
the calculated inner part of the hole pocket (the part
which is near the (0, 0) point). The outer part appears
as the small intensity signal at x = 0.10 and x = 0.12
in ARPES. After the Lifshitz QPT at xc1 = 0.15 we
see the two parts of the FS in agreement with ARPES
data52. Usually the outer FS (the nearest to (π, π) point)
in Bi-cuprates is ascribed as the superlattice reflection.
It may be that the superlattice signal simply mask the
part of the FS that we obtain in the calculation. An-
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FIG. 1: Calculated Fermi surface for a single-layer cuprate for different doping levels x. Fermi surface topology changes at
xc1 = 0.15 and xc2 = 0.24. ARPES data from Ref. 52 and Ref. 16 are shown in lower left and lower right corners of the
Brillouin zone, respectively.
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FIG. 2: The doping dependence of the FS area (in % of the
Brillouin zone area) calculated directly (+), from the general-
ized Luttinger theorem (solid line). The experimental values
from the quantum oscillations data10,11 are also shown.

other most probable explanation is that the scattering by
the AFM fluctuations suppresses intensity of the spectral
peaks corresponding to the outer FS. We will discuss this
scenario in the next Section.

At higher doping the ARPES results in the large
hole pocket centered around the (π, π) point53, e.g. in
Tl2Ba2CuO6+y with p = 0.26. Our calculations result in
such topology for x > xc2. According to Ref. 68, there is
an electron pocket for LSCO at x = 0.30.

Now we would like to discuss the FS area and the Lut-
tinger theorem. In Fig. 2 we give the FS area as a func-
tion of doping. Note that the standard formulation of the
Luttinger theorem does not work for Hubbard fermions.

For free electrons each quantum state in the k-space con-
tains 2 electrons with opposite spins. The spectral weight
of the Hubbard fermion is determined by the strength
operator, Pσ = Fσ̄2, and each quantum state contains
2Fσ̄2 = 1 + x electrons. A generalized Luttinger the-
orem for SEC system67 takes into account the spectral
weight of each |k〉 state. For LSCO the hole concentration
nh = 1+x, so the electron concentration ne = 1−x. Us-
ing the dispersion law (see Fig. 3b below) we calculate the
number of occupied electronic states Ne

k below the Fermi
level. The electronic concentration ne = 2Fσ̄2N

e
k = 1−x.

It gives us Ne
k = (1−x)/(1+x). Then the number of free

(occupied by holes) k-states is Nh
k = 1−Ne

k = 2x/(1+x),
and the FS area in Fig. 2 is determined by this number.
The FS area obtained by direct calculation of the occu-
pied k-state under the Fermi level is shown by crosses.
Two available FS areas from the quantum oscillations
data10,11 are also marked in the Fig. 2. It is evident
and very important that the Luttinger theorem is not
applicable in the standard formulation. On the other
hand, its generalization for the case of correlated Hub-
bard fermions describes the experimental data very well.

III. QUALITATIVE ANALYSIS OF THE

ELECTRON DISPERSION AND ARPES IN A

SYSTEM WITH THE SHORT-RANGE AFM

BACKGROUND

It was shown earlier12,13,14,15 that AFM fluctuations
transform the closed hole pocket into the arc. We will
extent the same arguments to the doping region where
AFM fluctuations are strong. The electron Green func-
tion on the square lattice with electron scattering by the
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Gaussian fluctuations that imitate the short-range AFM
order with Q = (π, π) is equal to15

GD(k, E) =
E − ε(k+Q) + ivk

(E − ε(k)) (E − ε(k+Q) + ivk)− |D|2
.

(10)
Here |D| stands for the amplitude of the fluctuating AFM
order, ε(k) is the electron energy in the paramagnetic
phase,

v = |vx(k+Q)|+ |vy(k+Q)| , vx,y(k) =
∂ε(k)

∂kx,y
. (11)

In the absence of the damping the Green function (10)
describes the electron in the spin-density wave state with
the long-range order where Umklapp shadow band is
given by ε(k+Q). On then other hand, for the AFM spin-
liquid there is a dynamical transition ε(k) → ε(k + Q)
with finite lifetime 1/τ ∼ vk.
The paramagnetic dispersion is shown in Fig. 3a by a

thin green curve and a shadow band by a dotted curve
to stress that it has the finite lifetime as follows from
equation (10). The resulting QP dispersion in the short-
range AFM state is given by a thick blue curve. With
increasing doping the Fermi level moves down from its
initial value “0” in the Fig. 3a. The first intersection
occurs along the (0, 0)− (π, π) direction and results in 4
small hole pockets. The inner part of the FS is formed
mainly by the non-damped electrons from the ε(k) band
while the outer part is formed mainly by the damped
shadow band. That is why the outer part has a very small
spectral weight and was not seen in ARPES data until
recent discovery by the laser ARPES with the ultra-high
energy resolution16 (see Fig. 1). This qualitative analysis
reproduce the calculations12,13,14,15,46.
Now we proceed to higher doping concentrations. For

x = 0.16 where AFM correlation length ξAFM ≈ 10Åwe
have two large FS centered around (π, π). Those can be
deduced from Fig. 3a by further decrease of the Fermi
energy, µ. The critical point xc1 appears when µ touches
the second peak along the (π, π) − (π, 0) direction. It is
clear from Fig. 3a that the inner FS will be of the elec-
tronic type and is formed by the damped shadow band.
Thus the corresponding spectral peaks are very small.
The outer FS is of the hole type and is formed by the
non-damped states. That is why its intensity is much
larger than that of the inner part (see Ref. 52 and Fig. 1
for x = 0.16). With further decrease of µ it will cross the
bottom of the band at x = xc2 and that corresponds to
the collapse of the electronic FS. Finally at x > xc2 the
crossing of µ with the saddle point at (π, 0) results in the
transformation of the FS from the hole to the electron
type at x = xc3. Latter takes place in a strongly OD
regime; this effect can be obtained in any conventional
single electron approach and has been discussed before69.
For comparison, we present our calculated band structure
for various doping concentration in Fig. 3b and the con-
stant energy cut in Fig. 3c. It is clear that the rigid band
approach of Fig. 3a may give the correct sequence of the
FS reconstruction but quantitatively it is wrong.
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FIG. 3: A qualitative scheme of the band structure of the
electron on the fluctuating AFM background (a), our calcula-
tions (b), and the constant-energy cuts for x = 0.10 (c). The
zero energy in (b) and (c) corresponds to the Fermi level. The
constant energy contours in (c) are labeled by the values of
the corresponding energies (in units of t).

IV. LOW TEMPERATURE

THERMODYNAMICS NEAR THE LIFSHITZ

TRANSITION

According to Lifshitz results37,38, both FS transforma-
tions at xc1 and xc2 are 2.5 order electronic phase tran-
sitions (nowadays the term QPT is used). Appearance
of a new FS sheet at ε = εc gives the additional den-
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sity of state δg(ε) = α(ε − εc)
1/2, with α ∼ 1 in a 3D

system. In spite of a strong anisotropy in cuprates they
are 3D crystals. Weak interlayer hopping results in a FS
modulation along the kz axis that has been measured by
ARPES33. That is why we can use results of Refs. 37,38
with minimal modification due to the QP spectral weight
in the strongly correlated system Fσ̄2 = (1 + x)/2.
Near the critical point the thermodynamical potential

gains additional contribution:

Ω(µ, T ) = Ω0(µ, T ) + δΩ. (12)

This singular contribution is induced by a new FS sheet
at ε > εc and is equal to

δΩ = −

∞
∫

0

δN(ε)fF (ε)dε, (13)

where fF (ε) is the Fermi function. The number of states
is given by

δN(ε) =

{

0, ε < εc
2
3α

1+x
2 (ε− εc)

3/2, ε > εc
(14)

At low temperature, T ≪ z, z = µ− εc, and close to the
QPT at z = 0 we get

δΩ =

{

−
√
π
4 (1 + x)αT 5/2e−|z|/T , z < 0

− 2
15 (1 + x)α|z|5/2 − π2

12 (1 + x)T 2|z|1/2, z > 0

(15)
It is a z5/2 singularity that tells about 2.5 phase tran-
sition. In our case z depends on doping so z(x) = 0 at
x = xc1 and x = xc2.
The singular contribution to the Sommerfeld param-

eter γ = Ce/T where Ce is the electronic specific heat,
has the following form

δγ = −
∂2δF

∂T 2
(16)

=

{ √
π
4 (1 + x)α |z|2

T 2

(

1 + 3 T
|z| +

15
4

T 2

|z|2
)

e−|z|/T , z < 0

π2

6 (1 + x)αz1/2, z > 0

We have deduced z(x) dependence near each critical
point from our band structure calculations. Obtained δγ
at T = 10K near xc1 is shown in the Fig. 4. We also plot
the experimental data39 for LSCO, where Ce has been
obtained by extrapolation of the high temperature data
for T > Tc to the low-T region. The experimental points
in Fig. 4 correspond to the total γ,

γ(x) = γ0(x) + δγ, (17)

where γ0 is a smooth function at x ≈ xc1.
Since the electron FS pocket disappears for x > xc2, for

x < xc2 our theory produce a singular behavior of γ(x)
corresponding to the case of z > 0. Measurements of
the electronic specific heat54 in NdBa2Cu3O6+y revealed
two weak maxima of γ(x) at p = 0.16 and p = 0.23 that
are close to our xc1 and xc2. To stay away from the
superconductivity, measurements of Ref. 54 were carried
out at T = 200K that explains why singularities appear
as weak maxima.
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FIG. 4: The Sommerfild parameter near the Lifshitz QPT.
Experimental data for γ = Ce/T at T = 10K were taken
from Ref. 39.

V. CONCLUSION

Previously, transformations of the FS has been dis-
cussed within a variational approach to the t−J model28.
The small hole pocket near the (π/2, π/2) point has been
obtained in the UD AFM. At large doping, the electronic
FS around (0, 0) point also has been obtained. Never-
theless, the FS for intermediate x in Ref. 28 does not
correspond to our FS and to the experimental data.

Recently there were a lot of discussions on the change
of the carrier sign upon doping. At large x, the FS be-
comes of the electronic type: in LSCO it happens at
x > 0.3055. As was mentioned above, it is rather a triv-
ial fact. More unusual are the experimental data on the
change of the Hall coefficient (RH) sign in the UD sys-
tems. This effect was observed (under a strong magnetic
field of 50÷ 60T that suppress the superconductivity) in
YBa2Cu3Oy with p =0.10, 0.12 and 0.1456, and in LSCO
with p = 0.1157. All these crystals belong to the region
x < xc1 and according to our theory should have the
small hole FS pockets. We believe that the arguments
of Ref. 58 may explain the negative total Hall coefficient
due to opposite partial contributions to RH of the FS
with opposite curvatures in the two-dimensional metal.

Low temperature transport measurements on
La1.6−xNd0.4SrxCuO4 in a strong magnetic field up
to 35T reveal the change of the FS topology at
p∗ ≈ 0.2359. This critical point is very close to our
xc2 = 0.24. Also, our theory agrees with the data of
Ref. 59 in the sense that at p = 0.24 the RH indicates
the large cylindrical FS with 1 + p holes. At p = 0.20
that corresponds to x < xc2, the RH(T ) increase at
low temperature leads to the conclusion that the FS
reconstruction and pseudogap formation happen at
p < p∗59. The critical concentration xc2 agrees with the
concentration pc = 0.23 where the van Hove singularity
in Bi2201 have been found in ARPES60,61.

There is a wide discussion in the literature on the
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quantum critical point Pcrit where the pseudogap char-
acteristic temperature T ∗(P ) → 0. According to Ref. 62,
Pcrit = 0.19 and according to Ref. 63, Pcrit = 0.27. All
these values are obtained by extrapolation from finite-T
regime. On the contrary, the two critical points xc1 and
xc2 obtained here are the properties of the ground state
and results from the Lifshitz QPT. It is well maybe that
our xc2 is somehow related to the Pcrit, at least p

∗ = 0.24
is related in Ref. 59 to the pseudogap formation at p < p∗.
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