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Bound states in photonic Fabry-Perot resonator with nonlinear off-channel defects

Evgeny N. Bulgakov'*? and Almas F. Sadreev'
Unstitute of Physics, Academy of Sciences, 660036 Krasnoyarsk, Russia
2Siberian State Aerospace University, Krasnoyarsk Rabochii, 31, Krasnoyarsk, Russia
(Received 4 December 2009; revised manuscript received 28 January 2010; published 18 March 2010)

We consider a Fabry-Perot resonator (FPR) comprised of two off-channel nonlinear defects coupled to the
photonic waveguide. For the linear case FPR can support bound states in the form of standing waves between
the defects if a distance between them is quantized. For the nonlinear case the bound states appear for arbitrary
distance between the defects if electromagnetic intensity is quantized. For transmission through the FPR we
reveal additional resonances which are the result of coupling of incident wave with the bound states because of
nonlinearity of the defects. The resonances are spaced at the eigenfrequencies of bound states with a width
proportional to the input amplitude. The theory of the FPR based on the simple Wang and Fan model [Phys.
Rev. E 68, 066616 (2003)] is complemented by the tight-binding one. The results for the transmission and
bound states in these models agree with computations in real two-dimensional photonic crystal waveguide
coupled with two off-channel defects fabricated from a Kerr-type material.
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I. INTRODUCTION

It is believed that future integrated photonic circuits for
ultrafast all-optical signal processing require different types
of nonlinear functional elements such as switches, memory,
and logic devices. Therefore, both physics and designs of
such all-optical devices have attracted significant research
efforts during the last two decades and most of these studies
utilize the concepts of optical switching and bistability. One
of the simplest bistable optical devices which can be built up
in photonic integrated circuits is a single planar nanocavity
coupled with optical waveguide or waveguides.! Its trans-
mission properties depend on the intensity of incident light
when the cavity is made of a Kerr nonlinear material. If the
characteristic optical wavelength much exceeds the size of
the nonlinear cavity, it can be presented by single isolated
nonlinear mode coupled with the waveguide. Thereby the
system becomes equivalent to the single level nonlinear
Fano-Anderson model that describes nonlinear impurity em-
bedded in a continuum. The system attracts interest over de-
cade because of analytical treatment and its generality."
On the other hand, the system can be realized in the two-
dimensional photonic crystals (PhC).

The one-dimensional layered PhC with, at least, one thick
layer made of the Kerr material is the another example that
admits analytical solution by means of the one-dimensional
nonlinear Schrodinger equation.!*!% As different from the
former case of nonlinear impurity the last case presents ex-
tended nonlinear object but both cases demonstrate bistabil-
ity effects in the transmission. However the single nonlinear
impurity built up into the linear chain (the in-channel defect)
is remarkable by that the eigenfrequency below the propaga-
tion band of the chain might appear with growth of the non-
linearity constant. Then the corresponding eigenfunction be-
comes localized, i.e., the in-channel nonlinear defect can
give rise to the bound state.?>°

One may ask does exist the localized bound state with
discrete eigenfrequency inside the propagation band. First,
this question was formulated and positively answered by von
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Neumann and Wigner in 1929.!6 Their analysis examined by
Stillinger and Herrick!” was long time regarded as math-
ematical curiosity because of certain spatially oscillating
central symmetric potentials. However in 1973 Herrik'® and
Stillinger!® predicted BSCs in semiconductor heterostructure
superlattices observed by Capasso et al.?® as a very narrow
absorption peak. In the last time the phenomenon of BSC
attracted large interest in application to different systems,?!
in particular, in highly promising photonic crystals.?>-2% The
BSC has no coupling with continuum (waveguide) and,
therefore, cannot be excited by transmitted wave®”-?® in linear
systems. It can be traced by narrowing of the resonance
width for approaching to the BSC point for a variation in
physical parameters of the system.”?%30 In particular, in
open quantum dots the BSC point could be achieved by a
variation in the confined potential, i.e., by the variation in
gate potential.>’ In PhC the BSC appears for tuning of di-
electric constant of the defects.?? Therefore in linear systems
this phenomenon is rather subtle one.

Recently it was shown in framework of the two-level non-
linear Fano-Anderson model that a BSC scenario described
in Refs. 27 and 29-31 develops by a self-induced way be-
cause of the nonlinearity.32 Moreover, an incident wave in-
teracts with the BSC that gives rise to a resonance of peculiar
shape at the vicinity of the BSC eigenfrequency. The PhCs
with, at least, two defects of a Kerr media are the best can-
didates for realization of these phenomena. In present paper
we consider the PhC structure with two nonlinear defects
that forms the Fabry-Perot resonator (FPR).

The typical FPR consists of two plane mirrors at the dis-
tance L and dielectric media with the refractive index n be-
tween. Then the transmission through the FPR can be easily
found as geometric sum of consequent transmissions and re-

flections through each mirror specified by ¢, and r;,'>33
t% exp(ikL) (1)
- rf exp(2ikL)’

where k=wn/c is the wave number in a media. Assume the
mirrors are perfect (r;=1). Then the BSC that does not leaks
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FIG. 1. (a) Photonic crystal consists of a square lattice of dielec-
tric rods. A single row of rods is extracted to form one-dimensional
directed waveguide. Two nonlinear defect rods marked by filled
circles are inserted into the photonic crystal. (b) The nonlinear
model of FPR. (c) The tight-binding version of the photonic crystal
system in (a), respectively.

(b

through the mirrors arises at kL=mm, where m are integers.
Therefore, the underlying mechanism of the bound states in
the FPR is (i) perfect reflections at mirrors and (ii) the inte-
ger number of the half waves is to be spaced between mir-
rors. The BSCs are accomplished by crossing of the zero
transmission with the unit one?’ and displays in frequency
dependence of the transmission as a collapse of the Fano
resonance> [see Fig. 7(a)]. This mechanism for the BSCs,
exclusively transparent, was applied to photonic crystal
structure with one and two waveguides coupled with two
single-mode cavities,”>*3 to typical one-dimensional
double-barrier structure with temporally periodically driven
potential of barrier’® and two identical quantum dots con-
nected by wire. 442

We consider here the single-channel waveguide in a PhC
coupled with two off-channel single-mode nonlinear cavities
(defects) which can be interpreted as nonlinear mirrors. The
reader is reminded that PhC is a periodic array of dielectric
medium' having electromagnetic modes that are Bloch
waves with a frequency spectrum separated into a series of
pass and stop bands. We consider a square array of parallel,
infinitely long high dielectric rods in air. The removal of a
row of rods breaks the periodicity in one spatial direction. If
the parameters of the crystal are such that there is a complete
band gap for wave vectors perpendicular to the rods, then
this defect can introduce modes that decay exponentially
away from the defect but can still be described by a wave
vector pointing along the missing row of rods. Such a row a
defects acts like a waveguide.' Next, following, for example,
Refs. 38, 43, and 44 we introduce two planar-PhC nanocavi-
ties (defects) coupled with the photonic waveguide as shown
in Fig. 1(a). The cavity supports a localized nondegenerate
monopole solution for the TM modes that has the electric
field component parallel to the cylinders.*#¢ The two cavity
modes might be evanescently coupled to each other. How-
ever in what follows we neglect by this direct interaction of
the cavities. They are also coupled to the PhC waveguide.
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Each off-channel defect gives rise to the interference of elec-
tromagnetic waves flowing over the waveguide and through
the off-channel defect, i.e., to the Fano resonance. It results
in zero transmission at the defect’s eigenfrequency w for the
linear case provided that this frequency belongs to propaga-
tion band of the waveguide.! Therefore the off-channel de-
fects may serve as perfect mirrors however only at the fre-
quency w=w, at which r;(wy)=1. Then the BSC with the
eigenfrequency w.=w, might appear between the off-
channel defects if the equation

0,,=k(wy)L = mm (2)

is fulfilled. The dispersion k(w) is defined by a specific PhC.
It can be done provided that the distance L between defects is
quantized that is hard to achieve in the discrete PhC lattice.
Another way is to tune the eigenfrequency of the defects w.
Thus, for the linear PhC systems the phenomenon of forma-
tion of the BSC is rather subtle one.

We take the medium of the defects is nonlinear via the
third-order Kerr nonlinearity, i.e., the refractive index of the
defects changes instantaneously with the optical intensity.
The system of one nonlinear impurity embedded in a one-
dimensional continuum attracted interest long time ago be-
cause of analytical treatment and its generality.>>~7 The sys-
tem is open and differs from closed nonlinear counterpart by
that the transmission resonance properties depend on the am-
plitude of incident wave. Correspondingly we can govern the
resonance by the field intensity at the defects to give rise to
a bistability. Similar effects were shown for the finite cluster
of two nonlinear off-channel sites coupled to the linear
waveguide, 112254749

The dielectric constant of defect rods formed from a Kerr
medium depends on the electric field at the defects’®!

€/(r) = €+ Re[ Y V] E(r) . 3)

The frequency of isolated bound mode for the single defect
rod decreases monotonously with growth of its dielectric
constant €,.234 Therefore the mode frequencies of the de-
fects enumerated by j=1,2 for the radius much less than the
electromagnetic (EM) wavelength undergo shifts

(1)j=ll)0+)\|Ej|2. (4)

The transmission through each off-channel defect has zero
(resonance dip) at these eigenfrequencies.” In order to have
perfect mirrors, the transmission zeros of both defects should
occur at the same frequency

w.=wy+ANX.=wy+ \Y,, (5)

where X=|E,|? and Y=|E,|* are intensities of electromagnetic
wave at the first and second defects, respectively. This equa-
tion establishes equaled intensities at the defects: X.=Y .. The
boundary condition for the BSC between nonlinear mirrors
gives us the following equation for the intensity X,.:

kw.)L=k(wy+NX )L=mm, m=0,1,2, ..., (6)

where k is the wave number of the electromagnetic wave
propagated along the waveguide that is the function of the
frequency w. For the linear case A=0 this equation can be
satisfied by a quantization of the distance between the mir-
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rors only or by tuning of the defect’s eigenfrequency w, as
was discussed above. However for the nonlinear case Eq. (6)
can be fulfilled by a shift of the defect eigenfrequency [Eq.
(4)]. In other words, the FPR supports BSCs for arbitrary
distance between mirrors provided however that the intensity
of light X, is quantized at the defects. For the transmission
through the two-level nonlinear Fano-Anderson model we
revealed additional resonances because of coupling of inci-
dent wave with BSC via nonlinearity.>? Respectively, we ex-
pect similar resonances at the eigenfrequencies of the BSCs
in the FPR with nonlinear mirrors. In order to consider these
effects in detail we explore, first, the most simple coupled-
mode theory.?>3-38 Also we use the tight-binding version of
this theory that is more close to the real PhC structures. We
complement these model results by computer simulations of
real PhC structures shown in Fig. 1(a) and show full quali-
tative agreement of the numerical results with theory.

II. BASIC EQUATIONS

The transmission of TM modes in linear PhC structures is
equivalent to quantum transmission.! Thereby basic equa-
tions for the transmission in the PhC structures can be de-
rived from the Lippman-Schwinger (LS) equation as was
done in Refs. 23, 36, and 43, from the coupled-mode
theory,?>37-32 or one can explore the tight-binding models
with further continual limit ka<<1. In the present paper we
show that all approaches give qualitatively the same results
for the case of nonlinear defects. We start with the temporal
couple-mode theory and apply it for the case the waveguide
coupled with the single nonlinear off-channel defect. That
case was considered in many works>~7-3 to show a bistability
of the transmission. Let a monochromatic wave E;e'“' in-
cidents at the left. Then we can write for the defect ampli-

tudes
. 2 2
E=—iwE-~E+\|-E;e’, (7)
T T

where @, =wy+\|E,|? is the frequency of the defect oscilla-
tions which undergoes a shift in accordance to Eq. (4). This
equation has simple physical meaning. Because of coupling
of the defect mode with the continuum of waveguide the
mode leaks with the decay time 7. Simultaneously owing to
the same coupling constant \['= \/g the source in the form of
incident wave in the right hand of Eq. (7) supports the defect
mode. Next, we can substitute the time dependence as
E(t)=Ee™" and present Eq. (7) as follows:

(0-w, +iT)E=i\TE,,. (8)

Further we can write for the transmission amplitude with
account of interference of direct path over the waveguide and
the path through the off-channel defect. Following33>? we
write |out)=S|inc)+E|V) where the outgoing waves are col-
lected in the column |our)=(7), the incoming waves are col-
lected in the column |inc):(E(;”), S is the S-matrix which for
our case of the single waveguide has the form § =((1) (1)), and
the column |V)=( g) consists of the coupling constant g, and
t and r are the transmission and reflection amplitudes. From
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FIG. 2. Transmission spectra of the single off-channel nonlinear
defect given by Eq. (9) for A=0.2 and I'=1. The dash line shows
the linear case. The nonlinearity shifts the eigenfrequency of the
defect at which the transmission equals zero.

the unitarity of the scattering processes (out|out)=|t|*+|r|>
=E7, and use of the solution of Eq. (8) we obtain g=—\I".2
Therefore, we obtain for the transmission and reflection am-
plitudes for this tutorial case of the single off-channel non-
linear defect

t=E, —\TE, r=-\TE. 9)

One can see that for E=0 there is no reflection. Finally we
are to write the equation of self-consistency for the intensity
of light at the off-channel nonlinear defect

X[(0—wy—\X)>+T?]=TE;,. (10)

This equation is equivalent to Eq. (13) of Ref. 7 with accu-
racy of notations. Correspondingly we have similar bistable
behavior of the transmission |r}/E: shown in Fig. 2. The
perfect reflection takes place at w=wy+\X."7

Now we can easily write the coupled-mode theory equa-
tions for the case of two identical defects separated by dis-
tance L with corresponding amplitudes E; and E, (see, for
example, Ref. 37),

. T i _ s T
— W =N in>
(w—w,+iD)E, +il'e’’E, =iNT'E,

iTeE, + (0 — w, + iT)E, = iNTe’E,,, (11)
and the transmission amplitude
t=E, e’ \TE e’ - \TE,, (12)

where 6=k(w)L represents the phase shift incurred as the
waveguide mode travels from the first defect to the second
one. The case of different defects will be considered below.
From Eq. (11) we obtain

i\s’rP[6+ e+il(1-e*%)]
& — € +2iTa-T*1 - ¥9)’

1=

. ’/_ 10 ~
iVPe'(@ - €)

@ — € +2iTa-T2(1 - ¥

E,= , (13)

where
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+ A
(T):w—u:w—wo+—(X+Y),
2 2
wl—wz )\
= ==—(X-Y), 14
€ 2 2( ) (14)

the value P=T|E,,|? is proportional to the input wave power.
Substituting Eq. (13) into Eq. (14) we obtain the nonlinear
self-consistent equations for EM intensities X and Y at each
defect

X[(@* - € -2I"?sin”® 6)> + (2@ + I sin 26)?]
=P[(@+ e+T sin 20)> + I'? sin* 6],

Y[(&* - € -2I"% sin? 0)>+ (2@ — sin 260)*] = P(& - €)°.
(15)

The coupled mode [Eq. (11)] is the LS equation®*>* and can
be rewritten in the matrix form

(w—H )(E‘>—"fE (1> (16)
W=,z E, =INLEg, o)

where the symmetric complex matrix H,; (“the non-
Hermitian effective Hamiltonian”) can be easily found from
Egs. (11) and (16) to be equaled to

—iI‘ew)
. (17)

wz—ir

H (wl —lr
eff =\ _ iTel?

The solution of the LS equation is given by the inverse of the
matrix (w—H,z). However there might be the case for the
inverse does not exist, i.e., the determinant of the matrix
equals zero. It is easy to see that it happens if the following
equations are fulfilled

@ —-E-2T2sin> =0, @=-T sin Ocos 0

at points

€e=0, @=0, 6,=mm, (18)

where m is the integer. Then the solution of the homoge-
neous LS Eq. (16) takes the following form:

E1+(— l)mE2=0 (19)

Therefore the BSC intensities at both defects are coincided:
X.=Y,. The second equation in Eq. (18) defines the fre-
quency of this special case given by Eq. (5): w.=w, and
a=1,2. At last, the third equation in Eq. (18) implies the
quantization condition given by Eq. (6) that means that inte-
ger number of half wavelengths is placed between mirrors to
form the BSC. In order the states were ideally trapped be-
tween the mirrors they are to have perfect reflection. In other
words, the transmission probability through the each off-
channel defect is to be equal to zero. As shown in Fig. 2 the
off-channel defect perfectly reflects at the eigenfrequencies.

If the defects were linear we would have the quantization
condition for the distance between defects 0=k(wy)L=mm.
This well-known result about trapping of wave between
mirrors®®37 can be interpreted from more general position.”
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If the determinant of the matrix (w—H,) equals zero, then
the equation for eigenstates and eigenvalues for the non-
Hermitian effective Hamiltonian

H,|bound) = w|bound) (20)

has solution with the eigenvalue w and with corresponding
eigenstate |b0und)=E1(_el,gm)=E1(_(_]1),,,). In general, the
complex eigenvalues of the effective Hamiltonian determine
the positions and widths of the resonance states.>>>’ There-
fore Eq. (20) defines the special case of the state with real
eigenenergy. Comparison to Eq. (16) shows that Eq. (20)
constitutes a homogeneous part of the LS Eq. (16), i.e., the
solution |bound) exists regardless of the continuum. The
state |bound) is orthogonal to the continuum state in the
right-hand part of Eq. (16), i.e., has no coupling with the
continuum. Because of that the state |bound) will not decay
into the continuum and can be defined as the BSC. Such a
solutions in application to the photonic crystal FPR are found
in Refs. 22-24 and 26. For the photonic FPR with nonlinear
defect rods the patterns of BSC are presented below.

The dispersion relations of the propagating guided modes
o(k) depend on specific PhC waveguide.>**6 However in the
vicinity of the defect eigenfrequency w, we can use the ap-
proximation k()= k(wg)+k'(wy)(w—w,). Respectively, the
phase shift in Eq. (11) can be written as

0=~ 6+ 0,(w - ), (21)

where 6y=k(wy)L and 6,=k'(wy)L. Then the condition for
the BSCs [Eq. (6)] can be easily solved to obtain
_mm— 6 -

mm — 6,
Xem= =0, ogm=w)+
NG, 0,

(22)

Thus, as different from the linear case the nonlinear off-
channel defects can trap wave with quantized values of the
intensity X.,,=Y,,, at the defects irrespective to their eigen-
frequency wg and the distance between them. From relation
between the amplitude of wave after the off-channel defect
a, the amplitude at the defect E|, and the amplitude of the
incident wave E;,, we have a=\s“2—F1E 1+E;,. Thus, for the
BSCs the EM field intensity is quantized not only at the
off-channel nonlinear defects but also between with the in-
tensity |a,,|*=2TX,,,.

The results of numerical calculation of the intensities X
and Y for E;, # 0 that obey the self-consistent nonlinear [Eq.
(15)] are shown in Fig. 3. Blow up in Fig. 3(b) demonstrates
that these solutions have rather complicated form which
shrink to the BSC points X, and w, given by Eq. (22) if the
input amplitude tends to zero as shown in Fig. 3(c). Numeri-
cal substitution of X and Y into Egs. (14) and (12) conse-
quently allows us to calculate the transmission spectra shown
in Fig. 4. For specific numerical calculation we took A=0.2,
wy=1, ,=0.77, and 6, =m. If to substitute these values into
Eq. (22) we obtain that the BSC frequencies equal
0.3+m=0.3,1.3,2.3,... and the intensities do 5(0.3+m)
=1.5,6.5,11.5,.... One can see that these discrete values of
the frequency completely agree with positions of new reso-
nances in Figs. 3 and 4 and discrete values of the intensity
agree with set of branches for X and Y in Fig. 3 for E;,— 0.
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FIG. 3. (Color online) (a) Numerical solution of Eq. (15) for the
parameters I'=1, 6,=0.7m, 6,=, A\=0.2, and E;,=0.1. (b) Blow up
of the solution for X (red line) and Y (blue line) around the second
BSC point X,,=Y=6.5 and w,=1.3. (c) Change in the intensity at
the second defect under increasing of the input amplitude two
times. Respectively, solid line shows Y at E;,=0.1 and dashed line
shows Y at E;,=0.2.

As seen from Fig. 4(a) that there are two types of the trans-
mission spectra. One type shown by dash line inherits from
the linear FPR and coincides with its spectra for E;,— 0.

A picket-fence type of resonances shown by solid line in
Fig. 4(a) forms the second type of the transmission spectra.
The origin of these resonances is considered in the nonlinear
two-level Fano-Anderson model*? and related to coupling of
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FIG. 4. (Color online) (a) Transmission spectra as dependent on
frequency in the FPR given by Eq. (I11) for the nonlinear case
A=0.2. The parameters of the FPR are given in Fig. 2. The dash line
shows the transmission that slightly differs from the transmission in
the linear FPR and solid line does a picket-fence resonances in-
duced by BSCs (BSC induced resonances). Blows up of the BSC
resonances for the BSC frequency equaled to (b) 0.3, (¢) 1.3, and
(d) 2.3, respectively. In Fig. 4(b) blue lines show unstable branches
of the solution while red lines do the stable branches.
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FIG. 5. (Color online) Transmission spectra and intensities at
the off-channel defects as dependent on the frequency in FPR with
growth of the incident amplitude [(a) and (c)] E;,=0.12 and [(b) and
(d)] E;,=0.2. Other parameters of the FPR are given in Fig. 3.

the incident wave with the BSCs in FPR because of nonlin-
earity. A width of BSC induced resonance (for brevity BSC
resonance) linearly grows with the amplitude of the incident
wave E;, as inset in Fig. 4(c) shows. The width was deter-
mined by a frequency domain in which the new branch of the
transmission exists. For example, for the branch shown in
Fig. 4(c) the width approximately equals 0.027 for E;,=0.1.
That result is similar to found in the nonlinear Fano-
Anderson model.>> However the nonlinear two-level Fano-
Anderson model displays the only BSC resonance while the
nonlinear FPR in the framework of the coupled-mode equa-
tions does picket fence like set of the BSC resonances that
follows formula (22).

It is well known that some branches of the solution of
nonlinear equation might be unstable. We performed stability
analysis of the steady-state roots of Eq. (15), determined by
linearizing the time-dependent coupled-mode
equations.'?237 The results of analysis are shown for the first
BSC resonance at w,=0.3 in Fig. 4(b). Indeed, roughly a half
of branches of the BSC resonance shown by solid thick
(blue) lines is stable while other branches shown by thin
(red) lines are unstable. Thus, the BSC resonance is half
stable.

As seen from Fig. 4 the more distance between the bound-
state resonance and the linear one the less a width of the BSC
resonance. Moreover, the first resonance is subjected to de-
formation compared to the next BSC resonances. Therefore
one can expect further growth of E;, gives rise to coales-
cence of these resonances. In fact, the next Fig. 5 demon-
strates this phenomenon that is especially complicated in real
photonic crystal system as shown in Fig. 18.

Let us consider in which way an incident wave excites the
bound state in the nonlinear FPR, i.e., an origin of the picket-
fence type of resonances. By use of the complex eigenvalues
of the effective Hamiltonian
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FIG. 6. (Color online) The frequency behavior of complex ei-
genvalues |z;,—w| given by formula (23). z=wy+2.3 defines the
frequency of the BSC in the nonlinear FPR.

W+ wy

2

Z10= —iT £ V& -T2 exp(2i6), (23)
which give positions [via Re(z)] and widths of the resonance
states [via Im(z)] (Ref. 56) we obtain that at the point [Eq.
(18)] one resonance becomes infinitely narrow [Im(z,)=0]
while the second one acquires the maximal width 2T 3135-38
Graphically the first resonance width behavior is demon-
strated only in Fig. 6. Therefore the point [Eq. (18)] is the
BSC, indeed.?*3® At this point there is the homogeneous so-
lution of LS [Eq. (16)] |bound) which is shared by the defect
sites and by a piece of the one-dimensional waveguide be-
tween the defects with the amplitude a,,=v2I'X,,,. In appli-
cation to the real PhC waveguide coupled to the off-channel
defects that conclusion is well illustrated below in Figs.
15(c), 17(c), and 17(d).

If the LS equation (16) were linear (A=0) the necessary
and sufficient condition for the existence of the inhomoge-
neous solution of this equation for E;,# 0 was that the left
eigenvector (bound,=(1—-¢'%n) of the matrix w—H, is to be
orthogonal to the incoming vector (e,-l,,m) in the LS equation
(16).% It holds indeed. Then the general solution of Eq. (16)
at the BSC point for the linear case is given®”?® by linear
superposition

1 —( 1
e L)L) e

where a is an arbitrary coefficient and the second term is the
particular solution of Eq. (16). The orthogonality of the BSC
to incoming wave vector implies that the BSC is not coupled
to the continuum and, therefore, there cannot be a resonance
at its discrete energy w.=wy for the linear transmission. That
is not the case for the nonlinear system. A nonlinearity
makes the linear superposition [Eq. (24)] invalid. As the re-
sult the interaction between the BSC and incoming wave
appears because of nonlinearity. Therefore the incoming
wave excites the BSC. Numerics indeed show that the posi-
tions of the picket-fence spectrum are at the BSC frequencies
[Eq. (22)]. Moreover even for e;,— 0 the coefficient « of the
bound state in Eq. (24) is not arbitrary for the nonlinear case
because the intensity of the bound state is quantized by Eq.
(22).
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FIG. 7. (Color online) (a) Transmission spectra of the linear
FPR for §=m+0.17 (solid line) and §=7—0.17 (dashed line). [(b)—
(e)] The transmission given by Eq. (11) in the nonlinear FPR for the
parameters I'=1, 6y=m, and 6,=m. The incident power (b) E;,
=0.002, (c) E;,=0.01, (d) E;,=1, and (e) E;,=3. Red open circles
indicate a stable branch of the transmission while blue points do the
unstable branch.

Furthermore let us consider the special case of the non-
linear FPR which already for linear case supports the BSC,
i.e., k(wy)L=mm or 6y=mm. In the linear FPR for 6— mm
the width of the Fano resonance limits to zero (the collapse
of the Fano resonance®”3%) as shown in Fig. 7(a). From Eqgs.
(21) and (22) it follows that for the nonlinear case the BSC
takes place at w.=wy, with an intensity at off-channel non-
linear defects equaled to zero: X.=0. Therefore we obtain
that the BSC has zero amplitude, i.e., it is to be empty. Only
for the frequency deviated from w,. the intensities X and Y
arise at the defects as shown in Fig. 8. Correspondingly, for
the low input amplitude E;, this frequency behavior will con-
tribute into the frequency dependence of the transmission in
accordance to formula (12) as shown in Fig. 7(b). However
with further growth of the input amplitude the frequency
behavior undergoes cardinal changes as shown in Figs.
7(c)-7(e). These anomalies in the transmission spectra reflect
in the dependence of the outgoing power P,,=TP on the
incident one P=TE2, (input-output characteristics). As differ-
ent from usual input-output characteristics' the nonlinear
FPR which supports BSC for zero input intensity the input-
output characteristics displays extremely large efficiency for
w— w, as seen from Fig. 9. That results in extremely high
efficiency in the input-output characteristics for small E;, as
shown in Fig. 9. Thus a threshold for bistability over E;,
tends to zero for w— w, as different from the single nonlin-
ear off-channel defect.”
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FIG. 8. (Color online) The solution of Eq. (15) for the nonlinear
FPR model with parameters I'=1, y=m, 6;=, and E;,=0.1. X is
shown by red points and Y is shown by blue open circles.

The results of stability analysis are shown in Figs. 7 and
9. One can see that the unstable branch in the transmission
spectra is diminishing with growth of the input amplitude.

One may ask can the different nonlinear defects trap a
wave? For the linear case it is impossible. Let the defects
have frequencies w;=wy+N X and w,=wyp+N,Y and the
coupling constants with the continuum I'; and I',, respec-

tively. The coupled mode Eq. (11) is to be corrected as fol-
lows:

. , i . -
(w—w,+il")E, +iN['|/[',e'E, = iNT'E,,,,

l’\"FIerieEl + ((U — Wy + lrz)Ez = i\"ﬁeigEin. (25)

In order both defects reflect perfectly at the same frequency
we are to write

W, = W +)\1XC= w02+7\2YC. (26)

Here we took into account that the BSC can exist for zero
input amplitude, i.e., it is the solution of the LS equation (25)
for E;,=0. That condition gives us I'}E,+I,E,e'%=0 or
YC=(£—;)2XC. Then we obtain from Eq. (26)

1

o
@
x

transmission
o
2]

o
>
x
x X X e
XXXX
%
L]

FIG. 9. (Color online) Input-output characteristics of the nonlin-
ear FPR for the parameters given in Fig. 8. The case w—w(=0.03 is
shown by red open circles (stable solution) and by blue points
(unstable solution). The case ®w—wy=0.015 is shown by pink
crosses (the stable solution) and by blue small stars (the unstable
one).
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r, 2
N wgr — Ny | =

— )
X,=—2— o, 2=, X.>0.
- (5) A - (5)
1 2 F2 1 2 FZ

(27)

Finally substituting Eq. (27) into Eq. (6) we obtain that dif-
ferent nonlinear defects may trap wave indeed, if the distance
between defects is discrete as in the linear case while for the
FPR with identical nonlinear defects the condition for the
distance is free.

III. TIGHT-BINDING MODEL OF THE NONLINEAR
FABRY-PEROT SYSTEM

The theoretical approach based on a difference equation
formulation for fields in the two-dimensional waveguide
channels and off-channel nonlinear impurities coupled to the
waveguide was developed in papers by McGurn.**® The
simplest model is a discrete tight-binding model that de-
scribes a linear chain coupled to a single-site off-channel
defect with the instantaneous Kerr nonlinearity.” The model
attracted interest long time ago because of analytical treat-
ment and its generality.>%7 The main result is that the trans-
mission coefficient of a single waveguide mode scattering
from Kerr off-channel features was shown to exhibit bista-
bility properties arising from a nonlinearity of the off-
channel site. In Refs. 12, 48, and 49 it was considered also
an off-channel cavity comprised of two neighboring sites
having different Kerr dielectric properties with similar ef-
fects as the off-channel cavity of the single-site defect. In the
present section we consider the tight-binding model version
of FPR with nonlinear mirrors, i.e., consists of the linear
chain coupled with two nonlinear off-channel defects sepa-
rated by N chain sites as shown in Fig. 1(c). In the linear case
the model supports N BSCs with the eigenfrequencies
w,==2 cos(N”—f]), n=1,2,...,Nif (i) the off-channel sites are
identical and (ii) there is a perfect reflection from each off-
channel defect at the frequency w,, which coincides with the
resonant frequency of the off-channel defect.*>*! Therefore
the condition for BSCs in the linear FPR needs tuning of the
defect resonance frequency to be equaled to the BSC fre-
quency (w.=wy) that is rather subtle. We show that for the
case of the nonlinear off-channel defects the condition be-
comes sufficiently soft.

We start with the simplest tight-binding linear chain
coupled with two different nonlinear off-channel defects at
the sites n=0 and n=N+1, respectively. Following Ref. 7 we
write the Hamiltonian of the tight-binding model for the case
in Fig. 1(d) as follows:

H==2 g, — uthyd — uthy,) b3 + Hae. + wo| by [*

1 1
+ E)\|¢1|4 + w| ) + 5)\|¢2|4~ (28)

For the chain we write the solution as ,= ¢;,e’*" +re™*, if
n=0, and i,=te’*", if n=N+1. Here ¢,, is the amplitude of
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incident wave, |r|?/¢7, and [f|*/ @7, are the reflection and
transmission probabilities, respectively. Let us, first, consider
the simple case of the nearest off-channel defects, i.e.,
N=0. Then from the lattice Hamiltonian (28), we derive a
system of coupled nonlinear dynamic equations’

oy === +udy,
iy ==+ udy,
wd) = w0 $y +uiy,
0y = Wy +uihy,

where w=-e*—e™* and w,=wo+\|p,>, a=1,2. After
simple algebraic manipulations we can rewrite this system of
equations as follows:

(0= +iT) ¢ +ilidre™ = ud,,

k ik

iTipie™ + (0 — o) +iT)) by = udpye™, (29)

t= ;e — il u— il dylu, (30)

where Fk:ﬁ plays role of the width I" in the Fan and
Wang model (11). If the off-channel defects were separated
by N sites we would substitute e here by ¢'™+¥ Compari-
son of Egs. (29) and (30) with Egs. (11) and (12) shows that
the tight-binding model of the FPR gives the coupled mode
Eq. (11) with accuracy of notations: I',=I" and 6=k(N+1).

Resuming calculations performed in Sec. II [see Egs. (13)
and (15)] we obtain the self-consistency equations for
X=|y* and Y=|¢,|%,

X[(w = 0y — NX)*(w — wy— \Y)?
+T720 - wy— 0y = \X = \Y)*] = i@} (0 — wy — \Y)?,

in

Y[(w - wy— AX)*(w — 0y — \Y)?
+T220 — wy— wy = \X = \Y)2] = @2 (w0 — wy — NX)2.
(31)

The total transmission probability calculated numerically for
the tight-binding model of the FPR with four sites (N=4)
between two off-channel nonlinear defects is shown in Fig.
10 which is similar to the results shown in Fig. 3(a). Al-
though the linear model can have four BSCs
w.==2 cos(mn/5), n=1,2,3,4, the nonlinear model has the
BSCs if w.=w;=wy+AX,.. Therefore there are BSCs only for
o> wq if N>0. For wy=-1.5 as given in Fig. 10 we obtain
that there are three bound states for three quantized values of
the field intensity X,.. Correspondingly, one can see three
BSC resonances in Fig. 10. The frequency behavior of the
intensities at the defects has the form similar to Fig. 3. Thus,
the only difference between continual and discrete models is
restricted band of the wave propagation and restricted num-
ber of the BSC resonances.

IV. CALCULATIONS IN PHOTONIC CRYSTAL

The coupling-mode theory models the Fabry-Perot inter-
ferometer (the Fan et al. model®®37) described in Sec. II has
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FIG. 10. Transmission spectra as dependent on frequency in the
tight-binding model of FPR shown in Fig. 1(c) for the case of four
(N=4) sites between nonlinear mirrors. The parameters of the FPR
presented in Hamiltonian (28) are u=0.5, wg=—1.5, A=0.008, and

¢in=0'1‘

remarkable advantages. First, it allows us to treat the trans-
mission through the linear FPR analytically. Second, the
model presents exclusively transparent and clear arguments
for the frequencies and amplitudes of the BSCs even in the
nonlinear FPR [see formula (22)]. The price for simplicity of
the model is free parameters which are to be calculated for
consideration of real photonic crystal structures and limita-
tions related to the effects of the waveguide dispersion at the
band edges.'” These limitations can be easily avoided by an
use of the tight-binding model described in Sec. III. However
even this model is very far of reality because of that the
approximation of the nearest-neighbor interaction is very
crude in many cases.®” As a result computation of transmis-
sion in the real PhC is rather complicated task even in the
linear case but becomes formidable for the nonlinear case.

As shown in Ref. 61, the Green’s function approach al-
lows one to obtain very accurate results for rather complex
geometries of the photonic circuits compared to more time-
consuming direct numerical finite-difference time-domain
simulations. Moreover, this approach allows to include into
PhC the defect rods of the Kerr medium and reduce the Max-
well equations to discrete nonlinear equations®® provided that
the radius of the defect rods is sufficiently small so that the
electric field is almost constant inside the defect rods. Far
from the defects in waveguide the EM field is seeking in the
form of incident and reflected or transmitted waves!®%? that
allows to obtain the self-consistency equations for the field at
the nonlinear defects.

A different approach is based on an expansion of the elec-
tromagnetic field over the maximally localized photonic
Wannier functions that leads to effective lattice models of the
PhC structures.*® Taking the solution as incident, reflected
far left from the scattering region and transmitted far right
from it the solution inside the scattering region can be writ-
ten in the Lippman-Schwinger equation form

(Hopp— 0)|¥g) = E,;Vlinc). (32)

Details of derivation of this equation are given in Ref. 23.
Equation (32) is similar to Eq. (16) which is exactly the
coupled mode Eq. (11) however in the case of real PhC the
state | W) includes around hundred of cells inside the scat-
tering region.”? Respectively, the rank of the effective Hamil-
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FIG. 11. The dispersion relation of the propagating guided TM
mode (Ref. 46) in the PhC described in the text.

tonian in Eq. (32) reaches also the same amount. The waves
in the waveguide spread over decade of cells cross to wave-
guide far from the scattering region. This approach allows us
to search the bound states from the equation
H,|bound)=w |bound). If some of rods are made from a
Kerr medium, then the solution | W) is to be subjected to the
procedure of self-consistency at the Kerr medium cells. Nu-
merically, we solved algebraic equations for each of hundred
cells centered at rods belong to the scattering region, includ-
ing two nonlinear algebraic self-consistent equations at the
nonlinear rods.

The PhC Fabry-Perot structures formed by two linear
cavities in the photonic waveguide (in-channel defects) and
near by (off-channel defects) were considered in Refs. 22
and 23, respectively. We consider the square lattice (lattice
constant a) of cylindrical dielectric rods of radius 0.18a and
dielectric constant e=11.56 (GaAs at the wavelength
1.5 pm) in air as given in Refs. 38 and 46. Removing a row
of rods creates the single-mode PhC waveguide with effec-
tive width of order of a few a.!3%46 The waveguide supports
a single wide band of guided mode spanning from 0.302 to
the upper band edge 0.444 (Ref. 46) as shown in Fig. 11 for
reader’s convenience.

All quantities in numerics are dimensionless, the fre-
quency w=wa/21c, electric field E, and the constant of non-
linearity N. Let us evaluate these constants for real PhC
waveguide with defect rods. The optical Kerr effect intro-
duced by formula (3) is described by the nonlinear refractive
index n, for linearly polarized light>*% n=ny+n,I, where n,
is the linear refractive index and 7 is an intensity of light. We
take in numerical calculations the incident power per length
of order 100 mW/a. Then the incident intensity equals
I,=100 mW/a® For chosen period of the PhC lattice
a=0.5 um we obtain that the incident intensity equals
0.04 GW/cm?. A change in the frequency at the defect simi-
lar to Eq. (4) can be written as

g (33)

where |E|>=1,/1, is the dimensionless intensity at the de-
fects. Then it follows from that

A= (’;),nzlo. (34)

(T)(I’l) = (B(no) + (T)’l’lz]d = (;50 + E)’n2IO|E

In the first series of computations we take the linear and
nonlinear refractive indexes of the defect rods are, respec-
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FIG. 12. The frequency of isolated bound mode for the single
isolated defect cylinder as dependent on its dielectric constant €,
(Refs. 23 and 46).

tively, no=\ey=\5 and n,=2x 1072 cm?/W. The corre-
sponding unperturbed linear eigenmode of the isolated defect
has the frequency @;=0.333. From graphics for the depen-
dence @, on the dielectric constant €,=n* (Fig. 12) and Fig.
11 we find that the dimensionless light velocity @’ is around
—1072. Finally substituting all these estimates into Eq. (34)
we obtain A ~—107> which is much less than we used in the
model cases. We start here with presentation in Fig. 13 the
amplitudes |E;| and |E,| at the defects computed self-
consistently as dependent on the frequency ®. If to compare
Fig. 13(b) to corresponding Fig. 3(b) one can find good
qualitative agreement between the Fan et al.’® model and real
PhC structure except that long loops around the BSC point
are decreasing with growth of the frequency. That is related
to the sign of the nonlinearity constant \ in formula (4). The
bottom part of the frequency behavior of |E;| and |E,| in Fig.
13(a) is related to usual resonant enhancement of the inten-
sities at the eigenfrequency of the defects w;=0.333 as one
can see from Fig. 14. However the another branch of the
solution shown in Fig. 13(b) is related to the BSC similar to
the model results shown in Fig. 3. This branch changes with
growth of the incident power as shown in Fig. 3(b). Although
as one can see from Fig. 3(c) a growth of input amplitude
two times leads to the same amount of increasing for
|X-X,| and |Y-Y,|, the relative change in the intensities at

the defects d

= and l;—y is rather small. That observation
is close to that the BSC has low response to the incident
power as shown below in Figs. 17(c) and 17(d).

In the forthcoming figures we show the solutions of the
LS equation (32) for different frequencies and different
branches of the solution. Figure 15(a) shows the absolute
value of EM field for the resonant case marked by star in Fig.
14, i.e., for the frequency @=@,=0.333. Similar to the linear
case we see resonant enhancement of the field at the defects
complimented by low wave flow in the waveguide. Next, we
consider w=w,=0.3279, where @, is the frequency of the
BSC marked by open circle in Fig. 14. In general there are
five solutions (branches) at the vicinity of the BSC frequency
®.. However at this frequency two pairs of the branches are
crossed. They are marked by cross and diamond. The last
branch is inherited from the linear case and marked by filled
circle. The corresponding wave function for small A is close
to nonresonant linear transmission and shown in Fig. 15(b).
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FIG. 13. (Color online) (a) Whole self-consistent solution for the EM field at the nonlinear defects in the PhC structure shown in Fig.
1(a). (b) Blow up of the solution near the BSC point shown by blue point. The amplitude at the first nonlinear defect rod |E,| is shown by
red and the amplitude at the second defect rod |E,| is shown by blue. The parameters of the PhC are the following a=0.5 um, r,=0.18a,
€=11.56, €y=5, wy=0.333, and n,=2 X 1012 cm?/W the input power per length 100 mW/a.

Other two solutions marked by cross and diamond are
exclusively result of nonlinearity. For E;, — 0 both solutions
limit to the BSC point. Respectively, the solution of Eq. (32)
goes to the BSC wave function. However even for the finite
but small input power the wave functions obtained for the
solutions marked by star and diamond in Fig. 14 are very
close to BSC because of smallness N\ as Fig. 15(c) shows.
One can see that this state is localized near by the defects and
in the waveguide between the defects if full correspondence
to the conclusion obtained in the Wang and Fan model. The
wave function corresponded to the case marked by diamond
in Fig. 14 is also very close to the BSC. For the frequency of
the BSC @,.=0.3279 one can find from Fig. 11 corresponding
wave number Lk./7=0.9927. Then the value 4k.a is very
close to m, i.e., the BSC which obeys to Eq. (19) is classified
by m=1 and, therefore, is to be even relative to up and down.
Respectively, the particular transport solution presented in
Eq. (24) at right hand is too odd. Figures 16(a) and 16(b)
which shows phase of the wave function remarkably confirm
this simple model conclusions for consideration of real PhC
structure.

Both cases shown in Figs. 15(a) and 15(b) inherit from
the linear FPR and, therefore, have intensity proportional to

1 *

0.8¢
5
‘» 0.67
2

I I

§ 0.4 i, )

0.2 S~ S

o

0.335 0.34
wa/2nc

0325 T 033

FIG. 14. Transmission spectra in the PhC structure for the same
parameters given in previous figure. The BSC frequency
®,.=0.3279 is marked by open circle.

the incident one E;,. That is demonstrated in Figs. 17(a) and
17(b). It is not the case for the new branch of the transmis-
sion marked by cross in Fig. 14. That point is result of ex-
citement of the BSC by incident wave via nonlinearity of
defects. Therefore one can expect that the intensity of the
BSC will slightly change if we substantially change the in-
cident intensity, say, four times because of smallness of A.
Figures 17(c) and 17(d) demonstrate that conclusion, indeed.

0.4
H iz “ q
| 0.2
1
(a) (b)

(©)

FIG. 15. (Color online) The absolute values of EM field for (a)
the resonant case for @=a;=0.333 marked in Fig. 14 by star, (b)
for the BSC frequency w=&,.=03279 marked by filled circle in Fig.
14, and (c) for the same frequency @,.=03279 however for the
different branch marked by cross in Fig. 14. The wave function
shown in (c¢) tends to the BSC for E;,— 0. The incident power per
length is chosen 100 mW/a.
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(b)
FIG. 16. (Color online) Phase structure of (a) the transport so-

lution shown in Figs. 15(b) and 15(b) the solution shown in Fig.
15(c) which is close to the BSC.

As seen from Fig. 13 a smallness of the nonlinearity con-
stant A needs very large intensity at the defect rods to obtain
the BSC. However there are the Kerr-media materials which
have the nonlinear coefficient N close to that used in
models. For example, n, is of order 1070 cm?/W
in an Al,O; matrix doped with Cu nanoparticles
n,=2.9% 1071 cm?/W,% in silicate glasses doped with Ag
nanoparticles 7,=—6.2X 1071 cm?/W,% in doped poly(3
pinene) n,=1.45X 1071 cm?/W.%¢

In the second series of numerical calculation we have
chosen 1,=3.5X 107! ¢cm?/W. This amount of the nonlin-
ear refractive index corresponds to N~ 1073 for the input
intensity per length 100 mW/a, i.e., roughly 100 times ex-
ceeds the former case. The BSC frequencies might be only
less than the defect eigenfrequency w, because of A <0. As

FIG. 17. (Color online) [(a) and (b)] The three-dimensional plot
of the absolute value of the transport solution for the resonant case
®=0.333 as in Fig. 15(a) however for the two values of the incident
power (a) 25 mW/a and (b) 100 mW/a. The cases (c) and (d)
show the absolute value of the solution closed to the BSC shown in
Fig. 15(c) for two amounts of the incident power (¢) 25 mW/a and
(d) 100 mW/a.
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FIG. 18. Transmission spectra in the PhC structure

with the same parameters as in Fig. 14 but for different the
nonlinear defects with the parameters e;=1.1, wy=0.3865, and
n,=3.5X 1071 cm?*/W. The incident power per length is
100 mW/a. The first BSC frequency @,.=0.3279 is marked by star
and the second one is marked by open circle @.=0.3751.

Fig. 14 shows there is the only bound state below
wy=0.333 with the frequency @,.=0.3279 for the first series
of calculations with the defect dielectric constant €,=5. For
the second choice we take the defect dielectric constant
€y=1.1 which gives the eigenfrequency of the isolated defect
wy=0.3865. Respectively, we obtain two BSCs between
0.3865 and the bottom of the propagation band 0.302. All
other structure parameters are the same as was used in the
first series. The transmission spectra for that choice plotted in
Fig. 18 shows two BSC resonances with the first BSC fre-
quency ®.;=0.3279 and the second one w.,=0.3751. The
second resonance is strongly mixed with the linear
FPR one. As it may be calculated from Fig. 11 the corre-
sponding wave numbers correspond to Lk.;/7=0.9993 and
Lk./m=1.9992, i.e., m=1 and 2. That result nicely agrees
with phase pictures of the BSCs in Fig. 19. Finally we show
here only phase of the BSCs in Fig. 19 in order to demon-
strate the simple phase rule [Eq. (19)]. The first state in Fig.
19(a) corresponds to even one while the second state in Fig.
19(b) does to the odd one. One can see that the phase of
BSCs is mostly O or m, i.e., the BSCs are real functions.

FIG. 19. (Color online) Phase structures of the states close to the
(a) first even BSCs with the frequency @.;=0.3279 and (b) the
second odd one with the frequency &.,=0.3751. The states are
marked in Fig. 18 by star and open circle, respectively.
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V. CONCLUSIONS

In the FPR the nonlinear off-channel defects self induce
the transmission zeroes at whole discrete sequence of the
light intensity to give rise to a corresponding sequence of
bound states. These solutions exist for E;,=0 that determines
them as the BSCs in continuum. On the other hand, nonlin-
earity of the off-channel defects provides a coupling of inci-
dent wave with the BSCs to cause new resonances at their
eigenfrequencies. Moreover, as seen in Figs. 4 and 5 the FPR
might be transparent in the vicinity of these resonances.
These results were obtained in two series of numerical cal-
culations in real photonic crystal structures with two defects
made of a Kerr media and well agreed with the results of
model theories, the coupled-mode theory in Sec. II and the
tight-binding model in Sec. III. The self-induced BSC reso-
nances as shown in Figs. 4, 10, and 14 have the shape of
butterfly in all approaches if they are far from the usual reso-
nance inherited from the linear system. However not all
branches in this butterfly shape resonance is stable as shown
in Fig. 4(b). However the stable part of the BSC resonance is
quite enough to observe it.

Nonlinearity reveals important conceptual aspects of the
bound states which in general were discussed already in Ref.
32. We mention two of them in application to the Fabry-
Perot interferometer with nonlinear “mirrors,” fabricated
from the Kerr-media off-channel defects. If the defect were
linear there would be only the eigenfrequency w, of the de-
fect at which the mirror is perfect. Therefore the condition
for the BSC takes the form k(wy)L=m, i.e., can be fulfilled
for discrete values of the distance between linear defects that

PHYSICAL REVIEW B 81, 115128 (2010)

is hardly achievable in the discrete PhC waveguide. Or one
can tune the dielectric constant of the defects.’® The nonlin-
ear defects perfectly reflect at the frequency wy+\|E,[%
a=1,2. Respectively, there is new possibility to satisfy the
boundary condition for the BSC by a quantization of the
intensity of electromagnetic wave |E,|? at the defects as writ-
ten in Eq. (22) irrespective to the distance between the non-
linear mirrors and their eigenfrequency w,. That constitutes
the first important aspect of the BSCs in the nonlinear FPR.
The second important aspect of the nonlinear FPR which
was not considered yet is that these BSCs become visible for
wave which incidents and goes through. Mathematically it is
related with that the linear superposition of transport solution
and the BSC [Eq. (24)] cannot be anymore by the solution of
basic equations (the coupled-mode equations for the EM
transmission, or the LS equation for the quantum case) for
the nonlinear case. As a result incident wave couples with the
BSC to give rise to a very peculiar shape of resonances
shown in Figs. 3, 7, 10, 14, and 18. For small incident am-
plitude E;, the positions of the BSC induced resonances are
just at the frequencies of BSCs. However with growth of the
incident power the width of the BSC induced resonances is
increased to give rise to a coalescence of “new” resonances
with “old” ones which take place in the linear case. Obvi-
ously, that opens much room in manipulation by bistability
properties of the BSCs which were shown Figs. 7 and 9.
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