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The General Relativity formulated with the aid of the spin connection coefficients is considered in the
finite space geometry of similarity with the Dirac scalar dilaton. We show that the redshift evolution
of the General Relativity describes the vacuum creation of the matter in the empty Universe at the
electroweak epoch and the dilaton vacuum energy plays a role of the dark energy.

© 2010 Elsevier B.V. Open access under CC BY license. 
The distance-redshift dependence in the data of the type Ia su-
pernovae [1] is a topical problem in the standard cosmology (SC).
As it is known, the SNeIa distances are greater than the ones pre-
dicted by the SC based on the matter dominance idea [2]. There
are numerous attempts to resolve this problem with a various de-
gree of success (see for review [3]). One of the popular approaches
is the �-Cold-Dark-Matter model [4]. It provides, however, the
present-day slow inflation density that is less by factor of 10−57

than the fast primordial inflation density proposed to include the
Planck epoch.

Approaches to the General Relativity (GR) with conformal sym-
metry provide a natural relation to the SC [5]. The Dirac version
[6] of the geometry of similarity [7] is an efficient way to include
the conformal symmetry into the GR. In fact, the latter approach
allows to explain the SNeIa data without the inflation [8]. In the
present Letter, the Dirac formulation of the GR in the geometry of
similarity is adapted to the diffeo-invariant Hamiltonian approach
by means of the spin connection coefficients in a finite space–time,
developed in [9]. In this way we study a possibility to choose
variables and their initial data that are compatible with the ob-
servational data associated with the dark energy content. We find
integrals of motion of the metric and matter fields in terms of the
variables distinguished by the conformal initial data.
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Within the Dirac approach the Einstein–Hilbert action takes the
form

WHilbert = −
∫

d4x |−e|1

6
R(e)

∣∣∣∣
e=e−D ẽ

= −
∫

d4x

[ |−ẽ|e−2D

6
R(ẽ)− e−D∂μ

(|−ẽ|g̃μν∂νe−D)]
.

(1)

Hereafter, we use the units M2
Planck

3
8π = 1. The interval is defined

via diffeo-invariant linear forms ω(α) = e(λ)μ dxμ with the tetrad
coefficients

ds2 = gμν dxμ dxν = ω(α)(d) ⊗ ω(β)(d)η(α)(β);
η(α)(β) = Diag(1,−1,−1,−1). (2)

The geometry of similarity [6,7] means the identification of mea-
sured physical quantities F (n) , where (n) is the conformal weight,
with their ratios in dilaton units e−nD

F̃ (n) = enD F (n), d̃s2 = e2D ds2. (3)

We define the measurable space–time coordinates in the GR as
the scale-invariant quantities in the framework of the Dirac–ADM
4 = 1 + 3 foliation [10,11]

d̃s2 = ω̃(0) ⊗ ω̃(0) − ω̃(b) ⊗ ω̃(b), (4)

where the linear forms ω̃(α) = ẽ(α)μ dxμ are
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ω̃(0) = e−2D N dx0, (5)

ω̃(b) = ω(b) + e(b) j N
j dx0, (6)

ω(b) = e(b)i dxi . (7)

Here N is the Dirac lapse function, N j are the shift vector com-
ponents, and e(b)i are the triads corresponding to the unit spatial

metric determinant |g̃(3)
i j | ≡ |e(b) je(b)i | = 1.

The Dirac dilaton D = −(1/6) log |g(3)
i j | = 〈D〉 + D , is taken

in the Lichnerowicz gauge [12]. The Dirac lapse function N =
N0(x0)N (τ , x) is split on the global factor N−1

0 = 〈N−1〉 which
determines all time intervals used in the observational cosmol-
ogy: the redshift interval dτ = N0 dx0 [13], the conformal one
dη = dτ e−2〈D〉, and the world interval dt = e−〈D〉 dη = dτ e−3〈D〉.
In this case the dilaton zeroth mode 〈D〉 = V −1

0

∫
V 0

d3x D (defined
in the finite diffeo-invariant volume) coincides with the logarithm
of the redshift of spectral line energy Em

〈D〉 = log(1 + z) = log
(

Em(η0 − η)/Em(η0)
)
, (8)

where η0 is the present-day conformal time interval, and η0 −η =
r/c is the SNeIa distance. In accord with the new Poincaré group
classification, the “redshift” (8) is treated as one of the matter
components, on the equal footing with the matter.

The key point of our approach is to express the GR action di-
rectly in terms of the redshift factor. The action can be represented
as a sum of the dilaton and the graviton terms:

WHilbert =
∫

dx0
[
− (∂0〈D〉)2

N0
+ N0e−2〈D〉Lg

]
, (9)

Lg = e2〈D〉
∫

d3x N
[
−(v D)2 + v2

(ab)

6
− e−4D R(3)

6

]
. (10)

Here,

R(3) = R(3)(e) − 4

3
e7D/2�e−D/2, (11)

is the curvature, where R(3)(e) is expressed via the spin-connection
coefficients

ω±
(ab)

(∂(c)) = 1

2

[
e j
(a)∂(c)e

j
(b)

± ei
(b)∂(c)e

i
(a)

]
, (12)

and � = ∂i[ei
(a)e

j
(a)∂ j] is the Laplace operator.

The dependence of the linear forms

ω(b)(d) = e(b)i dxi = dX(b) − X(c)e
i
(c) de(b)i (13)

on the tangent space coordinates X(b) ≡ ∫
dxi e(b)i = xie(b)i by

means of the spin connection coefficients can be obtained by
virtue of the Leibniz rule A dB = d(AB) − (AB)d log(A) (in par-
ticular d[xi]eT

bi = d[xieT
bi] − xi d[eT

bi]). The difference between this
approach to gravitation waves and the accepted one [14,15] is that
the symmetry with respect to diffeomorphisms is imposed on spin
connection coefficients.

The linear graviton form (12) can be expressed via two photon-
like polarization vectors ε

(α)
(a) (k). By virtue of the condition

∑
α=1,2

ε
(α)
(a) (k)ε

(α)

(b)
(k) = δ(a)(b) − k(a)k(b)

k(2)
, (14)

one obtains

ω+
(ab)

(∂(c)) =
∑

k2 �=0

eikX

√
2ωk

k(c)
[
εR
(ab)(k)g+

k (η) + εR
(ab)(−k)g−

k (η)
]
,

(15)
where εR
(ab)

(k) = diag[1,−1,0] in the orthogonal basis of spatial

vectors [	ε(1)(k), 	ε(2)(k),k]. Here, g± are the holomorphic variables
of the single degree of freedom, ωk = √

k2 is the graviton energy
normalized (like a photon in QED) on the units of a volume and
time

g±
k =

√
8π

MPlanck V 1/2
0

g±
k . (16)

The triad velocities

v(ab) = 1

N

[
ω+

(a)(b)

(
∂0 − Nl∂l

) + ∂(a)N⊥
(b) + ∂(a)N⊥

(b)

]
(17)

depend on the symmetric forms ω+
(ab)

, and the shift vector compo-

nents ∂(b)N⊥
(b)

= 0 are treated as the non-dynamical potentials. This

means that the anti-symmetric forms ω−
(ab)

are not dynamically in-
dependent variables but are determined by a matter distribution.

Following Dirac [10,16] one can define such a coordinate sys-
tem, where the covariant velocity v D of the local volume element
and the momentum

P D = 2v D = 2

N

[(
∂0 − Nl∂l

)
D + ∂l N

l/3
] = 0 (18)

are zero. As a result, the dilaton deviation D can be treated as a
static potential. The dilaton contribution to the curvature (11) with
matter sources yield the Schwarzschild solution of classical equa-
tions �[exp{−7D/2}N ] = 0 and �exp{−D/2} = 0. The solutions
are exp{−7D/2}N = 1 + rg/(4r) and exp{−D/2} = 1 − rg/(4r) in
the isotropic coordinates of the Einstein interval ds, where rg is
the gravitation radius of a matter source. These solutions double
the angle of the photon beam deflection by the Sun field, exactly
as the Einstein’s metric determinant. Note that the GR theory pro-
vides also the Newtonian limit in our variables (see details in [9]).
Furthemore, in empty space without a matter source (rg = 0), the
mean field approximation (N = 1, D = 0, Nl = 0) becomes exact.

If there are no matter sources one can impose the condition
ω−

(a)(b)
= 0, since the kinetic term (17) depends only on ω+

(ab)
com-

ponents. In this case the curvature (11) takes the bilinear form

R(3)(e) = ω+
(ab)

(∂(c))ω
+
(ab)

(∂(c)). (19)

The variation of the Hilbert action with respect to the lapse
function leads to the energy constraint [17]
(
∂τ 〈D〉)2 = ρcrΩ〈D〉 + e−2〈D〉Hg/V 0, (20)

where the dilaton integral of motion ρcrΩ〈D〉 is added, ρcr =
H2

0 M2
Pl3/(8π) is the critical density, and

Hg = e2〈D〉
∫

d3x N
[

3p2
(ab) + e−4D R(3)

6

]
(21)

is the graviton Hamiltonian, p(ab) = v(ab)/3 is a canonical momen-
tum (see Eq. (17)).

Straightforward calculations define a set of evolution equations
for the Lagrangian Lg (10) and the Hamiltonian Hg (21)

∂〈D〉Hg = 2Lg, (22)

∂〈D〉Tg = 2e−2〈D〉Lg, (23)

∂〈D〉Lg = 2Hg − 2e−2〈D〉Tg, (24)

where Tg =
√

H2
g − L2

g .

Note, the GR equations in terms of the spin-connection coef-
ficients (22)–(24) coincide with the evolution equations for the
parameters of squeezing rb and rotation θb [18]
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∂〈D〉rb = cos 2θb, (25)

ωso − ∂〈D〉θb = coth 2rb sin 2θb (26)

of the Bogoliubov transformations A+ = B+ cosh reiθ + B− sinh reiθ

for a squeezed oscillator (SO) ∂〈D〉 A± = ±iωso A± + A∓ . Indeed,
Eqs. (25), (26) establish similar relations for the expectation val-
ues of various combinations of the operators A± with respect to
the Bogoliubov vacuum B−| 〉 = 0 (see details in [17])

Nb ≡ 〈∣∣A+ A−∣∣〉 = cosh 2rb − 1

2
≡ ω−1

so :Hb:, (27)

i

4

〈
A− A− − A+ A+〉 = sinh 2rb sin 2θb

2
≡ ω−1

so Tb, (28)

1

4

〈
A+ A+ + A− A−〉 = sinh 2rb cos 2θb

2
≡ ω−1

so Lb. (29)

On the other hand, Eqs. (10), (15), (19), and (21) show up that
the graviton action (9) has a bilinear oscillator-like form

Hg =
∑

k

Hk, Hk = ωk

2

[
g+

k g−
−k + g−

k g+
−k

]
,

Lg =
∑

k

Lk, Lk = ωk

2

[
g+

k g+
−k + g−

k g−
−k

]
,

Tg =
∑

k

T k, T k = iωk

2

[
g+

k g+
−k − g−

k g−
−k

]
, (30)

where

g±
k = [gk

√
ωk ∓ ipk/

√
ωk ]/√2 (31)

are the classical variables in the holomorphic representation [15].
The form (31) suggests itself to replace the variables g±

k by cre-
ation and annihilation graviton operators. Evidently, in this case
we have to postulate the existence of a stable vacuum |0〉. As a
consequence, it is reasonable to suppose that the classical graviton
Hamiltonian (see Eqs. (30)) is the quantum Hamiltonian averaged
over coherent states [19]. One may speculate that such proce-
dure reflects a transformation of a genuine quantum Hamiltonian
(describing the initial dynamics of the Universe) to the classical
Hamiltonian, associated with present-day dynamics.

Having the correspondence between two sets of equations (22)–
(24) for the GR and (27)–(29) for the SO, we are led to the ansatz
that the SO is the quantum version of our graviton Hamiltonian
(see also [14]). This is a central point of our construction. As a
result, the normal ordering of the graviton Hamiltonian yields

Hg = Hb = :Hb: + ωc

2
, Lg = Lb, Tg = Tb, (32)

where ωc = ωsoe2〈D〉 [17]. The normal ordering creates the Casimir-
type vacuum energy ωc = 0.09235/(2rh) [20], where rh is the
radius of the sphere defined by the Hubble parameter.

The solution of Eqs. (22)–(24) is shown at Fig. 1. In accordance
with this solution, at the tremendous redshift 1 + z = e〈D〉 = a−1,
z → ∞, a = 0, Eq. (20) is reduced to the zeroth mode dilaton inte-
gral of motion Ω〈D〉 which corresponds to the z-dependence of the
Hubble parameter H(z) = H0(1+ z)2. At this moment, the Universe
was empty, and all particle densities had the zero initial data. The
same dilaton vacuum regime H(z) = H0(1 + z)2 is compatible with
the SNeIa data [1] in the geometry of similarity (3) [8].

The next step is the creation of gravitons induced by the di-
rect dilaton interaction. A hypothetic observer being at the first
instance at rI = 1/H I in the primordial volume V I = 4πr3

I /3 ob-
serves the vacuum creation of these particles with the primordial
density
Fig. 1. The creation of the Universe distribution [Nk = Nb] (27) versus dimensionless
time η and energies 0.5 � ωk at the initial data Nk(η = 0) = 0 and the Hubble
parameter H(η) = 1/(1 + 2η) = (1 + z)2.

ΩgI = ωc · H2
0

M2
Pl.

· (1 + zI)
8 (33)

defined by the Casimir energy. The question which remains to an-
swer is how to define zI?

In order to estimate the instance of creation (1 + zI), one
can add the Hamiltonian of the Standard Model (SM): Hg → H =
Hg + HSM—when in the limit (1 + zI) → ∞ and a → 0 all particles

become nearly massless
√

k2 + a2M2
0 → ωk . In this case, the same

mechanism of intensive particle creation works also for any scalar
fields including four Higgs bosons [21]

ΩI Higgs = 4ΩgI. (34)

The decays of the Higgs sector including longitudinal vector W and
Z bosons approximately preserve this partial energy density for
the decay products. These products are Cosmic Microwave Back-
ground (CMB) photons and nν neutrino. Therefore, one obtains

(1 + nν)ΩCMB ≈ 4ΩgI. (35)

In our model there is the coincidence of two epochs:

• the creation of SM bosons in the Universe in electroweak
epoch

1 + zW = [MW /H0]1/3 = 0.37 · 1015, (36)

when the horizon H(zW ) = (1 + zW )2 H0 = (1 + zW )21.5 ·
10−42 GeV contains only a single W boson;

• and the CMB origin time

1 + zCMB = [λCMB H0]−1/2 = [
10−29 · 2.35/1.5

]1/2

= 0.39 · 1015, (37)

when the horizon contains only a single CMB photon with
mean wave length λCMB that is approximately equal to the in-
verse temperature λ−1

CMB = TCMB = 2.35 · 10−13 GeV.

In the same epoch zI ≈ zW ≈ zCMB, if the primordial graviton den-
sity (33) coincides with the CMB density normalized to a single
degree of freedom (as it was supposed in [14]). The coincidence
of the Planck epoch zI with the first two ones solves cosmological
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problems with the aid of the geometry of similarity (3), without
the inflation (see also [8]).

While adding the SM sector to the theory in order to preserve
the conformal symmetry, we should exclude the unique dimen-
sional parameter from the SM Lagrangian, i.e. the Higgs term with
a negative squared mass. However, following Kirzhnits [22], we can
include the vacuum expectation of the Higgs field (its zeroth har-
monic) 〈φ〉. The latter appears as a certain external initial data or
a condensate. In our construction we can choose it in the most
simple form: 〈φ〉 = Const = 〈φ〉I = 246 GeV which could be con-
sider as the initial condition at the beginning of the Universe. The
fact, that the Higgs vacuum expectation is equal to its present day
value, allows us to preserve the status of the SM as the proper
quantum field theory during the whole Universe evolution. The
standard vacuum stability conditions

〈0|0〉∣∣
φ=〈φ〉 = 1, 〈0|0〉′∣∣

φ=〈φ〉 = 0 (38)

yield the following constraints on the Coleman–Weinberg effective
potential of the Higgs field:

V eff
(〈φ〉) = 0, V ′

eff

(〈φ〉) = 0. (39)

It results in a zero contribution of the Higgs field vacuum ex-
pectation into the Universe energy density. In other words, the
SM mechanism of a mass generation can be completely repeated.
However, the origin of the observed conformal symmetry breaking
is not a dimensional parameter of the theory but a certain non-
trivial (and very simple at the same moment) set of the initial data.
In particular, one obtains that the Higgs boson mass is determined
from the equation V ′′

eff(〈φ〉) = M2
H . Note that in our construction

the Universe evolution is provided by the dilaton, without making
use of any special potential and/or any inflaton field. In this case
we have no reason to spoil the renormalizablity of the SM by in-
troducing the non-minimal interaction between the Higgs boson
and the gravity [23].

In summary, following the ideas of the conformal symmetry
[6,7], we formulated the GR in terms of the spin-connection coeffi-
cients. The cosmological evolution of the metrics is induced by the
dilaton, without the inflation hypothesis and the �-term. In the
suggested model, the Planck epoch coincides with the thermaliza-
tion and the electroweak ones. In this case the CMB power spec-
trum can be explained by two gamma processes of SM bosons [24],
avoiding dynamical dilaton deviations with negative energy by
means of the Dirac constraint (18). We have provided a few ar-
guments in favour that the exact evolution of the GR as a theory
of spontaneous conformal symmetries breaking is related to the
equations for the quantum squeezed oscillator. We found that the
dilaton evolution yields the vacuum creation of matter.
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