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Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin–
Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates
the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the
influence of a density increase toward the lower layer. The evolution of the Kelvin–Helmholtz
instability can be divided into three different phases, namely, a linear growth phase at the beginning,
followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase
with nonregular structures. The spatial scales of the vortices are about five times the initial width of
the boundary layer. The considered configuration is similar to the situation around unmagnetized
planets, where the solar wind �upper plasma layer� streams past the ionosphere �lower plasma layer�,
and thus the plasma density increases toward the planet. The evolving vortices might detach around
the terminator of the planet and eventually so-called plasma clouds might be formed, through which
ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated,
which are of the order of estimated loss rates from observations at Venus. © 2010 American
Institute of Physics. �doi:10.1063/1.3453705�

I. INTRODUCTION

The Kelvin–Helmholtz �KH� instability arises when lay-
ers of a stratified fluid or plasma have relative tangential
velocities to each other. Such configurations occur in a vari-
ety of space plasmas, and many theoretical investigations
have been performed for different regions of applications.1–10

An extensive list of references was given, for example, by
Miura.11 One of the most prominent occurrences of the KH
instability in space plasmas is at Earth’s magnetopause, and
hence, many of the studies focus on this topic. At unmagne-
tized planets, the solar wind is diverted around the iono-
sphere, and, as a consequence, a velocity shear is set up
between the magnetosheath plasma and the ionospheric par-
ticles. This configuration should thus also be in favor of the
development of the KH instability at the boundary between
the two plasma layers. When approaching an unmagnetized
planet, the mass density of the plasma increases due to a
dense ionosphere, whereas the magnetic field decreases due
to the lack of a �strong� intrinsic magnetic field of the planet.
This situation differs from that at Earth or any other magne-
tized planet, and studies of the KH instability for such a
configuration are rare.12–17 In our solar system, we have two
unmagnetized planets where it is believed that the KH insta-
bility can develop, namely, Venus and Mars. Both have been
visited by a number of spacecrafts to study the plasma envi-
ronment, the solar wind interaction, and involved processes.

Pioneer Venus Orbiter �PVO� observations indicate the
existence of waves at the ionopause of Venus, which might
hint at the development of instabilities—preferably the KH
instability.18,19 Recent analyses of Venus Express magneto-

meter measurements show vortices in the magnetic field,
which are thought be the result of nonlinear waves at the
ionopause.20

Recently, Gunell et al.21 inferred oscillations in the elec-
tron and ion densities as well as in the ion velocity inside the
induced magnetosphere of Mars from ASPERA-3 measure-
ments. These observations were compared with one-
dimensional magnetohydrodynamic �MHD� computations of
the linear KH instability, and some reasonable agreements
were achieved. However, the simplified one-dimensional lin-
ear model could only explain the observations partially. Con-
sequently, further parameter studies were conducted, includ-
ing also finite Larmor radius effects and variations of the
parameters around the observations.22

From a theoretical point of view, previous studies and
numerical simulations show that the KH instability might be
able to develop in the vicinity of Venus13–17 and Mars.21,22

Some of these studies use analytical approaches, some are
based on global simulations, and others focus on the linear
evolution of the instability. At Venus, there are indications
that the arising instability can be connected to the occurrence
of plasma clouds above the ionopause,12,14,18 which might
play an important role in the erosion of the ionosphere. Brace
et al.18 estimated loss rates due to plasma clouds at Venus
ranging from 1.4�1026 to 7�1026 ions /s. These loss rates
would form a significant contribution to the loss of particles
from Venus. However, in these estimations there are a num-
ber of uncertainties, as there are the sizes, shapes, velocities,
and distributions of the plasma clouds as well as the compo-
sition of the plasma inside a cloud.

The KH instability might be an important process not
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only for the understanding of the dynamics of the solar wind
interaction with unmagnetized planets, but also for the evo-
lution of the planetary environment, including the atmo-
sphere and the ionosphere. The processes involved in the
formation of plasma clouds and responsible for the loss of
particles are not well understood at the moment.

In this paper, we study the nonlinear evolution of the KH
instability, where we use plasma parameter profiles that are
appropriate for unmagnetized planets. We focus our study on
the application to the unmagnetized planets in our solar sys-
tem because observations, which indicate the existence of
waves and vortices at the boundary layer between the mag-
netosheath and the ionosphere, are available at these planets.
Our results are also applicable to any unmagnetized planet
passed by a stellar wind, where the mass density increases
and the magnetic field decreases toward the planet.

The paper is organized as follows. In Sec. II we list the
used MHD equations, and in Sec. III, we outline the initial
configuration. The numerical method is described briefly in
Sec. IV. In Sec. V we present our numerical results. We
discuss the results and draw conclusions in Sec. VI.

II. MHD EQUATIONS

The conservative form of the MHD equations represents
the conservation of mass, momentum, total energy, and in-
duction of the magnetic field. This conservative system of
equations can be written as

�

�t
� + � · ��v� = 0, �1�

�

�t
��v� + � · ��vv + �I −

BB

�0
� = 0, �2�

�

�t
e + � · ��e + ��v −

�B · v�B
�0

	 = 0, �3�

�

�t
B + � · �vB − Bv� = 0, �4�

where � is the mass density, v is the plasma velocity, B is the
magnetic field, e is the total energy density, � is the total
pressure, and �0 is the permeability in vacuum. The total
energy density e is given by

e =
p

� − 1
+

�v2

2
+

B2

2�0
, �5�

which is the sum of thermal, kinetic, and magnetic energies,
with � as the ratio of specific heats �in MHD, often an ideal
gas with adiabatic change of state is assumed, thus �=5 /3�.
The total pressure � is the sum of thermal and magnetic
pressures,

� = p +
B2

2�0
. �6�

At the base of these equations lies the divergence-free con-
dition of the magnetic field,

� · B = 0. �7�

The system of MHD equations can be rewritten in a general
conservative form as

�U

�t
+ � · F�U� = 0, �8�

where U denotes the vector of conservative variables, and
F�U� contains the flux vectors in all three space dimensions.
In a two-dimensional �2D� Cartesian coordinate system,
which we use in our study, this representation takes the form

�U

�t
+

�F�U�
�x

+
�G�U�

�y
= 0, �9�

with the vectors

U =

�vx

�vy

�vz

�

e

Bx

By

Bz

� ,

F =

�vx

2 + � −
Bx

2

�0

�vxvy −
BxBy

�0

�vxvz −
BxBz

�0

�vx

�e + ��vx − Bx�Bxvx + Byvy + Bzvz�
0

vxBy − vyBx

vxBz − vzBx

� , �10�

G =

�vyvx −

ByBx

�0

�vy
2 + � −

By
2

�0

�vyvz −
ByBz

�0

�vy

�e + ��vy − By�Bxvx + Byvy + Bzvz�
vyBx − vxBy

0

vyBz − vzBy

� .

In the numerical procedure we work with normalized quan-
tities, such as
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�̃ =
�

�n
, ṽ =

v

vn
, �̃ =

�

�nvn
2 , B̃ =

B
��0�nvn

2
. �11�

Subscript n denotes the dimensional quantities used for nor-
malization. The spatial scales are normalized with a, which
is the half width of the layer across which the plasma
changes its properties, and the time is normalized with a /vn.
In the following, we will skip the tilde for better readability.

III. INITIAL PROFILES

We assume a boundary layer between two plasmas,
across which the plasma changes its properties. When apply-
ing this situation to the solar wind interaction with unmag-
netized planets, this means that the plasma changes from
solar windlike to ionosphericlike across the boundary layer.
Our 2D configuration is such that the x axis is along and the
y axis is perpendicular to the boundary layer. Figure 1 shows
a sketch of the assumed configuration. The z component of
the velocity and the x and y components of the magnetic field
are neglected, resulting in a configuration where the flow
velocity is perpendicular to the magnetic field. Pope et al.20

reported that “…the direction of the magnetic field was al-
most perpendicular to the plasma streamlines” in the time
interval during which they observed vortices at Venus.

We assume that the plasma parameters are functions of
y. Then, the initial total pressure has to satisfy the following
condition to provide an initial equilibrium:

��

�y
= 0. �12�

For the calculations in this study, the following initial con-
figuration was assumed:

vx�y� = 0.5v0�1 + tanh�y�� ,

��y� = 0.5�0�1 + tanh�y�� + 0.5�1�1 − tanh�y�� , �13�

Bz�y� = 0.5B0�1 + tanh�y�� ,

where v0, �0, and B0 denote the �normalized� velocity, mass

density, and magnetic field in the upper layer, respectively,
and �1 is the �normalized� mass density in the lower layer. In
the lower layer, the x component of the velocity as well as
the z component of the magnetic field approach zero. This
represents the situation around unmagnetized planets, where
the ionospheric ions can be seen to be at rest compared to the
solar wind and where the planetary magnetic field can also
be neglected compared to the magnetic field in the magneto-
sheath.

The initial total pressure � is constant to fulfill Eq. �12�.
The initial plasma pressure is calculated from

p�y� = � −
Bz

2�y�
2

.

The y component of the velocity provides the seed perturba-
tion for the KH instability,

vy�x,y� = �vy sin�2�

Lx
x�e−y2

, �14�

where �vy is the amplitude of the initial perturbation and Lx

is the length of the computational box in x direction. We
assume that the perturbations propagate only in x direction.
Thus, we get the most unstable case, i.e., the wave number
k=kx is perpendicular to the magnetic field Bz.

For this study, the following normalized values are taken
as input parameters: v0=1.0, �0=1.0, B0=1.5, �=3.0, and
�vy =0.01. To investigate the influence of a dense lower
plasma layer on the evolution and vortex formation of the
KH instability, the mass density of the lower region is varied.
We present results for different values of �1=10 /50 /100,
meaning that the densities in the lower plasma layer are 10,
50, and 100 times larger than the density in the upper layer,
respectively. Such large density variations occur around un-
magnetized planets when the planetary ionosphere is ap-
proached. The initial profiles for the case with �1=10 are
shown in Fig. 2 as an example of the profiles.

x

y

2 a

vx = v0, ρ0, Bz = B0

vx = 0, ρ1, Bz = 0

FIG. 1. Sketch of the assumed configuration. The dashed lines frame the
transition layer and a denotes the half width of this layer.

FIG. 2. Initial profiles for the �1=10 case.
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IV. NUMERICAL METHOD

In many situations, the MHD system can become very
complex: On the one hand, there can be steep gradients,
shock waves, or other discontinuities, and on the other hand,
there can simultaneously be smooth flows away from discon-
tinuities. So, it would be desirable to have numerical
schemes of high order for the smooth flows, while at the
same time it would be desirable to have numerical schemes
that are capable of resolving discontinuities without spurious
oscillations. These properties are combined in the so-called
total variation diminishing �TVD� schemes introduced
by Harten.23 Resolving discontinuities means solving a
Riemann problem and many TVD schemes use exact or ap-
proximate Riemann solvers. For the use of Riemann solvers,
the local characteristic waves are needed. This makes the
implementation rather complex and the application is re-
stricted to one specific set of equations with specific eigen-
vectors and eigenvalues. However, Yee24 showed that there is
the possibility to have a second-order TVD scheme without
the need to use a Riemann solver—the so-called TVD
Lax–Friedrichs �TVDLF� scheme. This scheme is described
and tested by Tóth and Odstrčil,25 and we give only a brief
overview of the most important points.

In the following, U denotes the vector of conserved vari-
ables and F the flux vector. The cells of the mesh are cen-
tered at positions xi, where cell interfaces are denoted by
xi−1/2 and xi+1/2, with xi+1/2=0.5�xi+xi+1�. Ui

n represent the
volume-averaged discretized conserved variables at time
level tn within the ith cell. The time marching scheme of the
TVDLF algorithm in one dimension is given by

Ui
n+1 = Ui

n −
	t

	x
�Fi+1/2

TVDLF − Fi−1/2
TVDLF� , �15�

with 	t= tn+1− tn as the time step and 	x=xi+1−xi as the
space step. The task lies in finding the appropriate fluxes at
the cell interfaces, i.e., Fi+1/2

TVDLF and Fi−1/2
TVDLF. These intercell

fluxes are defined as

Fi+1/2
TVDLF = Fi+1/2

LR − 1
2ci+1/2

max 	Ui+1/2
LR , �16�

where

Fi+1/2
LR = 0.5�F�Ui+1/2

L � + F�Ui+1/2
R �� ,

�17�
	Ui+1/2

LR = Ui+1/2
R − Ui+1/2

L ,

and superscripts L and R denote the left and right states of
the local Riemann problem, respectively. Quantity ci+1/2

max is
the maximum propagation speed of information on the mesh,
which is the sum of the macroscopic flow velocity and the
fast magnetoacoustic wave,

cd
max = vd +

1
�2
��p + B2

�
+���p + B2

�
�2

− 4
�p

�

Bd
2

�
,

�18�

where d=x ,y denotes the spatial dimension. Following the
suggestion of Tóth and Odstrčil,25 we take ci+1/2

max =cx
max�ULR�.

The left and right states are given by

Ui+1/2
L = Ui

n+1/2 + 1
2	Ui

n,

�19�
Ui+1/2

R = Ui+1
n+1/2 − 1

2	Ui+1
n ,

where Ui
n+1/2 are the variables at intermediate time levels

tn+1/2 and 	Ui
n are the limited differences of the conserved

variables. Different limiters exist with different properties,
e.g., the minmod limiter, which is very diffusive, or the su-
perbee limiter, which is rather sharp. A limiter in between
these two is the woodward limiter, which is defined as25

	Ui = sgn�2	Ui−1/2�max�0,min�2	Ui−1/2,

sgn�2	Ui−1/2�2	Ui+1/2,

sgn�2	Ui−1/2�0.5�	Ui−1/2 + 	Ui+1/2��� , �20�

where 	Ui−1/2=Ui−Ui−1. To get the variables at intermediate
time levels, a so-called Hancock predictor is used,

Ui
n+1/2 = Ui

n −
1

2

	t

	x
�F�Ui

n +
1

2
	Ui

n� − F�Ui
n −

1

2
	Ui

n�	 .

�21�

To extend the numerical scheme to two dimensions, a
Strang-type operator splitting in the following form is
implemented:

Un+2 = DxDyDyDxU
n, �22�

where Dx and Dy denote the appropriate operations in one
dimension for a given time step. Very good results are
achieved by alternating the order of the operators.25 The time
step 	t is updated after each dimension sweep and is re-
stricted by the Courant–Friedrichs–Levy condition, i.e.,

	t = C min� 	d

cd
max� , �23�

where we set C=0.8. We use periodic boundary con-
ditions in the x direction and fixed boundary conditions in
the y direction. The computational box is taken to be
�0,Lx�� �−20,+20�.

V. RESULTS

A. Linear growth rates

It is well known that at the beginning of the KH insta-
bility, the perturbation grows exponentially and a linear
growth rate can be determined.6 Taking the logarithm of the
peak vertical kinetic energy Ey =0.5�vy

2 of each time step,
this exponential growth manifests itself as a linear slope �see
Fig. 3�. The linear growth rate is obtained from the slope of
a linear function fitted to the initial growth phase.

To find the wave number for the maximum growth of the
instability, we varied the wave number of the seed perturba-
tion, kx=2� /Lx, and then calculated the linear growth rate
for each kx. The result is shown in Fig. 4. The wave number
km, at which the maximum growth rate �m occurs, decreases
with an increasing density jump—from kma�0.52 for
�1=10 to kma�0.35 for �1=100. Also, �m decreases with an
increasing �1, which was already seen in previous
studies.16,17 Setting it into concrete values, increasing the
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density of the lower plasma layer ten times halves the
maximum growth rate. We found that the dependence of �m

on �1 can be fitted by a logarithmic function of the form
�m=c+b ln��1� with c=0.1208 and b=−0.0168, as displayed
in Fig. 5. The dashed line in this figure represents the pos-
sible continuation of the curve for larger �1.

B. Saturation and nonlinear evolution

Having determined km, we know at which wave number,
respectively, wavelength, the KH instability has its fastest
growth, and we can examine the different phases of the evo-
lution. As already pointed out previously, the initial phase is
characterized by an exponential growth of the perturbations,
which we call linear growth phase since we can determine a
linear growth rate for this phase. Clearly visible in Fig. 3 is a
saturation after the linear growth phase. In line with the work
by Keppens et al.,6 we take the first maximum of the evolu-

tion of ln�Ey� as a measure of the saturation level and the
corresponding linear growth time tlin, which we define as the
time needed for the linear growth. Figure 6 displays the evo-
lution of ln�Ey�, the saturation levels, and the linear growth
times for three different cases. An increase of the density
jump increases tlin, which means that a vortex needs
more time to evolve if the lower plasma layer has a larger
density. Quantitatively, we have tlin=71.1a /vn for �1=10,
tlin=97.6a /vn for �1=50, and tlin=119.4a /vn for �1=100.

During the linear growth phase, the perturbations grow,
and eventually rolled-up vortices are formed at the saturation
level. Figures 7–9 show the time series of the mass density
for the cases �1=10 and kma=0.52, �1=50 and kma=0.42,
and �1=100 and kma=0.35, respectively. The vortices be-
come more inhomogeneous and less structured for the high
density cases.

FIG. 3. Time evolution of the logarithm of the peak vertical kinetic energy
Ey for the case �1=10 and kxa=0.52. The dashed-dotted line represents a
linear fit.

FIG. 4. Normalized linear growth rate as a function of the normalized wave
number. The symbols mark the growth rates obtained numerically, whereas
the solid, dashed, and dashed-dotted lines represent parabolic fits.

FIG. 5. Maximum growth rate as a function of the density jump �1. The
asterisks mark the maximum growth rates obtained numerically, whereas the
solid and dashed lines represent the logarithmic fit.

FIG. 6. Time evolution of the logarithm of the peak vertical kinetic energy
Ey for three different cases. The asterisks and the vertical lines highlight the
first maximum of ln�Ey� and the corresponding linear growth time,
respectively.
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After saturation is reached and the vortices are devel-
oped, the boundary layer becomes more and more turbulent,
and no regular structures can be observed anymore �see
Fig. 10�. At this stage of the nonlinear evolution of the KH
instability, the boundary layer is broken up and has a width
of approximately 10a.

VI. DISCUSSION AND CONCLUSIONS

There are some important features to emphasize. We
can distinguish three phases in the evolution of the KH
instability:

�1� linear growth phase,
�2� nonlinear phase with a regular structure of the vortices,

and
�3� turbulent phase with nonregular structures.

The average velocity of the perturbations along the x
axis is about 0.5vn. From this, we can estimate the travel
distance D of the perturbation along the boundary layer dur-
ing the linear growth time tlin,

D =
vn

2
tlin. �24�

In other words, the perturbations need the distance D to grow
to vortices. Inserting the appropriate values for tlin, we get

D10 � 36a ,

D50 � 49a , �25�

D100 � 60a ,

where D10, D50, and D100 are the travel distances for the
different �1 cases. The travel distance does not depend on vn

because the velocity cancels out due to the normalization of
time.

An interesting point is that the maximum growth rate �m

multiplied by the corresponding linear growth time tlin gives
approximately 5.5 for each of the three cases. So, having
either the growth rate or the growth time, one can estimate
the other from this relation.

As can be seen from Figs. 7–9, the spatial scale of the
vortices, LV, in x as well as in y direction is approximately
10a. Taking the half width of the boundary layer as a
=50 km, which, for example, is a value found at Venus,26 we

FIG. 7. �Color� Evolution of the density for �1=10 and kma=0.52 �enhanced
online�. �URL: http://dx.doi.org/10.1063/1.3453705.1�

FIG. 8. �Color� Evolution of the density for �1=50 and kma=0.42.
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have D10=1800 km, D50=2450 km, D100=3000 km, and
LV=500 km. The distance from a planet’s subsolar point to
the terminator is about L0= �� /2�Rpl, where Rpl is the
radius of the planet. For Venus and Mars, for example, we
have L0�9500 km and L0�5300 km, respectively, both of
which are larger than the travel distances D10, D50, and D100

of the perturbations on their way along the boundary layer.
Thus, the perturbations can reach the nonlinear phase during
their propagation from the subsolar point to the terminator.

At Venus, detached plasma structures, termed plasma
clouds, were observed above the ionopause by PVO.18 It is
thought that they are the final stage of the KH instability and
that they contain ionospheric particles which are lost to the
solar wind. Estimations of loss rates due to this process
were given by Brace et al.18 and range from 1.4�1026 to
7�1026 ions /s.

From our simulation results, we can obtain a theoretical
estimation of the loss rate. We consider the case of density
�1=100. In this case, the initially small perturbations reach
the nonlinear stage during time tlin�120a /vn. The spatial
scale of the vortex is LV�10a in both x and y directions. The
shape of the perturbation can be roughly approximated by

y�x� = LV sin2��
x

LV
� , �26�

where 0
x
LV. The amount of ionospheric particles in-
volved in one cloud, Ncloud, can then be estimated as

Ncloud � n1lz�
0

LV

y�x�dx � 0.5n1LV
2 lz, �27�

where n1 is the number density in the ionosphere and lz rep-
resents the scale of the cloud along the terminator, which is
also along the magnetic field �which is perpendicular to the
plasma flow�. Each zone produces a cloud within time tlin,
thus the loss rate due to one cloud, �cloud, is obtained by

�cloud =
Ncloud

tlin
. �28�

To get the total number of clouds, we split the area along the
terminator in different zones, each of which corresponds to

FIG. 9. �Color� Evolution of the density for �1=100 and kma=0.35.
FIG. 10. �Color� Evolution of the density for �1=10 and kma=0.52 into
turbulent phase.
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one cloud and has the size lz. The number of zones/clouds in
one hemisphere is then given by

K =
�Rpl

lz
. �29�

If we exclude the zones where the magnetic field is not per-
pendicular to the plasma flow, the actual number of clouds is
smaller, and we roughly assume

K� =
2Rpl

lz

 K . �30�

For the total loss rate �, we multiply �cloud by K� and by 2
�for the two hemispheres�, and thus, we get

� = 2K��cloud =
4RplNcloud

lztlin
=

5

3
n1Rplvna . �31�

Assuming parameters for a Venus-like planet, such as
Rpl=6�103 km, vn=400 km /s, a=50 km, and n1

=1000 cm−3, we find the loss rate �=2�1026 ions /s. This
theoretical loss rate is of the same order as that estimated
from observations.18

There are two main factors which have a substantial in-
fluence on the loss rate: the solar wind velocity and the
plasma density. An enhancement of the velocity directly
leads to an increase of the particle loss rate because of pro-
portionality. The influence of the plasma density acts indi-
rectly through the linear growth time. For a fixed ionospheric
density n1, an increase of the solar wind density n0 leads to a
decrease of the density ratio n1 /n0, and thus, to a decrease of
the growth time tlin. A decrease of the density ratio of ten
times approximately halves the growth time. The most cru-
cial effect on the loss rate might be due to a simultaneous
increase of the solar wind density and velocity.
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