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Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which
implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet
structure, the normal magnetic field component is assumed to have a weak linear variation. The
profile of the electric current velocity is described by hyperbolic functions with a maximum at the
center of the current sheet. In the framework of this model, eigenfrequencies are calculated as
functions of the wave number for the “kink” and “sausage” flapping wave modes. Because of the
Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric
current, and it is smaller for the opposite wave propagation with respect to the current. The
asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for
thinner current sheets. This is due to the Doppler effect related to the electric current velocity.
© 2010 American Institute of Physics. �doi:10.1063/1.3439687�

The term “flapping” waves was introduced with regard
to the up-down motions of the current sheet in the Earth’s
magnetotail. These flapping wave oscillations were indicated
usually by measurements of the corresponding variations in
the tangential magnetic field component from negative to
positive values. In fact, there exist many observations1–6

demonstrating existence of the “kinklike” disturbances of the
magnetotail current sheet, which propagate along the plane
of the sheet perpendicular to the ambient magnetic field. Sta-
tistical studies7,8 proved a relationship between the flapping
oscillations and fast plasma flows in the current sheet. In
spite of a large amount of existing observations, a physical
nature of the flapping motions is still not understood well.
There exist several theoretical approaches for describing the
flapping waves in the Earth’s current sheet. In particular, a
drift kink mode9 was proposed to explain the flapping oscil-
lations, which are due to a relative drift of electrons and
protons. The ion/ion drift kink mode was also considered,10

which has a larger growth rate compared to the electron/
proton drift model. Recently the drift eigenmodes for a one-
dimensional kinetic current sheet were investigated,11 taking
into account the anisotropy of ion distributions and quasia-
diabatic ion motions. In the framework of the magnetohydro-
dynamic �MHD� approach, two models were elaborated. One
of them is the ballooning-type mode in the curved current
sheet magnetic field.12 For this case, the magnetic curvature
radius is required to be larger than the flapping wavelength.
Another MHD model13 claimed that the MHD flapping
modes can appear due to the gradient of the normal magnetic
field component along the current sheet. This model, called
the “magnetic double gradient mechanism,” yields the char-
acteristic flapping frequency determined by a product of two
magnetic gradients. Recently it was used for comparison
with Cluster data.14 The results of the comparison indicate
that the model13 gives quite good fit to the observations. In

the present paper we extend the theoretical model based on
the “magnetic double gradient mechanism”13 taking into ac-
count Hall MHD effects. These effects are expected to be
rather important for thin current sheets, especially in cases
when the electric current is carried mainly by protons, and
the current velocity is of the same order as the flapping wave
phase velocity.

A geometrical situation of the problem and the Cartesian
coordinate system are illustrated in Fig. 1, which shows a
wavy neutral sheet. The undisturbed current sheet is assumed
to be parallel to the xy plane. The z axis is perpendicular to
the current sheet, and the undisturbed electric current J is
directed along the y axis, as shown is the figure. We apply a
system of Hall MHD for nonstationary variations in plasma
sheet parameters

nmp� �V

�t
+ V · �V� + �P =

1

�0
B · �B , �1�

�B

�t
− � � �Ve � B� = 0, �2�

Ve = V − U, U =
1

�0ne
� � B , �3�

�n

�t
+ V · �n = 0, � · V = 0, � · B = 0. �4�

Here V and Ve are the velocities of the protons and electrons,
U is the electric current velocity, B is the magnetic field
vector, and mp, n, and P are the proton mass, plasma density,
and total pressure, respectively. The total pressure is defined
as the sum of the magnetic and plasma pressures. We con-
sider specific wave perturbations propagating across the
magnetic field lines, which are much slower than the mag-
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netosonic modes. In this case the incompressible approxima-
tion �� ·V=0� can be applied. In this approach,13 we focus
our study on the very slow wave modes existing only in the
presence of the gradient of the Bz component in the magne-
totail current sheet along the x direction. We consider a cur-
rent sheet with a nonzero normal magnetic field component
�Bz�, which has weak variation along the x coordinate. The
undisturbed electric current velocity is considered to be
equal to the proton velocity, and thus Ve=0. With this as-
sumption, the undisturbed magnetic field, bulk, and current
velocities are given as follows:

B = �Bx�z�,0,Bz�x��, V = �0,V0,0� ,

�5�

V0 =
1

�0ne

�Bx

�z
.

Considering the electric current to be carried only by pro-
tons, we expect to get the most strongly pronounced Hall
MHD effects.

We introduce small perturbations of the magnetic field,
velocity, and total pressure,

B = ��Bx + bx�,by,�Bz + bz��, Ve = �vex,vey,vez� ,

�6�
P = P0 + p, V = �vx,V0 + vy,vz� .

We assume the magnetic gradient �Bz /�x to be constant and
consider all wave perturbations to be functions of time and
two Cartesian coordinates �y ,z�. Therefore we cancel the de-
rivatives of the perturbations with respect to the x coordinate.
Using these assumptions and linearizing the initial system of
equations, we obtain
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We also neglect the underlined terms in the equations above,
which are on the order of Bz

2. Inserting Fourier harmonics
�exp�−i�t+ iky� into the linearized equations, we obtain

− inmp�vx =
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where �=�−kV0. Finally, the system of equations �14�–�19�
can be reduced to the second order ordinary equation for the
velocity perturbation vz,

1

��

�

�z
���

�vz

�z
� − k2vz�1 −

1

�0��2

�Bx

�z

�Bz

�x
� = 0. �20�

The frequency � can be determined by solving Eq. �20� with
the usual boundary conditions for the perturbations, which
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FIG. 1. �Color� Geometrical situation of the problem.
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are set to vanish at infinity. We introduce dimensionless
quantities marked by tilde, which are very convenient for
solving the boundary value problem

ñ = n/n0, z̃ = z/�, �̃ = �/� f, k̃ = k� ,

Ṽ0 = V0/V0 max, V0 max =
1

�0n0e
� �Bx

�z
�

z=0
, �21�

� f = �� 1

�0mpn0

�Bx

�z

�Bz

�x
�1/2�

z=0
,

where � is a half thickness of the current sheet and n0 is the
plasma density at the center of the current sheet. With this
normalization, Eq. �20� reads

1

ñ�̃

�

�z
�ñ�̃

�vz

�z
� − k̃2vz�1 −

Ṽ0

�̃2
� = 0. �22�

Here �̃= �̃−�kṼ0, � is the dimensionless parameter charac-
terizing Hall effects, and �=V0 max /� f�. We assume model
analytical formulas for the magnetic field and plasma density
variations across the current sheet

B̃x = tanh�z/��, ñ =
1

cosh2�	z/��
, �23�

where 	 is a free parameter which determines a shape of the
current velocity profile. In particular, for 	=1 we have a
constant current velocity that is relevant to the Harris-like
current sheet. Taking this parameter in a range 0
	
1, we
get the current velocity profile with a maximum at the center

of the current sheet. Therefore, this parameter characterizes a
deviation of the current velocity profile from that of Harris.

The eigenvalue problem was solved numerically using a
standard method. Figure 2 shows the calculated flapping fre-
quencies �blue curves� and group velocities �red curves� for
the current velocity profile corresponding to 	=0.2. From
top to bottom, shown are the dispersion curves and group
velocities for the kink ��k ,Vgk� and sausage ��s ,Vgs� flap-
ping wave modes propagating along the electric current ��a�
and �b��, and also in the opposite direction ��c� and �d��. In
each plot, the solid, dashed, and dot-dashed curves corre-
spond to the different values of the Hall parameter: �=0.4
�solid�, �=0.2 �dashed�, and �=0 �dot-dashed�, respectively.
Figure 3 is similar to Fig. 2, but for another current velocity
profile characterized by 	=0.4. The figures demonstrate the
influence of the Hall parameter on the flapping wave eigen-
frequency and group velocity in dependence on the direction
of wave propagation with respect to the electric current.

In the particular case of the flapping wave propagation in
the direction of the electric current, the eigenfrequency has
monotonic behavior as a function of the wave number. An
increase in the Hall parameter leads to an enhancement in the
eigenfrequency, which has a linear asymptotic behavior for
large wave numbers. In the opposite case, when the wave
vector is antiparallel to the current velocity, the eigenfre-
quency is a nonmonotonic function of the wave number: it
increases first to a maximal value, and then decreases to zero.
As one can see from the figures, the maximal eigenfrequency
is smaller for larger values of the Hall parameter, which sup-
presses the flapping waves propagating against the electric
current. For example, we estimate the flapping frequency for
the magnetic field and plasma parameters, which are reason-
able for the current sheet conditions in the Earth’s magneto-
tail,
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FIG. 2. �Color� Flapping frequencies and group velocities for the kink and
“sausage” modes �	=0.2�; plots �a� and �b� are for the wave propagation
along the electric current; plots �c� and �d� are for the opposite propagation
�against electric current�. The solid, dashed, and dot-dashed curves corre-
spond to �=0.4,0.2,0, respectively.
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FIG. 3. �Color� Similar to Fig. 2, but for 	=0.4.
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Bx = 20 nT, Bz = 2 nT, � � RE, np = 0.3 cm−3,

�24�
k� = 1, � Bz/�x � Bz/Lx, Lx � 4RE,

where RE is the radius of Earth. For these parameters we
estimate the electric current velocity V0 max, frequency � f,
and the Hall parameter �,

V0 max 	 52 km/s, � f� 	 126 km/s,

�25�
� 	 0.4, � f 	 0.02c−1.

Using Fig. 2�a�, we find eigenfrequency, group velocity,
and periods for the flapping waves, when the wave vector
has the same direction as the electric current. In particular,
for �=0.4 �solid curve� and k�=1 we estimate

�+ 	 0.02 s−1, T 	 5 min, Vgk 	 63 km/s. �26�

Using Fig. 2�c�, solid curve, we estimate the eigenfrequen-
cies and periods for the flapping waves propagating in the
opposite direction with respect to the electric current
vector. The group velocity is positive for sufficiently small
wave numbers k��0.5. This means that only long waves
can propagate against electric current. In particular, for
k�=0.25 we find

�− 	 0.009 s−1, T 	 12 min, Vgk 	 25 km/s. �27�

This example illustrates that the flapping waves, propagating
in the direction of the electric current, have substantially
larger frequency and group speed, compared to those propa-
gating to the opposite direction. The described above Hall
effects explain the large variability of the flapping frequen-
cies observed by satellites Cluster and Themis.

First statistical studies of the Cluster mission2 yield a
conclusion that flapping waves propagate preferably from the
tail center to its periphery. This result was also consistent
with previous observations. However the dawn-dusk asym-
metry aspects were not discussed. Further analysis of Cluster
data7 indicated some evidence of the flapping propagation
asymmetry: the durations of current sheet crossings were
plotted versus distances across the tail �Ygsm�, and the flap-
ping periods were shown to be somewhat smaller for the
positive Ygsm coordinates �duskward side� compared to
those for the negative Ygsm �dawnward side�.

It is worth noting that the favored propagation of the
flapping waves in the direction of the current found in our
study is the reverse to that of the waves discovered in three-
dimensional simulation of magnetic reconnection.15 But the
latter seems to be related to another conditions in the vicinity
of the X line, where the electric current was carried only by
electrons. Our asymmetry effect for flapping waves is related
to the proton current speed, which is assumed to be dominant
in our model.

In summary, we have analyzed flapping wave oscilla-
tions in the magnetotail current sheet taking into account a
gradient of the normal magnetic field component, and also

Hall MHD effects. We assumed that the initial undisturbed
electric current is carried mainly by protons. With this as-
sumption, the Hall MHD effects are pronounced stronger
compared to cases when the electric current is provided par-
tially by electrons. The role of Hall effects is determined by
the dimensionless Hall parameter � which is a ratio of the
maximal proton current speed to the characteristic flapping
speed. The latter is proportional to the square root of the
product of two magnetic gradients. The flapping eigenfre-
quencies are calculated for “kink” and “sausage” modes. The
Hall effects look similar for both modes. For the same wave-
length, the flapping eigenfrequency is much larger for the
parallel wave propagation then that for the antiparallel
propagation, with respect to the electric current. Therefore,
the Hall effects may cause a strong asymmetry of the flap-
ping wave propagations from the center to the flanks of the
current sheet. They are in favor to the flapping waves propa-
gating in the electric current direction, and they suppress the
waves propagating in the opposite direction. A physical rea-
son for this asymmetry is the Doppler effect which is caused
by the proton current velocity. The range of the observed
flapping frequency variations can be interpreted due to the
Hall effects, depending on the current sheet properties, and
direction of the flapping wave propagation.
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