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Abstract
Using a LDA + GTB (local density approximation + generalized tight-binding) hybrid scheme
we investigate the band structure of the electron-doped high-Tc material Sm2−xCex CuO4.
Parameters of the minimal tight-binding model for this system (the so-called three-band Emery
model) were obtained within the NMTO (N th-order muffin-tin orbital) method. The doping
evolution of the dispersion and the Fermi surface in the presence of electronic correlations was
investigated in two regimes of magnetic order: short-range (spin-liquid) and long-range
(antiferromagnetic metal). Each regime is characterized by the specific topologies of the Fermi
surfaces and we discuss their relation to recent experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most important questions in condensed matter is
how the strong interaction between quasiparticles modifies
their properties and influences observable quantities. Non-
Fermi-liquid behavior was found in many different substances,
but a class of high-Tc copper oxides has attracted special
attention during the last few decades. The unconventional,
non-s-wave, superconductivity has a lot to do with it. While
other players came to the stage, like lamellar sodium cobalt
oxides and iron-based pnictide superconductors, only high-Tc

cuprates combine both strong electronic correlations and high
values of critical temperature.

A key issue in a theory of high-Tc superconductivity
is the proper description of the low-energy electronic
structure. Recent experimental results, mainly of angle-
resolved photoemission spectroscopy (ARPES) [1–3] and
measurements of quantum oscillations [4–6], provide a pattern
to test various theoretical models and schemes. One of the
approaches, proposed by some of the present authors, is the

6 Present address: Department of Physics, University of Florida, Gainesville,
FL 32611, USA.

LDA + GTB hybrid scheme [7]. It was shown that the mean-
field theory within this scheme captures the most essential
features of the doping-dependent evolution of the quasiparticle
band structure and the Fermi surface [8, 9].

A lot of theoretical and experimental efforts were
concentrated on the hole-doped compounds. Systems with
electron doping, Re2−x CexCuO4 (Re = Nd, Pr and Sm),
present a counterpart to hole-doped ones and a test for
electron–hole asymmetry in Mott–Hubbard insulators. Recent
ARPES data on the optimally doped, x = 0.14, Sm-based
compound provide detailed information on the Fermi surface
and the band dispersion in the vicinity of the Fermi level [10].
A similar study was reported for Nd-based compounds by
Schmitt et al [11]. These results were confirmed independently
by the measurement of the quantum oscillations [12]. Also,
Park et al [10] presented an explanation of the observed data
based on the

√
2 × √

2 spin-density wave (SDW) model. On
the other hand, the high-energy electronic structure is found to
be inconsistent with the SDW scenario. Moreover, the SDW
model implies weak or moderate electronic correlations and a
Fermi liquid background, which is obviously not the case for
the underdoped and optimally doped cuprates. Thus it is not
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Figure 1. The electronic structure of Sm2CuO4 obtained within LDA. The left panel presents the total and partial densities of states; the right
panel shows band dispersions: thick (cyan) curves denote LMTO bands, while thin (black) curves denote NMTO bands. Zero corresponds to
the Fermi level.

a satisfactory scenario and strong correlation effects should be
taken into account.

Here we present the investigation of the electronic struc-
ture for the electron-doped high-Tc material Sm2−xCex CuO4

by means of the LDA + GTB hybrid scheme. Parameters of a
minimal generic tight-binding model for these systems (the so-
called Emery model) were obtained within the NMTO method.
The doping evolution of the band structure and the Fermi sur-
face within this model, in the presence of strong electronic cor-
relations and magnetic fluctuations, was studied in the frame-
work of the GTB method.

The LDA + GTB electronic structure strongly depends
on the underlying magnetic order. Although there is no
Néel temperature in the optimally doped n-type cuprates, the
antiferromagnetic (AFM) correlation length is extremely large
(λ ≈ 400a) up to x = 0.17 [13–16]. Such a correlation length
causes the magnetic behavior to be rather close to the long-
range ordered AFM. That is why our spin-liquid description is
unable to capture some details of the observed Fermi surface.
On the other hand, there is good agreement with the recent
ARPES data once we assume the presence of the long-range
order.

2. The noninteracting band structure

Here we will describe the noninteracting band structure and in
the next section introduce the electronic correlations within the
LDA + GTB method.

The Sm2CuO4 system has a body-centered tetragonal
crystal structure with the space group I 4/mmm. Values of
lattice parameters are a = 3.917 Å and c = 11.899 Å. The
atomic positions for different atoms are: Cu (0, 0, 0), Sm
(0, 0, 0.351 84) and two types of oxygens O1 (0, 0.5, 0) and
O2 (0, 0.5, 0.25) [17]. Physically important CuO2 layers are
constructed with O1 type oxygens. No apical oxygen is present
in this structure.

We perform density functional theory band structure
calculations within the linear muffin-tin orbital basis set

Table 1. Parameters for the three-band model obtained within the
NMTO method. Here x2 and px,y denote the Cu-3dx2−y2 and O-px,y

orbital indexes. All values are in eV.

Involved orbitals

(x2, px ) (x2, x2) (px , py)

Hopping Direction Value Direction Value Direction Value

t (0.5, 0) 1.261 (1, 0) 0.138 (0.5, 0.5) 0.882
t ′ (0.5, 1) −0.011 (1, 1) −0.025 (1.5, 0.5) 0.033
t ′′ (1.5, 0) 0.1 (2, 0) 0.011 (1.5, 1.5) 0.021
t ′′′ (1.5, 1) −0.007 (1, 2) −0.012 (2.5, 0.5) 0.005

employing an atomic sphere approximation in the framework
of the program package TB-LMTO-ASA v47 [18–20]. In
figure 1 results of our LMTO computations are presented.
The left panel shows the total and the partial densities of
states. Cu-3d and O1-2p states cross the Fermi level. In the
right panel of figure 1 LMTO band dispersions are presented
(thick curves). Note the Fermi level is crossed by just one
antibonding hybrid Cu-3d–O1-2p band of x2–y2 symmetry. It
is in agreement with the generic minimal tight-binding model
for high-Tc cuprates [21, 22]. The orbital basis for this model
consists of a Cu-3dx2−y2 orbital and in-plane px and py oxygen
orbitals. To compute the corresponding model parameters
the N th-order muffin-tin orbital method (NMTO) [23] was
used. Necessary NMTO expansion energies are schematically
shown on the right side of figure 1. The obtained hopping
parameters are listed in table 1, and the single-electron energies
are Ex2−y2 = −2.322 eV and Epx = −3.708 eV.

We assume that the values of Coulomb repulsion U and
Hund’s exchange JH for Cu ions are doping-independent and
equal to 10 eV and 1 eV, respectively (see [7] for details).

3. LDA + GTB scheme

Within the LDA + GTB method [7] the results of ab initio
band structure calculations presented in the previous section
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are used to construct the Wannier functions and to obtain
the parameters of the multiband Hubbard-type model. For
this multiband model the electronic structure in the strong
correlation regime is calculated within the generalized tight-
binding (GTB) method [24–26]. The latter combines the
exact diagonalization of the model Hamiltonian for a small
cluster (unit cell) with perturbative treatment of the intercluster
hopping and interactions. After this step we end up with the
GTB Hamiltonian. Depending on the order of perturbative
treatment, we can formulate different approximations.

As was shown before [7], for undoped and weakly
doped La2−x SrxCuO4 and Nd2−xCex CuO4 this scheme in the
lowest order in hopping (Hubbard-I approximation) results in
a charge-transfer insulator with a correct value of the gap Ect

and the dispersion of bands in agreement with the experimental
ARPES data.

We map the GTB Hamiltonian onto the effective t–t ′–t ′′–
J ∗ model, where ‘∗’ denotes the three-site correlated hoppings,
and we study two regimes of AFM correlations. Namely, the
spin-liquid phase with short-range AFM fluctuations and the
long-range AFM metallic phase. We will describe the AFM
metallic phase using the Hubbard-I approximation that was
shown to be in qualitative agreement with the quantum Monte
Carlo results [27]. To study the spin-liquid phase, we use
the same procedure as in [8] and go beyond the Hubbard-
I approximation: (i) we solve the Dyson equation in the
paramagnetic phase by means of the diagram technique for the
Hubbard X operators [28], (ii) obtain the coupled equations
for the self-energy �̂(k, ω), the strength operator P̂(k, ω), and
the spin–spin and kinematic correlation functions and (iii) we
solve the coupled equations self-consistently and obtain a
doping-dependent Fermi surface and the band structure.

The t–t ′–t ′′–J ∗ model Hamiltonian is given by

Ht−J ∗ = Ht−J + H(3),

Ht−J =
∑

f,σ

(ε − μ)Xσσ
f +

∑

f �=g,σ

t f g Xσ0
f X0σ

g

+
∑

f �=g

J f g(S f · Sg − 1
4 n f ng)

H(3) =
∑

f �=m �=g,σ

t̃ f m t̃mg

U
(Xσ0

f X σ̄ σ
m X0σ̄

g − Xσ0
f X σ̄ σ̄

m X0σ
g ),

(1)

where Xnn′
f ≡ |n〉〈n′| are the Hubbard X operators [29] acting

on the Hilbert space of local states |n〉 = {0, σ,−σ ≡ σ̄ },
J f g = 2t̃2

f g/U is the AFM exchange between two sites f
and g, U = Ect is the effective Hubbard repulsion determined
by the charge-transfer energy Ect ≈ 2 eV, tk = 2t (cos kx +
cos ky) + 4t ′ cos kx cos ky + 2t ′′(cos 2kx + cos 2ky) is the
Fourier transform of the hopping t f g , and t̃k = 2t̃(cos kx +
cos ky) + 4t̃ ′ cos kx cos ky + 2t̃ ′′(cos 2kx + cos 2ky) is the
Fourier transform of the interband hopping parameter t̃ f g, S f

is the spin operator, ε is the one-hole local energy and μ is
the chemical potential. The Green function in terms of the
Hubbard X operators is

Gσ (k, ω) = 〈〈
X0σ

k

∣∣ Xσ0
k

〉〉
ω

= (1 + x)/2

ω − ε0 + μ − 1+x
2 tk − 1−x2

4
t̃2
k

U − �(k)
. (2)

Within our approximations [8], the strength operator P̂(
k, E)

is replaced by the occupation factor (1 + x)/2 and the
self-energy �̂(k, ω) is frequency-independent but preserves
momentum dependence:

�(k) = 2

1 + x

1

N

×
∑

q

{[
tq − 1 − x

2
Jk−q − x

t̃2
q

U
− (1 + x)

t̃kt̃q
U

]
Kq

+
[

tk−q − 1 − x

2

(
Jq− t̃2

k−q

U

)
−(1 + x)

t̃k t̃k−q

U

]
· 3

2
Cq

}
.

(3)

The spin–spin Cq and kinematic Kq correlation functions
play a significant role representing the short-range AFM
fluctuations and the kinetic energy reduced by the correlation
effects, respectively

Cq =
∑

f−g

e−i(f−g)q 〈
Xσ σ̄

f X σ̄ σ
g

〉 = 2
∑

f−g

e−i(f−g)q 〈
Sz

f Sz
g

〉
,

Kq =
∑

f−g

e−i(f−g)q 〈
Xσ0

f X0σ
g

〉
.

(4)

The energy spectrum is determined by the poles of the
Green function (2) and the Fermi surface is determined by the

equation ε0 − μ + 1+x
2 tk + 1−x2

4
t̃2
k

U + �(k) = 0.

4. Results and discussion

The procedure of mapping the GTB Hamiltonian onto the
effective model was described in detail in [7]. Following
the same steps and using the parameters listed in table 1,
we obtain the t–t ′–t ′′–J ∗ model with the following hoppings
and exchange interactions: t = −0.59 eV, t ′ = −0.08t ,
t ′′ = 0.15t , J = 0.92|t|, J ′ = 0.01|t|, J ′′ = 0.02|t|,
t̃ = −0.74 eV, t̃ ′ = −0.11t̃ and t̃ ′′ = 0.16t̃ . Here, t̃ , t̃ ′,
and t̃ ′′ are the interband hoppings through the charge-transfer
gap, which determine the three-site hoppings and the exchange
parameter, J = 2t̃2/Ect. Note that, although the value of
the nearest-neighbor exchange J is quite large, the spin gap
in the AFM phase will be determined not by this value alone.
There will also be a contribution from the three-site hoppings.
This contribution reduces the value of the spin gap, as will be
discussed later.

In figure 2 we present results for the t–t ′–t ′′–J ∗ model
in the spin-liquid phase. At low doping, x = 0.03,
due to the scattering on the magnetic fluctuations, the band
structure possess local AFM symmetry in the vicinity of the
(±π/2,±π/2) points (see figure 2(a)) and the Fermi surface
has a form of four electron pockets around the (0,±π) and
(±π, 0) points. Values of the spin–spin correlation functions
Cq are large enough for the similar topology to survive until
x ≈ 0.22, where a quantum phase transition with a change of
the Fermi surface topology takes place. After the transition,
the Fermi surface at x = 0.22 has the form of a large
hole pocket around the (π, π) point and a small hole pocket
around the (0, 0) point, which decrease in size with further
electron doping. At x = 0.25 only one large hole pocket

3
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Figure 2. Spin-liquid phase: band structure and DOS (a) and the Fermi surface (b) for Sm2−x Cex CuO4 within the LDA + GTB method for
different doping concentrations x , as indicated. In (a) zero corresponds to the Fermi level.

around the (π, π) point is left. The quantum phase transition
with the change of the Fermi surface topology was found
experimentally in an Nd-based compound [12], though at a
different critical concentration.

Note that the standard formulation of the Luttinger
theorem does not work for the Hubbard fermions since the
spectral weight of such fermions is determined by the strength
operator, P̂(k, E) = F0σ , and each quantum state contains
2F0σ = 1 − x electrons. A generalized Luttinger theorem
for the strongly correlated systems [32] takes into account the
spectral weight of each |k〉 state and the Fermi surface in our
figure 2 satisfies its completely.

A comparison of the calculated Fermi surface in the spin-
liquid phase and the experimental ARPES data [10] is shown
in figure 3. Note the difference in the methods to obtain the
Fermi surface ‘mapping’. We draw a set of constant energy
cuts from the Fermi level down to −0.3 eV below it, while
the experimental Fermi surface mapping is an integration of
ARPES intensities over the 30 meV energy window. The
ARPES Fermi surface consists of three parts: two pockets
around the (0, π) and (π, 0) points, and one elongated pocket
around the (π/2, π/2) point. One can immediately notice from
figure 2(b) that in our spin-liquid theory the pocket around
the (π/2, π/2) point is missing; it does not appear even if
one collects intensities from below the Fermi level, as seen in
figure 3. Moreover, there are no features in the band dispersion,
which could produce such a pocket. Thus we conclude that our
theory for the spin-liquid phase does not reproduce all details
of the experimental Fermi surface.

Since optimally doped Sm2−x CexCuO4 is in the vicinity of
the ordered AFM phase and the correlation length is extremely

Figure 3. Fermi surface ‘mapping’ (set of equipotential cuts from the
Fermi level to −0.3 eV below it) in the spin-liquid phase for
x = 0.14 together with the reproduction of experimental ARPES
data from [10] in the lower right corner. The color bar on the right
shows the correspondence between shades of gray and energy from
the Fermi level (in eV).

large (about 400 lattice constants) [16], we now investigate
the band structure in the t–t ′–t ′′–J ∗ model assuming the long-
range AFM order. The procedure is similar to [30, 31], where
the energy spectrum of the t–t ′–t ′′–J model was obtained
within the Hubbard-I approximation, but here we also take the
three-site hopping terms into account.

In figure 4(b) we present results for the Fermi surface
in the AFM phase of the t–t ′–t ′′–J ∗ model at x = 0.14
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Figure 4. AFM phase: band structure (a) and the Fermi surface (b) for x = 0.14 within the LDA + GTB method. In the lower right corner
of (b) we show the reproduction of the ARPES Fermi surface map from [10]. In (a) zero corresponds to the Fermi level.

together with the experimental ARPES data. Evidently, there
is rather good agreement between both. We would like to
mention that for lower concentrations our calculations result
in a decrease of pockets around the (π/2, π/2) points and an
increase of pockets around the (π, 0) and (0, π) points. Note
that in the t–J model the spin gap is determined solely by the
AFM exchange J [30]. Here, momentum dependence of the
spin gap is proportional to t ′ cos kx cos ky (see equation (12)
of [30]). The reason is that, in the absence of spin fluctuations,
the hopping of a particle without spin flip processes is
possible only within the same spin sublattice. Because of the
cos kx cos ky functional form the spin gap is maximal at the
(π/2, π/2) point and minimal at the (π, 0) point as seen in
figure 4(a). Since the three-site hopping terms involving sites
f , m, and g are proportional to t̃ f m t̃mg/Ect, they also contribute
to the spin gap; but, apparently, they decrease the gap value
around the (π, 0) point, making it more anisotropic.

Since we are making a mean-field theory (though in a
strong interaction limit) we cannot address the question of the
intensity distribution over the Fermi surface. This question was
addressed earlier by different groups [33, 34]. Remarkably,
their results on the Fermi surface contours for x ≈ 0.14 are
very similar to ours in figure 4 in spite of rather different
calculation schemes. This again emphasizes the fact that the
AFM correlations are very strong in the optimally electron-
doped cuprates and they determine the quasiparticle dispersion
and the Fermi surface.

5. Conclusion

We have shown that the experimentally observed Fermi surface
topology can be explained within the LDA + GTB calculations
for the long-range AFM spin background. On the other
hand, our theory for the spin-liquid phase demonstrates only
partial agreement with the ARPES Fermi surface due to the
underestimation of the impact of magnetic scattering on the
electronic structure. We conclude that the spin fluctuations are
very strong in Sm1.86Ce0.14CuO4 and are closer to the long-
range AFM fluctuations rather than to the fluctuations in the
spin-liquid phase. A similar conclusion was drawn recently

from the analysis of quantum oscillations in Nd-based electron-
doped cuprates [12].

We would like to emphasize the significant difference
between our picture for AFM order and one by Park et al
[10]. Park et al provide a simple calculation based on the
conventional SDW order i.e. the one based on a weak coupling
approximation for the interaction. In the absence of long-
range order the ground state is metallic even at zero doping,
x = 0. On the other hand, our approach allows us to study
the limit of large interaction and provides an insulating ground
state at zero doping. This is an essential difference since the
underdoped cuprates belong to a class of strongly interacting
systems and exhibit a Mott transition at a half-filling, x = 0.
More precisely, because of the copper–oxygen hybridization
the cuprates show the charge-transfer gap Ect at x = 0, but on
the level of a single-band Hubbard model one can speak about
a Mott–Hubbard effective gap U = Ect.
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