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A new model of the electron pressure anisotropy in the electron diffusion region in collisionless
magnetic reconnection is presented for the case of antiparallel configuration of magnetic fields. The
plasma anisotropy is investigated as source of collisionless dissipation. By separating electrons in
the vicinity of the neutral line into two broad classes of inflowing and accelerating populations, it
is possible to derive a simple closure for the off-diagonal electron pressure component. The
appearance of these two electron populations near the neutral line is responsible for the anisotropy
and collisionless dissipation in the magnetic reconnection. Particle-in-cell simulations verify the
proposed model, confirming first the presence of two particle populations and second the analytical
results for the off-diagonal electron pressure component. Furthermore, test-particle calculations are
performed to compare our approach with the model of electron pressure anisotropy in the inner
electron diffusion region by Fujimoto and Sydora �Phys. Plasmas 16, 112309 �2009��. © 2010
American Institute of Physics. �doi:10.1063/1.3521576�

I. INTRODUCTION

Magnetic reconnection is one of the most important en-
ergy conversion processes in space, astrophysical and labo-
ratory plasmas.1,2 It is responsible for explosive phenomena,
such as solar flares, magnetospheric substorms, and tokamak
disruptions. Magnetic reconnection is essentially a dissipa-
tive process. Dissipation is typically localized to a tiny re-
gion, the so-called diffusion region �DR�. The idea of diffu-
sion region is inherently related to the notion of magnetic
field lines that are frozen into plasma. In a magnetized
plasma, if particle collisions are neglected, particles are tied
to a particular flux tube. Typical motions are the Larmor
gyration and the E�B drift. Dissipation enables the break-
ing and rearranging of the magnetic field lines that pull par-
ticles away from the flux tube. Dissipative processes are rep-
resented by additional “nonideal” terms in the froze-in
constraint equation. The famous models by Sweet3 and
Parker4 rely on the presence of a uniform resistivity arising
from particle collisions. Although the basic principles of the
models are confirmed by numerical and experimental
studies,1 their direct application to events, such as solar flares
and magnetospheric substorms, predicted the events to be
much slower than the observed time scales.1,3,4 Because of
the very low collision rate in such environments, the inves-
tigation of the resistivity enhancement turned to the study of
kinetic-scale collisionless processes.

Various mechanisms of collisionless dissipation within
the diffusion region are proposed. Among them, there are
turbulence, kinetic instabilities,5,6 chaotization of particle

trajectories,7,8 and finite bulk flow inertia within the DR.9,10

The demagnetization of particles close to neutral line makes
acceleration by the transversal electric field possible. Strong
particle acceleration and heating, leading to non-Maxwellian
plasma distribution functions,11,12 are found in the DR.13,14

Thus, the pressure becomes anisotropic and all the pressure
tensor components should be considered.

Vlasov and particle-in-cell �PIC� simulations advanced
significantly the understanding of magnetic reconnection. In
fact, kinetic processes were found to create substantial dissi-
pation to make reconnection fast. Magnetic reconnection de-
velops a multiscale structure with different dynamics of elec-
trons and ions in the simple two-dimensional case with
inflowing antiparallel magnetic fields and the third direction
ignored. The ion diffusion region �IDR� thickness is around
the ion inertial length di or thermal gyroradius in ambient
magnetic field �i. The IDR length is estimated to be more
than 10di. The electron diffusion region �EDR� is embedded
within the IDR whose width scales similarly1,15 with the
electron skin depth de or electron thermal gyroradius �e. The
length of the EDR is a subject of recent controversy: elec-
trons are unmagnetized over large distances larger than 10di

within a narrow jet in the outflow direction,16,17 and claimed
to be at least 60di in the magnetopause reconnection.18 This
flow was later called “reconnection ejecta” and marks the
area of the “external EDR,” while the part of EDR immedi-
ately adjacent to neutral line, where the dissipative electric
field dominates, was designated as “inner EDR.”17,19,20 We
investigate the properties of the pressure anisotropy in the
inner EDR. This requires the study of the off-diagonal com-
ponent Pyz of the pressure tensor �in frames of reference useda�Electronic mail: andrey.div@gmail.com.
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in Refs. 15, 17, and 19–21� close to the neutral line for the
case of antiparallel magnetic reconnection.

The pressure term appears directly in the electron equa-
tion of motion in the form of � ·Pe. This term balances the
electric field, together with the bulk flow inertia and convec-
tion term. The bulk flow stagnates within the inner EDR, and
the � ·Pe term could balance the reconnection electric field if
sufficient plasma anisotropy is developed here.21 The mecha-
nism of dissipation in the collisionless laminar case, based
on thermal inertia and pressure anisotropy, was first intro-
duced by Vasyliunas21 and later developed by Dungey.22

Test-particle calculations23,24 and PIC simulations15,17,25–27

confirmed the appearance of a large electron pressure aniso-
tropy within the EDR as the main mechanism for breaking
the froze-in constraint in such collisionless configurations.

The goal of this study is to examine the underlying phys-
ics of the electron pressure anisotropy in the inner EDR. A
thorough comparison with PIC simulations as well as with
the model of the pressure anisotropy inside the EDR devel-
oped by Fujimoto and Sydora28 is performed.

The article is organized as follows:

• First, we derive a simple expression for the off-diagonal
component of the electron pressure tensor near the neutral
line. For this derivation, the properties of particle trajecto-
ries in the field-reversal are discussed.

• Second, PIC simulations verify the proposed electron pres-
sure anisotropy model. A procedure for categorizing differ-
ent trajectories is used additionally to divide particles of
different classes �magnetized or unmagnetized�.

• Third, we use the test-particle approach to study the model
by Fujimoto and Sydora28 and point out the properties and
similarities with our model. The transition from the
Fujimoto and Sydora model into the one developed in this
paper is discussed.

II. ELECTRON PRESSURE ANISOTROPY MODEL

The derivation of the off-diagonal component of the
electron pressure Pyz near the neutral line of antiparallel col-
lisionless magnetic reconnection is presented in this section.

A. Preliminary considerations

The simplifications assumed in our derivation are de-
scribed first. The following configuration is used: the mag-
netic field B at the EDR inflow edge is directed in the x̂
direction, the magnetic field in the outflow region is in the ŷ
direction, and the reconnection electric field is in the ẑ direc-
tion.

Several important assumptions are made.28–30 First,
plasma is collisionless, thus no resistivity is present and all
the dissipation arises from particle thermal inertia �see two-
dimensional simulations15,17,19�. Second, reconnection is in
the steady state, thus the electric field component Ez is con-
stant and uniform around the X-line, up to all relevant kinetic
scales at least �ion and electron inertial lengths di and de

being, respectively, typical transversal scales of the IDR and
inner EDR�. A significant scale separation between electrons
and ions is present, with the ion dynamics being negligible

inside the EDR. Both ions and electrons are magnetized in
the inflow region.15 Particles experience a E�B drift in the
direction of the outflow region there. The Hall term-related
physics is important within de�y�di, because the magnetic
field is frozen here into the motion of electron component of
plasma only. Several fluid models31–33 �i.e., Hall MHD or
electron Hall MHD� successfully describe this region.

Electrons are demagnetized within y�de near the X-line
and accelerated by Ez, leading to anisotropic distribution
functions. Nonzero values of �� ·Pe�z are created mostly by
the �Pyz /�y term.17,19,20 The evolution of all components of
anisotropic pressure tensor P could be resolved by taking the
second order moments of the Boltzmann equation.34 If the
contribution from heat flux tensor Qijk is omitted, the equa-
tion for �P /�t can be written27,30 in the closed form via the
pressure P, the bulk flow velocity v, and the specie density n.

Another way to analyze the properties of an unmagne-
tized electron fluid is to study the electron trajectories in
field-reversals. Because the plasma is collisionless and short-
range interparticle forces are neglectable, the motion of par-
ticles depends only on the global configuration of the mag-
netic and electric fields. Theoretical models approximate the
magnetic field as an elongated X-line with hyperbolic mag-
netic potential close to the neutral line. Moreover, the electric
field is assumed uniform and constant. The integration of the
trajectories provides an estimate of the average velocity and
of the trapping time within the field-reversal, together with
other relevant scalings.1,35–37 This approach is adopted in this
paper. The properties of particle trajectories are revisited
first, and the approximate expressions for the anisotropic
pressure component Pyz are then derived.

B. Particle trajectories in the EDR

Following the examples of Refs. 1 and 35–37, the mag-
netic field is taken in the form of elongated X-line configu-
ration inside the EDR. The X-line is parallel to the ẑ axis and
passes through the points x=0, y=0. The magnetic potential
is Ay = 1

2 �Bx0y2 /�−By0x2 /L� with the EDR width � much
smaller than the EDR length L. The magnetic field is simply
B= x̂Bx0y /�+ ŷBy0x /L. Here we state that Bx=Bx0 at the in-
flow EDR edge �at y= ��� and By =By0 at the outflow edge
�at x= �L�. The electric field is E= ẑEz. Then we recall the
equation of motion in the form of

dvx

dt
= −

q

mec
vzBy ;

dvy

dt
=

q

mec
vzBx, �1�

dvz

dt
=

q

me
Ez +

q

mec
�vxBy − vyBx� . �2�

We assume that the influence of magnetic field in Eq. �2� is
smaller than the acceleration by the electric field for the larg-
est part of a particle trajectory within the EDR. Thus, the
solution for vz is simply1 vz�eEzt /me+const. Equation �1� is
cast in the usual form of Airy equations,

dvx

dt
= −

e2Ez

cme
2

By0

L
xt , �3�
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dvy

dt
=

e2Ez

cme
2

Bx0

�
yt . �4�

For Ez�0, being a proper sign reconnection electric field for
the configuration Bx�0 �x�0�, Bx�0 �x�0�, the exact so-
lution is represented by the Airy functions for Eq. �3� and by
Airy functions of negative argument for Eq. �4�.

The acceleration time scale 	0x of a particle before it is
diverted by the reconnected magnetic field is1 the time scale
of Eq. �3�,

	0x = � me
2cL

e2�Ez�By0
	1/3

, �5�

and the estimate for the typical vz particle velocity inside the
EDR1,13,37 is

vz 

e

me
Ez	0 = � ecLEz

2

mBy0
	1/3

. �6�

The period of the meandering motion is estimated as

	0y = � me
2c�

e2�Ez�Bx0
	1/3

. �7�

According to a common picture of reconnection with X-line
being elongated in the direction of the outflow, we have
By0
Bx0 and �
L, and therefore37 	0y 
	0x. The ejection of
particles along the x̂ axis is combined with the much faster
meandering motion within the EDR in the ŷ direction. The
solution of Eq. �4�,

y = c1Ai�− t/	0y� + c2Bi�− t/	0y� , �8�

represents damped oscillations and is approximated by
y
 t−1/4 sin� 2

3 �t /	0y�3/2+� /4� for large t. The factor of the
amplitude decay �t−1/4� is relatively small. In view of all
other uncertainties,14 we approximate the whole population
of accelerated particles as a flow with bulk velocity vz �see
Eq. �6��. Details can be found in a textbook.1

C. Pyz estimate

The previous analysis and discussion show that the main
physical process that contributes to electron pressure aniso-
tropy tensor near the X-line is the acceleration of the inflow-
ing electrons into EDR by the reconnection electric field.
Because the boundary between the inflow and accelerated
plasmas is smoothed, the distribution function fe�v ,r� at the
top and at the bottom of the EDR inflow edge is composed of
the following:

• fa�v ,r�—distribution function of accelerated �a� meander-
ing particles, moving with large vz velocity;

• fd�v ,r�—distribution function of magnetized particles,
drifting �d� into the EDR with small vy �0 �y�0� and
vy �0 �y�0�.

Hence, the electron distribution function fe can be ap-
proximated as fe= fa+ fd. We assume some rather general
properties of the inflowing and accelerated populations. The

inflow particles are assumed to have an initial temperature
which makes the distribution function fd�v ,r� to be an even
function with respect to vz,

fd�− vz� = fd�vz� . �9�

Moreover, the accelerated population is assumed to be sym-
metric in the vy direction,

fa�− vy� = fa�vy� , �10�

since the thermal spread and fluctuations disperse the mean-
dering particles in the vy velocity space.

We define the mean value of a quantity F as usual,

�F�k =
1

nk
� F�v�fk�v,r�dv , �11�

nk =� fk�v,r�dv , �12�

where k=e ,a ,d denotes the total, accelerated, and inflowing
populations.

The suggested symmetry properties of the distribution
functions fa and fd lead to the relation �vyvz�e=0. The off-
diagonal term Pyz of the electron pressure tensor results to

Pyz = me� ��vy − �vy���vz − �vz��fe�dv = me� vyvzfedv

− mene�vy�e�vz�e = − mene�vy�e�vz�e. �13�

Moreover, the equality �vyvz�e=0 will be sufficient to make
the expression �13� correct even if conditions �9� and �10� are
relaxed.

Considering that ne=na+nd, ne�vy�e=nd�vy�d, and
ne�vz�e=na�vz�a, another representation in terms of the accel-
erated and inflow populations can be derived,

Pyz = − me
nand

na + nd
�vy�d�vz�a. �14�

Expressions �13� and �14� reflect all the typical properties of
Pyz inside the DR: in fact, near the edge, na→0, and there-
fore Pyz→0; at the stagnation point at y
0, �vy�e
0, and
therefore Pyz→0. Accordingly, Pyz has a peak within the
EDR. This is in agreement with the usual view of Pyz�y� as
an odd function21 with respect to y.

These expressions provide a pressure anisotropy esti-
mate at the DR inflow edge. The reconnection electric field is
then given by

�Ez� 
 �1/ene�Pyz/� = me�vy�e�vz�e/�e�� . �15�

The expressions �13� and �14� are similar to the results of
Fujimoto and Sydora,28 but are obtained using considerably
different approximations to the structure of distribution func-
tions in the inner EDR and assuming their specific symmetry
properties �Eqs. �9� and �10��. This finding is interesting
since the model28 assumes that all particles undergo mean-
dering oscillations. It cancels out bulk flow velocity, �vy�e

=0, thus mene�vy�e�vz�e=0 and the pressure anisotropy is
supported by the mene�vyvz�e term. The effective velocity of
the meandering motion in the ŷ direction is taken instead of
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the �vy�e, which roughly represents the velocity of the in-
flowing particles. Hence, the final equations of both models
are similar: Eqs. �13� and �14� of the present article and Eqs.
�13� and �14� of Ref. 28.

In the next section, we confirm our estimates of the pres-
sure anisotropy �Eqs. �13� and �14�� and discuss the applica-
bility of the �vyvz�e=0 approximation.

III. COMPARISON WITH PIC SIMULATION RESULTS

The results of PIC simulations of magnetic reconnection
are presented to show that distribution functions used to de-
rive expressions �13� and �14� in fact appear in the EDR.
Calculations use the full-particle implicit code iPic3D.38,39

The implicit moment PIC method40 allows a significant re-
duction of the required computational resources and is ca-
pable of realistic mass-ratio simulations. However, our cal-
culations are restricted to the case of me /mi=1 /256 to ensure
higher resolution of the EDR. A Harris-type current sheet41 is
taken as initial condition,

Bx�y� = B0 tanh
y

L
, ns�y� = n0 cosh−2 y

L
+ nb, s = e,i .

�16�

The background plasma density is nb=0.2n0. Temperature
ratio is Ti /Te=5 with background and current sheet plasma
temperature equal at t=0. The ratio of the ion Alfvén veloc-
ity Va to the speed of light c is Va /c=0.0097. The thickness
of the initial current sheet is L=0.5di. A small initial non-
GEM �Ref. 39� perturbation is added to start reconnection,

��x,y� = �0 cos
2��x − Lx/2�

Lx
cos

�y

Ly
e−��x − Lx/2�2 + y2�2/
2

,

�17�

where B�=����x ,y�ẑ. The intensity �0 is 0.1, and range 

is 1di. The computational domain size Lx is 30di and Ly is
15di, and resolution �x=di /48=de /3. Periodic boundary
conditions are used in the x̂ direction; perfect electric con-
ductor boundaries are set at y=−Ly /2 and y=Ly /2.

Reconnection starts after the X-line perturbation intro-
duces a small deviation from the equilibrium force-balance.
By time �i0t
26.1, the initial current sheet is reconnected
and the evolution turns quasistationary in proximity of the
EDR. On the other hand, �i0t
26.1 is small enough to
avoid the influence of periodic boundary conditions and of
stagnation, because the reconnected magnetic flux is trapped
inside the computational domain. That particular time is cho-
sen to analyze the distribution functions and the electron
anisotropy. Here �i0 is ion cyclotron frequency in ambient
magnetic field.

The reconnection rate is Me
0.15. A comparable value
is obtained in the other fast reconnection studies.1,15 We re-
visit briefly the kinetic Ohm’s law to confirm the properties
of plasma flow �see Fig. 1�. In panels �a� and �b� of Fig. 1,
the cut along the line y=0 is plotted, in panel �c� the cut is
shown along the x=X−point. Near the X-point, where both
the magnetic field and in-plane electron flow are zero, we

can neglect the convective term �ve�B�z and the bulk flow
inertia term �ve��ve. The pressure gradient � ·Pe compen-
sates the electric field Ez at this point.17,19

The particle distribution functions in the vy −vz plane are
plotted in Fig. 2. Particles are separated into “accelerated”
and “inflowing” populations by means of the following algo-
rithm:

• The distribution function is sampled inside the EDR close
to the X-point �see Fig. 2, panel �h�� at time t0 �when
steady state is presumably reached�.

• Because the electron trapping time scale in the EDR is
much smaller than any global time scale, the particle tra-
jectories are numerically integrated with a E�x , t0�, B�x , t0�
fixed configuration.

• The number Mc of crossings of a trajectory with the y=0
plane are counted. For particles located at y�0, Mc could
be 0 �a particle never crossed the DR and is magnetized,
blue in Fig. 2� or 1 �particle is from the y�0 half-space
and is being unmagnetized, green in Fig. 2�. For particles
from y�0 half-space, Mc could be 0 �green in Fig. 2� or 1
�particle is from the y�0 half-space and is being unmag-
netized, blue in Fig. 2�. Particles with Mc�1 belong to the
accelerated particle population �red in Fig. 2� at both half-
spaces. In the rest of the paper, we call the particles with
Mc=1 as inflowing for the sake of simplicity.

x/d
i

Ohm’s law terms, t=26.1363
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FIG. 1. �Color online� ��a� and �b�� Ohm’s law terms along the y=0 line and
�c� along the x=X−point line at �i0t=26.1. The prevalence of �� ·P�z over
the convective term �v�B�z marks the EDR extent. The collisionless dissi-
pation inside the EDR is provided mostly by �yPeyz /ne term �dotted line in
panel �b�� attributed to electron thermal inertia.
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The off-diagonal component Pyz appears in Fig. 2 as a
correlation between the vy and vz velocities. Such correlation
is clear at the top and bottom EDR edges �panels �b� and �c�
and �e� and �f��, making Pyz nonzero there. Closer to y
0, a
symmetric inflow from both half-spaces makes Pyz
0 with
clearly non-Maxwellian distribution �panel �d��. Variation of
Pyz along the ŷ direction creates a nonvanishing �Pyz /�y in
the Ohm’s law, leading to collisionless electron dissipation.

The electron density fluctuates negligibly across the
EDR �Fig. 3, panel �a�, red dashed line�. Almost all particles
are drifting on the EDR edges �y
7.3di and y
7.7di�, while
both populations are significant inside the EDR �see Figs.
2�c�–2�e��. The density of accelerated particles peaks there at

30% of the total electron density �Fig. 3, panel �a��, with a
slight dip immediately at the X-line.

The inflowing particles are distributed symmetrically
around the vy axis at the edge of the EDR �see Fig. 2, panel
�h��, where accelerated particles are absent. We observe that
closer to the X-line, fd is shifted in the vz direction either by
the �B drift of particles in decreasing B field or by the
acceleration of particles by the reconnection electric field Ez

�Figs. 2�a�–2�g��. Thus, the symmetry condition �9�, which
we used to derive Pyz, is not exact.

However, a more general property of the electron distri-
bution function �vyvz�e=0 is true at least for the inner part of
the EDR �see Fig. 3, panel �b��. Thus, Eqs. �13� and �14�
provide a good estimate for the off-diagonal pressure com-
ponent Pyz. Profiles are plotted for x=X−point �see Fig. 3,
panel �b��.

These results confirm that the electron distribution func-
tion in the EDR could be represented as a superposition of
drifting inflowing fd and accelerated fa distribution func-
tions. An algorithm is presented which divides the particles
in different classes in PIC simulations of antiparallel recon-
nection. The population of inflowing particles is found not to

FIG. 2. �Color online� ��a�–�h�� Electron distribution functions in the EDR. Blue-colored �green-colored� particles constitute the population of particles
inflowing from top �bottom� half-space. Red-colored particles represent the accelerated population. Distribution functions are sampled along the line crossing
the EDR parallel to the ŷ axis. The red circle represents a contour of Maxwellian distribution �at 20% of a peak level� with velocity and pressure equal to that
of a sampled distribution. �i� Out-of-plane electron flow velocity vez with superimposed magnetic field lines. The small boxes enclose the areas, where the
electron distribution function is sampled.
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FIG. 3. �Color online� �a� Density of different electron populations: inflow-
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be strictly symmetric around the vy axis as it has been em-
phasized in Sec. II, but the condition �vyvz�e=0 holds there.

IV. CASE OF COLD PLASMA: TEST-PARTICLE
APPROACH

Specific symmetric properties of the distribution func-
tions �inflowing and accelerated populations� were assumed
in our derivation: the distribution function of inflowing par-
ticles is symmetric in the vy direction while the distribution
function of accelerating particles is symmetric in the vz di-
rection. These properties are satisfied in average sense if the
particle thermal spread is introduced. Such symmetric prop-
erties are not fulfilled in the case of a cold plasma. This case
was investigated by Fujimoto and Sydora in Ref. 28 �we call
this model “Ladybug model” because of peculiarity of its
electron distribution function, see Fig. 3 of their work28�.

It is evident that the Ladybug model28 is correct for the
case of cold electrons, vth=0. For this case, the motion of the
inflow and meandering/accelerating particles proceeds along
the curve in the phase space �x−v� without thermal disper-
sion �Fig. 4�, leading to a spot-like structure of the distribu-
tion function �see Fig. 5�. Inflowing particles are labeled with
a red dot; green dots represent the population of particles that

crossed once the y=0 plane, blue dots represent particles
which experienced two crossings of the y=0 plane, and all
other particles are colored black �Fig. 4�. For the one-
dimensional test-particle case, the accelerating particles are
not removed from the system.

We can see from Fig. 5 that dots are distributed along the
curves which are symmetric around the vy =0 line. Neverthe-
less, separate dots are shifted by a typical �vz velocity,
which is the velocity the particles gain in one meandering
oscillation. If the thermal energy of the inflowing particle is
more than this energy gains, then the symmetry conditions
we assumed are valid, and our expression �14� determines
the pressure anisotropy.

This result is in agreement with the approach in Ref. 28
and with the proposed model. To verify this, we introduce a
finite thermal spread to the Ladybug model and study its
influence on the distribution functions and on the Pyz com-
ponent of the pressure tensor.

We limit ourselves to the numerical integration of the
particle trajectories in a fixed one-dimensional field-reversal
configuration because the task is highly complex to solve
analytically.13,14,42 Electrostatic effects are omitted. A rela-
tively thin current sheet, L=0.4di, is chosen. Mass ratio
mi /me=100 and reconnection electric field Ez=−0.1VaB0 are
taken from the Fujimoto and Sydora28 article. Velocities are
normalized to the Alfvén velocity.

The trajectories of N=2000 particles are calculated. The
initial coordinate of all particles is y=1di and the thermal
velocities at different cases are vth=0, vth=0.5Va, vth=3Va,
and vth=15Va. The initial bulk flow velocity of particles cor-
responds to the E�B drift velocity at y=1di. The distribu-
tion functions and their moments are sampled within the seg-
ment �y ,y+�y�, where a small �y=10−3di was used.
Because there is no sink of particles in the one-dimensional
calculation, the integration is stopped at a time tmax, which
approximately represents 20 bounce periods of unmagne-
tized particles.

The distribution functions of particles in the vy −vz space
are plotted in Fig. 5 �vth=0� and Fig. 6 �different values of
initial vth�. The amplitude of the meandering oscillations27 �,
based on thermal velocity vth and L, is larger than the initial
thermal electron gyroradius �eth and is 0.04di, 0.1di, and
0.25di �for the initial thermal velocities vth=0.5Va, vth=3Va,
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and vth=15Va, correspondingly�. We readily see that the
number of accelerating particles is large within the segment
0�y��. Particles are colored according to their meandering
period similar to Figs. 4 and 5 �the vth=0 case�. Even for the
case of relatively cold inflow particles �Fig. 6, panels �a�–
�c��, we observe the merging and stretching of areas in the
vy −vz space, occupied by accelerating particles of different
meandering periods. For the case of vth=3Va �Figs.
6�d�–6�f�, with the simulation parameters similar to those of
Ref. 28�, the stretching is even more pronounced and sepa-
rate spots are extended into a chain of adjacent “C”-shaped
patterns. For vth=15Va �Fig. 6, panels �g�–�i�� separate me-
andering periods become poorly distinguishable and we
readily see that the division into two particle populations
�inflowing and accelerating� provides the correct description
of the whole electron population. In realistic two- or three-
dimensional configuration, particles reside in the field-
reversal for some limited time before the ejection. Thus, the
concentration of accelerated particles should be much

smaller in realistic configuration compared to the results of
one-dimensional calculations. This is clear by comparing di-
rectly Fig. 2 �PIC simulation� and Fig. 6 �one-dimensional
calculation�.

The presented calculations show how the Ladybug
model changes by increasing the temperature of the inflow-
ing particles. We confirm that the particle oscillations create
spot-like distribution functions in a field-reversal in the cold
plasma case. For high enough temperatures, these spots dif-
fuse and merge into a uniform population of accelerated par-
ticles. The distribution functions, which consist of just two
populations �inflowing and accelerated�, are discussed in our
model of the pressure anisotropy, hence the conclusion is that
both models describe pressure anisotropy correctly. The La-
dybug model is applicable to relatively cold plasma
�vth
0�, and our model describes the case of hot plasma
�vth�0�. However, the question is still open how the models
are related in strict physical and analytical sense. A more
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accurate theory will account for both meandering oscillation
of particles and thermal spread of distribution functions.

V. SUMMARY

The electron pressure anisotropy in the inner EDR is
studied in this paper. The gradient of this anisotropic pres-
sure balances the reconnection electric field Ez in the absence
of other collisionless dissipative effects �for example, wave-
particle interaction or small-scale turbulence�. A simple ana-
lytical estimate for the Pyz component is obtained: given a
distribution function inside the EDR which satisfies the con-
dition �vyvz�e
0, Eqs. �13� and �14� provide a reasonable
Pyz estimate.

Such distribution functions could be easily constructed if
it is assumed that all particles close to the X-line fall into two
broad categories: inflowing particles and accelerated par-
ticles. By assuming the general symmetry properties of the
distribution functions of these different populations �see Eqs.
�9� and �10��, the term �vyvz�e can be neglected and the for-
mula Pyz=mene�vy�e�vz�e can be used.

In addition, PIC simulations verified our theoretical con-
clusions. The closures for Pyz are in good agreement with the
simulation results within the EDR if the �vyvz�e
0 condition
is partially satisfied. However, the �vyvz�e
0 equation is de-
termined exclusively by the distribution function symmetry
we assumed. Close to the X-line, where both accelerated and
inflowing populations are significant, the distribution func-
tion of inflowing particles is shifted in the vz direction be-
cause of the gradient drift or demagnetization in weak mag-
netic field. We conclude that a more detailed investigation of
the electron demagnetization and acceleration inside the
EDR is required.

An extensive comparison of our model to the one devel-
oped in Ref. 28 is performed. Both approaches are based on
similar principles:

�1� The electrostatic effects, the ion dynamics, and two- and
three-dimensional effects are neglected.

�2� The electron anisotropy results from the particle accel-
eration by the reconnection electric field.

�3� The derivation of Pyz is based on the analysis of the
particle trajectories. The resulting expressions are com-
parable in both models.

However, we point out the following important differ-
ences:

�1� The Ladybug model is derived for absolutely cold
plasma. We qualitatively reconcile that approach with
our model. Trajectories of a set of particles in a fixed
field-reversal are integrated numerically and the distri-
bution functions for different thermal velocities of in-
flowing plasma are collected. Separate spots are
smoothed into C-shaped patterns as the temperature in-
creases, and then merge into a uniform accelerated
population at higher temperatures, thus reproducing our
model.

�2� The pressure anisotropy is created by the mene�vyvz�e

term, as the inflow velocity �vy�e is zero deep inside the

EDR at the stagnation point. The final expression for Pyz

is similar to our results if some effective velocity �i.e.,
the velocity of inflowing particles� is taken instead of
zero �vy�e. However, our numerical simulations clearly
indicate that �vyvz�e could be neglected near the X-line
for the case of vth�0.

We conclude here that pressure anisotropy develops in
slightly different ways for plasmas with vth=0 or vth�0 and
a more general picture will include both cases. This question
will be a matter of further investigations.
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