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THE CRITICAL EXPONENT OF THE TREE LATTICE GENERATING

FUNCTION IN THE EDEN MODEL

V. E. Zobov∗

We consider the increase in the number of trees as their size increases in the Eden growth model on

simple and face-centered hypercubic lattices in different space dimensions. We propose a first-order partial

differential equation for the tree generating function, which allows relating the exponent at the critical

point of this function to the perimeter of the most probable tree. We estimate tree perimeters for the

lattices considered. The theoretical values of the exponents agree well with the values previously obtained

by computer modeling. We thus explain the closeness of the dimension dependences of the exponents of the

simple and face-centered lattices and their difference from the results in the Bethe lattice approximation.

Keywords: number of lattice trees, tree perimeter, generating function, critical exponent, hypercubic
lattice, Bethe lattice, Eden model

1. Introduction

The cluster growth in the Eden model results from randomly adding particles (sites, bonds) on the
cluster boundary with equal probability [1]–[6]. This process is especially simple on the Bethe lattice [2], [3],
where it is assumed that each new bond is added in a new dimension, and the lattice therefore has an infinite
dimension. The obtained cluster is a tree because the bonds do not intersect. We have

T1 = Z, T2 = 2Z(Z − 1), Tn =
n∏

m=1

[m(Z − 2) + 2] = (Z − 2)n Γ(n + p + 1)
Γ(p + 1)

, (1.1)

for the number of trees depending not only on the shape but also on the order of adding bonds and

Eb(x) =
∞∑

n=0

Tnxn

n!
=

(
1 − x

xb

)−1−p

(1.2)

for the generating function, where the critical point coordinate xb = 1/Zb is the reciprocal of the growth
parameter Zb = Z − 2, p = pb = 2/(Z − 2) is the exponent of the critical point of the generating function,
Z is the coordination number, and Γ(x) is the gamma function. In the limit as n → ∞, formula (1.1)
transforms into the simple asymptotic expression

Tn ∼ An! (Zc)nnp, (1.3)

where p = pb, Zc = Zb, and A = Ab = 1/Γ(pb + 1) in the Bethe approximation.
We encounter difficulties in constructing a tree on a hypercubic lattice of dimension d following the same

rules if we prohibit intersections of branches (repeated site occupations). The branch interaction caused
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by this restriction, called the excluded volume interaction [7], does not allow finding a rigorous analytic
solution of the problem, and approximate methods [1], [3] or computer modeling [4], [6] are therefore used.
The excluded volume interaction affects tree properties and makes them dependent on variants of the tree
construction. The mean squared radius and the fractal dimension in the growth models are the commonly
sought properties of a large cluster [4], [6]. The averaging is customarily taken over a relatively small
number of clusters. It is assumed that a dense cluster grows in the Eden model [5], [6].

It is interesting to investigate properties of the whole ensemble of trees, which are encoded in their
generating function introduced above in the example of Bethe trees. Such an analysis is necessary, for
example, when studying analytic properties of time spin correlation functions at high temperatures [8], [9].
Tree properties obtained by averaging over the whole ensemble differ from those obtained by averaging over
a small sample because all possibilities are realized when constructing the whole ensemble of trees and all
the perimeter bonds are taken into account one by one. Trees with a greater number of descendants, i.e.,
trees with larger perimeters therefore contribute more to the ensemble. In contrast, when constructing a
sample comprising a small number of trees, trees with smaller perimeters enter the sum with larger weight
factors because the perimeter area appears in the denominator when we determine a lattice site occupation
probability [5].

The abovementioned properties of the tree ensemble must be reflected in the analytic properties of
the generating function. Above, we advanced the hypothesis that this function has a critical point at a
finite value xc of the variable x. Because we cannot prove this statement by an exact calculation, we
must use other tools: on one hand, we perform a numerical experiment; on the other hand, we calculate the
critical point characteristics by approximate methods. The coincidence of the results of the two independent
calculations would support our hypothesis. In pursuing this program, we used Monte Carlo simulations
to estimate how the total number of trees in the ensemble increases as the number n of bonds in the tree
increases for simple (SC) [10] and face-centered (FCC) [11] hypercubic lattices of various dimensions d

(d = 2, 3, 4, 6, 8, 10). Using the 1/d-expansion, we then derived an asymptotic formula for the tree growth
parameter, which is determined as the quantity reciprocal to the coordinate of the generating function
critical point [8], [11]. We observed a good agreement between the theoretical predictions and the results of
the numerical experiment. We also extracted the generating function critical exponent from the numerical
data. The critical exponents for the SC and FCC lattices turn out to be close to each other and differ
drastically from those for Bethe lattice (1.2).

In this paper, we obtain a theoretical expression for the critical exponent and explain its dependence
on the space dimension. We derive a differential equation for the tree ensemble generating function in the
next section. We describe the tree ensemble growth using the most probable tree, which is characterized by
two parameters: the growth (external) perimeter and the inner (dead) perimeter. In Sec. 3, we calculate
these parameters for the SC and FCC lattices in various dimensions. In Sec. 4, we compare the obtained
critical exponents with those from the simulations. We analyze the tree characteristics of the Bethe lattice
in the appendix.

2. The equation for the generating function

When a tree is constructed on the Bethe lattice of an infinite space dimension, each new vertex can be
developed into a branch of arbitrary length. When trees are constructed on a finite-dimensional hypercubic
lattice under the nonintersecting-branch condition, some of the branches cannot be continued (dead ends),
and only the other branches constituting the skeleton can grow further. Here we use the terminology
proposed for describing the structure of an infinite cluster in percolation theory [12]. Two variants are
realized in passing from the ensemble Nn of trees with n bonds to an ensemble of Nn+1 trees with n+1
bonds:

1444



1. The bond is added at a dead end, and the perimeter does not increase.

2. The bond is added to a skeleton and the perimeter increases (the added bond is then actually inside
the branch, not at its end, because adding a bond at a branch end results in the shift of the surface
when constructing a large tree, with the result that the inner tree part increases).

We therefore consider the perimeter S of a tree on a hypercubic lattice to be composed of three parts:

ν + mν1 + mν2, (2.1)

where ν is the initial perimeter (ν = Z), ν1 is the part of the perimeter that results in the skeleton increasing
(the external or growth perimeter), and ν2 is the part of the perimeter from which dead ends grow (the
internal or dead perimeter). For the Bethe lattice, ν2 = 0 and ν1 = Z − 2.

Partition (2.1) of the perimeter S into the three parts is a rough simplification that we use to describe
the pattern qualitatively. Each separate tree can have its own perimeter. When calculating the total
number of trees in the ensemble exactly, we must sum over all the perimeter values,

Nn+1 =
∑

S

SNn(S) ∼=
∑

m

(ν + mν1 + mν2)Nn(ν + mν1 + mν2), (2.2)

where Nn(S) is the number of trees with the perimeter S that are composed of n bounds. When an ensemble
of large trees is analyzed, these values tend to some means. If the distribution of trees with respect to the
perimeter is narrow, then the growth comes from trees with the most probable mean parameters,

Nn+1 ≈ (m̄ν̄1 + m̄ν̄2)
∑

m

Nn(ν + mν1 + mν2) = m̄(ν̄1 + ν̄2)Nn. (2.3)

On the other hand,
Nn+1 = ZcnNn.

Hence,

Zc =
m̄(ν̄1 + ν̄2)

n
(2.4)

(we omit the bar over the quantities in what follows). We note that such a transition was used, for
example, in theory of disordered systems when determining the electron spectrum level density by the
optimal fluctuation method (seeking the most probable configuration of impurities) [12].

To better understand the proposed description of the tree ensemble growth, we turn to the clear picture
of a continuous model. We consider two occupied sites to be connected if their mutual distance is less than
r. Let a cluster composed of n occupied connected sites be characterized by the free volume of ν+mν1+mν2

accessible sites. When a new site is added, it can fall either into the internal volume or on the surface, and
the number of trees in the ensemble increases ν +mν1 +mν2 times. The number of fallings on the surface is
ν +mν1. In this case, both the internal volume and the surface of the tree increase, and the latter becomes
ν + (m + 1)(ν1 + ν2). The number of fallings into the internal volume is mν2; both the internal volume and
the tree surface then remain unchanged.

We have recurrence relations for the number of trees with a given perimeter value Nn(m) ≡ Nn(ν +
mν1 + mν2) growing in accordance with the above rules:

N0(0) = 1, N1(1) = νN0(0) = ν,

N2(1) = ν2N1(1) = ν2ν,

N2(2) = (ν + ν1)N1(1) = (ν + ν1)ν,
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or, in general form,

Nn(m) = [ν + (m − 1)ν1]Nn−1(m − 1) + mν2Nn−1(m). (2.5)

We introduce the exponential tree generating function,

F (x, y) = 1 +
∞∑

n=1

n∑

m=1

xnymNn(m)
n!

. (2.6)

Multiplying both sides of Eq. (2.5) by xnym/n! and summing, we obtain the equation for the generating
function:

F (x, y) = 1 +
∫ x

0

[
νyF (x1, y) + ν1y

2 ∂

∂y
F (x1, y) + ν2y

∂

∂y
F (x1, y)

]
dx1. (2.7)

Differentiating both parts of Eq. (2.7) with respect to x, we obtain the inhomogeneous linear first-order
partial differential equation

∂F

∂x
= (ν1y

2 + ν2y)
∂F

∂y
+ νyF. (2.8)

We solve Eq. (2.8) using the method of characteristics [13],

F (x, y) =
[
1 − y

ν1

ν2
(eν2x − 1)

]−ν/ν1

. (2.9)

According to formula (2.6), the parameter x determines the number of trees, and the parameter y

determines their distribution with respect to the perimeter. Generating function (2.9) treated as a function
of x develops a singular point at x = xc:

xc =
1
ν2

log
(

1 +
ν2

yν1

)
. (2.10)

The critical exponent is

1 + p =
ν

ν1
. (2.11)

Based on formulas (2.6) and (2.9), we can approximately set

Nn =
n∑

m=1

ymNn(m) ≈ x−n
c (2.12)

for large trees. It hence follows that Zc = 1/xc. We obtain the mean perimeter from (2.12),

m̄ = lim
y=1

n∑

m=1

mym Nn(m)
Nn

= lim
y=1

d

dy
log Nn ≈ −n lim

y=1

d

dy
log xc =

n

(1 + ν1/ν2) log(1 + ν2/ν1)
,

and we can verify that formula (2.4) is satisfied.
For the Bethe lattice, ν2 = 0, and it follows that m̄ ≈ n. We can easily see that the known results are

reproduced from (2.10) and (2.11) by setting ν1 = Zb = Z − 2 and ν = Z.
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Fig. 1. A part of the most probable tree (the selected vertex is encircled).

3. The perimeter of the most probable tree

We set the origin at a lattice site. We write the coordinates of other sites measured in lattice parameters
in the form

(a1, a2, . . . , ad). (3.1)

The nearest neighbors in the SC lattice are situated along the coordinate axes and have only one nonzero
coordinate ai = ±1 in representation (3.1), where i = 1, . . . , d. Two coordinates of the nearest neighbors
differ from zero in formula (3.1) for the FCC lattice:

ai = ±1
2
, aj = ±1

2
, i, j = 1, . . . , d.

For the coordination number Z, we hence have Z = 2d for the SC lattice and Z = 2d(d − 1) for the FCC
lattice.

In the appendix, we find a useful characteristic for large trees on the Bethe lattice: their mean number
of branches per internal vertex is

L =
Z − 2
Z − 1

. (3.2)

For large Z, the most probable tree therefore contains mostly vertices at which three occupied bonds meet
(see Fig. 1). We call occupied bonds edges. Vertices with other numbers of incident edges can also appear
in a tree, but they must be rare. When constructing trees on hypercubic lattices, we assume that the
growth of the number of trees in the ensemble is governed by three-valent vertices, and we determine their
contribution ν1 to the perimeter.

The SC lattice. We consider a most probable tree on the SC lattice of dimension d. We choose an
internal vertex with three incident edges, which we call close edges. Such a vertex has Z−3 free bonds.
Two edges, which we call far edges, come from each vertex at the end of a close edge. In the most probable
configuration, all these six far edges have different directions. Then one of the free bonds of the given vertex
is parallel to each such edge. The site at the end of this bond is the site closest to the end of the parallel
edge (see Fig. 2a). Such a site can be equiprobably joint to either the starting or the terminal vertex of
this edge. Therefore, these six free bonds all enter the mean perimeter of the selected vertex ν1 with the
factor 1/2:

ν1 = Z − 3 − 6
2

= Z − 6. (3.3)

We now find corrections of the order 1/Z to the obtained solution. First, the direction of a far edge
can coincide with the direction of a close edge. In this case, one of the six directions of the selected vertex
bonds becomes free, i.e., the perimeter increases by 1/2. The probability that the direction of one of the six
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Fig. 2. Reducing the contribution of a free bond in the perimeter because the site is close to several

tree vertices in the SC lattice with (a) ν11 = 1/2 and with (b) ν11 = 1/3 and in the FCC lattice with

(c) ν11 = 1/2.

far edges coincides with the direction of one of the three close edges is 6 ·3/Z. The corresponding correction
to perimeter (3.3) is 9/Z.

Second, the directions of two of the six far edges may coincide. The probability is 12/Z. In this case,
one of the directions becomes free, and the contribution to ν1 of the free bond whose direction coincides with
the directions of these two far edges (see Fig. 2b) changes from 1/2 to 1/3. The corresponding correction
to perimeter (3.3) is then 4/Z.

Taking the corrections into account, we obtain

ν1 = Z − 6 +
13
Z

. (3.4)

For three-dimensional lattices with Z = 6, the correction is not small, and we must improve result (3.4)
by taking the finite number of positions into account. We begin with the placement of the three close
edges around the selected vertex. These edges can be situated either in one plane or along three different
coordinate axes. The respective probabilities of these placements are

p11 =
1

d − 1
, p12 =

d − 2
d − 1

. (3.5)

We now segregate one of Z − 3 = 2d− 3 free bonds of the selected vertex. This bond is in a new dimension
with the probability

p21 =
2(d − 2)
Z − 3

, p22 =
2(d − 3)
Z − 3

(3.6)

depending on the type of close-edge placement (3.5). But this bond can also be on the same axis as a close
edge with the respective probabilities

p31 = 1 − p21 =
1

Z − 3
, p32 = 1 − p22 =

3
Z − 3

. (3.7)

We now consider the placement of far edges. Neglecting the probability that two ends of far edges
meet at a site, which is of the second order of smallness, the total number of variants of their placements is

D3 =
[
(Z − 1)(Z − 2)

2

]3

. (3.8)

We now segregate these variants with respect to the site at the end of the chosen free bond:

1. No edge is in close proximity; the contribution of the free bond to the perimeter is ν11 = 1.

2. One edge is in close proximity; the contribution of the free bond to the perimeter is ν11 = 1/2.
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3. Two edges are in close proximity; the contribution of the free bond to the perimeter is ν11 = 1/3.

4. Three edges are in close proximity; the contribution of the free bond to the perimeter is ν11 = 1/4.

It turns out that the number of variants in these classes is independent of the above segregated patterns of
mutual close-edge placement (3.5) but does depend on the position of the chosen free bond. If this bond is
directed along the same axis as one of the close edges but oppositely to it, then edges coming from the end
of this edge cannot be close to the end of the chosen bond. For the number of variants in this case, we have

1. No edge is in close proximity; W ′
0 = D[(Z − 2)(Z − 3)/2]2.

2. One edge is in close proximity; W ′
1 = 2D(Z − 2)[(Z − 2)(Z − 3)/2].

3. Two edges are in close proximity; W ′
2 = D(Z − 2)2.

If the chosen free bond has a new direction, then we have the following variants:

1. No edge is in close proximity; W0 = [(Z − 2)(Z − 3)/2]3.

2. One edge is in close proximity; W1 = 3(Z − 2)[(Z − 2)(Z − 3)/2]2.

3. Two edges are in close proximity; W2 = 3(Z − 2)2[(Z − 2)(Z − 3)/2].

4. Three edges are in close proximity; W3 = (Z − 2)3.

From formulas (3.5)–(3.7), we find that the sum of probabilities for the two positions of the chosen free
bond is

Pc = p11p31 + p12p32 =
3d − 5

(d − 1)(Z − 3)

in the case where the free bond direction coincides with the direction of a close edge and

Pn = p11p21 + p12p22 =
2(d − 2)2

(d − 1)(Z − 3)

in the opposite case.
We find the averaged contribution of the free bond by the formula

ν̄11 = Pc

2∑

m=0

W ′
m

(m + 1)D3
+ Pn

3∑

m=0

Wm

(m + 1)D3
. (3.9)

Multiplying this result by the total number of free bonds of the selected vertex, we find its mean perimeter
ν1 = ν̄11(Z − 3).

The square lattice. Result (3.9) is also formally applicable to the case d = 2. But according to (3.2),
L = 2/3 for Z = 4, and to increase the accuracy, we must take vertices with two edges and the prohibition of
intersections of far edges into account. This results in the following interpretation: if we arbitrarily choose
three internal vertices of a large tree, then on the average, two of them are incident to three edges, and one
is incident to two edges. The possible types of environment of such vertices in the square lattice are shown
in Fig. 3 (we do not take vertices with four incident edges into account, because, first, they are rare and,
second, they do not have free bonds and therefore contribute nothing to ν1). For each diagram in the figure,
we indicate its contribution to the perimeter ν1i and its relative weight Ki equal to the number of possible
placements of the far edges on the lattice for a given placement of the close edges and a given topology
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Fig. 3. The variants of the spatial placement of (a) two branches and (b) three branches around the

selected vertex in the square lattice.

of the diagram. We obtain the mean contribution of a vertex by separately summing the contributions of
vertices with different numbers of branches by the formula

ν1 =
1
3

∑
i Kiν1i∑

i Ki
+

2
3

∑
j Kjν1j∑

j Kj
.

We therefore have
ν1 =

1
3

62
57

+
2
3

104
222

∼= 0.67. (3.10)

The FCC lattice. We take an internal vertex incident to three edges of a most probable tree situated
on the FCC lattice. We choose one of the three edges starting at this vertex and terminating at the site
(0, . . . , ai, 0, . . . , aj , . . . , 0) ≡ (ai, aj). For convenience here and hereafter, we omit zero coordinates in
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formula (3.1). The bonds close to the given edge are those that begin at the selected vertex and terminate
at the sites (aj , af ) and (ai, af ), where we choose the coordinate af among d−2 free directions and it may
take the values ±1/2. We therefore have ω=4(d−2) close bonds. The site at the end of each such bond is
also closest to the second end of the chosen edge (see Fig. 2c), i.e., we have ω triangles of bonds around
each edge. Such a site can be equiprobably joint to either the starting or the terminating vertex of the
given edge. Therefore, 3ω bonds in these triangles constructed on the base of three edges enter the mean
perimeter ν1 of the selected vertex with the coefficient 1/2:

ν1 = Z − 3 − 3ω

2
= Z − 3 − 6(d − 2).

We next find corrections of the order 1/Z to the obtained solution. The first correction comes from
the overlapping of free bonds of two triangles constructed at different close edges. The second correction
comes from the far edges.

To estimate corrections of the first type, we consider a site in the center incident to Z vacant bonds.
We choose an arbitrary vacant bond that links this site to an empty site with the coordinates (ai, aj). There
remain Ω=Z−1 vacant bonds into which we can distribute three indistinguishable edges in M ways, where

M =
Ω(Ω − 1)(Ω − 2)

6
. (3.11)

This set of states can be segregated into four classes with respect to the chosen bond:

1. No edge is close to the given bond; M0 = (Ω − ω)(Ω − ω − 1)(Ω − ω − 2)/6.

2. One edge is close to the given bond; M1 = ω(Ω − ω)(Ω − ω − 1)/2.

3. Two edges are close to the given bond; M2 = (Ω − ω)ω(ω − 1)/2.

4. Three edges are close to the given bond; M3 = ω(ω − 1)(ω − 2)/6.

For the mean contribution of a given bond to the perimeter, we obtain

ν̄11 =
3∑

m=0

Mm

(m + 1)M
. (3.12)

We hence obtain the perimeter as the total contribution of Z−3 vacant bonds,

ν1 = ν̄11(Z − 3) ≈ Z

(
1 − 3

d
+

11
2d2

)
. (3.13)

We now consider the contributions of far edges. In the general form, these are edges linking the sites
(ai, aj) and (ai, aj , ak, af ). Taking all possible edge placements into account, we find the formula for the
number of sites accessible to the end of a far edge,

V =
Z(d − 2)(d − 3)

3
+ 2Z(d − 2) + 2Z + 2d. (3.14)

Let three close edges and six far edges be distributed randomly and independently. We choose a vacant
bond beginning at the center and calculate its contribution to the perimeter diminished by the possibility
of edges to be in a close proximity to this bond.
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We first distribute three close edges with the above probabilities Mm/M of m edges falling into the
domain ω. We then distribute six far edges. The total number of distributions of six indistinguishable far
edges into the domain G = V − 4 that remains after distributing three close edges is

Q =
G(G − 1)(G − 2)(G − 3)(G − 4)(G − 5)

6!
. (3.15)

We now segregate these states into classes depending on the number of far-edge terminal points falling into
the closest neighborhood of the given vacant bond terminal point consisting of Ω=Z−1 sites. For the mean
contribution of one bond to the perimeter, we obtain

ν̄11 =
6∑

n=0

3∑

m=0

Pmn

(m + n + 1)
, (3.16)

where

Pmn =
Mm(G − Ω + m)! (Ω − m)!

MQ(G − Ω + n + m − 6)! (Ω − m − n)! (6 − n)! n!
. (3.17)

We hence find the selected vertex perimeter, which is the sum of the contributions of Z−3 vacant bonds,

ν1 = ν̄11(Z − 3) ≈ Z

(
1 − 3

d
− 7

2d2

)
. (3.18)

We recall that we assume that the far-edge terminal points are distributed homogeneously in the
domain V given by (3.14). If we consider an isolated system of two joined edges, then the probability of
coming to a site depends on the distance of this site from the center. It is well known that the position
of the end of a long chain without excluded volume interactions is described by the Gaussian distribution.
Volume interactions diminish the probability of coming to the center [7]. Our homogeneous distribution,
on one hand, simplifies estimates and, on the other hand, somehow takes the effect of the excluded volume
interaction on the structure of a most probable tree into account.

4. Calculating the exponent and discussing the results

The generating function critical exponent is determined by formula (2.11) in terms of the mean perime-
ter. The dependence of the exponent p on d calculated by formulas (3.12) and (3.16) is depicted in Fig. 4
together with results based on data that we obtained previously using Monte Carlo simulations [10], [11].
For d = 2, we take the value ν1

∼= 0.67 obtained above (see (3.10)), which results in p ≈ 5. We observe that
theoretical estimates agree well with the results of numerical experiment. At the same time, we observe that
these values of the exponent differ substantially from those obtained by Bethe lattice approximation (1.2).

Another important parameter determining the growth of trees in the ensemble is the growth param-
eter Zc. We studied its dependence on d for the SC and FCC lattices in [8]–[11]. The results of the
simulations and the 1/d-expansion agree well. In the above model, the growth parameter is determined by
formula (2.10). We assume that Z = ν = ν1 + ν2/c + δ and transform formula (2.10):

Z

Zc
= (1 + p)

log(1 + a)
a

, (4.1)

where a = ν2/ν1 = cp(1 − δ/Z) − cδ/Z. In the Bethe lattice case, ν = Z, ν2 = 0, ν1 = Zc = Z − 2, and
δ = 2. The results of numerical experiments for hypercubic lattices demonstrate that δ > 2 and 2 > c > 1.
The physical meaning of the parameter c is that when all varieties of trees are constructed, bonds entering
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Fig. 4. The dependences of exponents on the space dimension for the SC lattices (squares) and for

the FCC lattices (triangles): �, �, and solid lines are the results of numerical experiments in [10], [11];

�, �, and dashed lines are the results of calculations using the obtained formulas. Dash–dot lines

correspond to the Bethe approximations of (1) the SC lattices and (2) the FCC lattices.

ν2 can be built in trees in different ways, for example, a branch can pass them in two ways: either in one
direction or in the opposite one.

Substituting the asymptotic expressions for the perimeter ν1, we obtain an approximate expression for
the exponent at d � 1. For the SC lattice, we obtain

p =
3 − 13/4d

d − 3 + 13/4d
(4.2)

from formula (3.4), and for the FCC lattice, we obtain

p =
3 + 7/2d

d − 3 − 7/2d
(4.3)

from formula (3.18).
Exponents (4.2) and (4.3) coincide up to corrections linear in 1/d. The second-order corrections differ.

An insufficient accuracy of the numerical experiment (20%), which is due to restrictions on the size of trees
accessible for simulation does not allow proving or disproving these small differences. On the other hand,
theoretical results (4.2) and (4.3) may differ because of inaccuracy in determining the most probable tree
used when calculating the mean perimeter ν1.
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Substituting the values of Z, we find

pb =
1

d − 1
, pb =

1
d(d − 1) − 1

(4.4)

for the respective SC and FCC lattices in the Bethe approximation.
The principal difference between the two approaches is how we take branches infinitely growing from

a vertex into account. In the above Bethe lattice approximation, these are all Z−1 branches. The inde-
pendence of the growing branches is reflected in the structure of Eqs. (A.2) and (A.3) (see the appendix)
for the generating functions, while only a small fraction of branches can grow infinitely on the hypercubic
lattices because branch intersections are prohibited. To take the branch excluded volume interaction into
account, we attacked the problem of deriving an equation for the generating function by analyzing the
growth of the whole perimeter, not the growth of separate branches. A new form of generating function
equation (2.8) allowed reducing the problem of taking the excluded volume interaction into account to the
problem of determining local properties of the most probable tree vertex environment, which ultimately
allowed explaining the simulation results.

Appendix: Tree characteristics on the Bethe lattice

We consider the Bethe lattice with the coordination number Z. In addition to tree generating func-
tion (1.2), we use the generating function of the so-called trees with pending root such that only one bond
is attached to the root,

E1(x) =
(

1 − x

xb

)−1/(Z−2)

. (A.1)

Different tree branches are constructed independently in the Bethe approximation, and generating
function (A.1) therefore satisfies the self-consistency equation

E1(x) = 1 +
∫ x

0

(
E1(x)

)q
dx1, (A.2)

where q = Z − 1. We introduce the function Eq(x) =
(
E1(x1)

)q by the equation

Eq(x) = 1 +
q∑

k=1

(
q

k

)[ ∫ x

0

Eq(x1) dx1

]k

, (A.3)

which is obtained from (A.2) and is represented as a sum over the number k of branches growing from the
vertex. In the summation, we insert the weight factor bk−1 of the number of branchings,

Eq(x) =
q∑

k=0

bk−1

(
q

k

)[ ∫ x

0

Eq(x1) dx1

]k

. (A.4)

We introduce the function

Y = 1 + b

∫ x

0

Eq(x1) dx1, (A.5)

in which we set a = 1 − b and obtain the equation

dY

dx
= Y q − a
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from (A.4). Its solution can be written in the form

x =
∫ Y

1

dy

yq − a
.

We hence obtain the equation for the critical point coordinate:

xc =
∫ ∞

1

dy

yq − a
,

d

db
xc = −

∫ ∞

1

dy

(yq − a)2
.

In particular, at b = 1 (a = 0), we have

xc =
1

Z − 2
,

d

db
xc = − 1

2Z − 3
.

We introduce two mean characteristics of trees composed of n bonds: the mean number B of branchings
and the mean number L of branchings per internal site, which we define by the formulas

B =
d

db
log Tn(b) ≈ −n

d

db
log xc, L =

B

n − B − 1
. (A.6)

In particular, for b = 1 (a = 0), we have

B = n
Z − 2
2Z − 3

, L =
Z − 2
Z − 1

.
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