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1. INTRODUCTION

The structure of the ground state (GS) and low�
temperature properties of heavy fermion (HF) systems
remain the objects of intense experimental and theo�
retical studies. The chemical composition of heavy�
fermion compounds is based on rare�earth elements
(mainly Ce and Yb) as well as U and transuranic ele�
ments (Pu and Np). It was found that the GS type in
HF intermetallides may considerably change under
the action of external fields.

The GS type is determined to a considerable extent
by the result of competition of two interactions. On the
one hand, the s–f exchange coupling between the spin
moments of collectivized and localized f electrons
exhibits a tendency toward screening of spin moments
of localized electrons and to the formation of a non�
magnetic type of GS due to Kondo fluctuations. The
exchange interaction between the spin moments of f
electrons produces the opposite effect in its tendency
to establish the magnetic order. A specific realization
of the GS structure also depends on the relative posi�
tion of the energy of a localized f  level and the chem�
ical potential.

If the s–f exchange interaction dominates in an
intermetallide, it can be in a nonmagnetic metallic
state characterized by a high value of Sommerfeld
constant γ (a state with HFs). There are quite a large
number of systems in which such a phase is observed at
temperatures on the order of 10 K. However, it is only
CeCu6 (and probably CePt2Sn2) that remains a para�
magnetic metal down to low temperatures [1]. In the
remaining HF systems known at present, further mod�
ification of the ground state takes place at tempera�

tures on the order of 1 K. The formation of heavy qua�
siparticles may terminate, for example, by a transition
from the metal to the semiconductor state, as in the
case of CeNiSn [2], or to the dielectric state. A theory
of low�temperature properties of such systems in weak
magnetic fields was developed in [3]. Typical examples
of HF dielectrics (so�called Kondo insulators) are the
compounds Ce3Bi4Pt3, SmB6 [4], and CeOs4Sb12 [5].
The thermodynamic behavior of these systems is suc�
cessfully described in the model of two�component
Fermi liquid [6, 7].

Some intermetallic compounds with HF become
superconducting at temperatures not exceeding 5 K.
By way of example, we can consider classical HF
superconductors such as CeCu2Si2 [8], UBe13 [9],
UPt3 [10], as well as recently discovered 1–1–5
CeTIn5 systems (T stands for Co, Rh, or Ir) [11, 12] as
well as skutterudites LaFe4P12 [13] and PrRu4As12 [14].
Sometimes, a transition to the superconducting phase
occurs at a high pressure. For example, superconduc�
tivity in CeRhIn5 [12] and CeCu2Ge2 [15] is observed
only at pressures exceeding 16 and 77 kbar, respec�
tively.

Finally, in a large number of HF systems, the
exchange interaction between localized f electrons
becomes predominant upon cooling. Such substances
exhibit a phase transition with the formation of long�
range magnetic order at temperatures on the order of
10 K. Ferromagnetic ordering takes place in UGe2
[16], UIr [17], and ZrZn2 [18] compounds. However,
most magnetic HF systems are antiferromagnetic
(AFM). In some HF compounds (like CeRhIn5) [19],
a change in external conditions induces a transition to
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a state in which the AFM and superconducting (SC)
order parameters coexist.

The variety of low�temperature phases and their
modification by external effects initiates a large num�
ber of experimental studies of magnetic susceptibility
[20], conductivity [21], magnetoresistance [22], ther�
mopower [23], and heat capacity of HF systems under
pressure and in an external magnetic field. In an anal�
ysis of the AFM phase of HF compounds in the vicin�
ity of the phase transition, important information can
be obtained from the processing of experimental data
on the temperature evolution of heat capacity of
PuGa3 [24], Ce2Au2Cd [25], YbNiSi3 [26], and
PuPd5Al2 [27] in an external magnetic field. To cor�
rectly interpret the results of such experiments, the
magnetic structure rearrangement induced by an
external magnetic field must be adequately taken into
account. This becomes obvious if we take into account
the fact that the Néel temperature in HF antiferro�
magnets is relatively low (TN ~ 3 K) [28], and a field of
H ~ 104 Oe, which is commensurate to the parameter
of exchange interaction between spin moments of f
ions, causes considerable canting of magnetic sublat�
tices.

However, the theoretical description of thermody�
namic properties of AFM HF systems available in the
literature is insufficient in many respects. For exam�
ple, in [29–32], the Fermi spectrum of Kondo insula�
tors in the strictly collinear AFM phase (in zero exter�
nal magnetic field) was calculated using the symmetric
periodic Anderson model (PAM). The energy spec�
trum of HF AFM metals in the canted face that form
as the result of application of an external field has not
been described as yet. At the same time, canting of
magnetic sublattices and its variation with tempera�
ture lead to additional contributions to the electron
heat capacity and change the Sommerfeld constant.
This consequence alone stimulates the calculation of
the low�temperature heat capacity of HF antiferro�
magnets with allowance for temperature�dependent
canting of magnetic sublattices.

Theoretical analysis of the effects associated with
long�range AFM order can be carried out using the
extended PAM (EPAM) including exchange interac�
tions in the subsystem of localized f electrons. This
type of terms appears in the effective low�energy
EPAM Hamiltonian in the regime of a strong but finite
on�site Coulomb interaction U as a result of applica�
tion of the unitary transformation method [33–36]. It
should be noted, however, that the Schieffer–Wolf
transformation [33, 34] cannot be directly applied to
HF with metal�type conduction since the effective
exchange integrals diverge when the localized level is
in the conduction band [37]. Effective exchange inter�
actions between the spin moments of f ions were
derived in [38] using the Anderson model for the
metal�type ground state; hybridization processes V12
associated with the participation of high�energy states
of the upper Hubbard subband were singled out using

the atomic representation. This made it possible to
construct the effective Hamiltonian of the EPAM up
to the fourth order inclusively in parameter V12/U and
to derive explicit expressions for exchange integrals
without any divergence.

In this study, the spectrum of heavy fermions in the
AFM phase canted by an external magnetic field is
calculated based using the effective Hamiltonian of
the PAM in the regime of strong electron correlations.
The solution to the problem is obtained on the basis of
the slave�boson representation, which is widely used
in the theory of heavy fermions and by successive
application of five Bogolioubov transformations in the
diagonalization of the quadratic form of the EPAM
effective Hamiltonian. This enabled us to analyze the
effect of the magnetic field on the temperature depen�
dence of the heat capacity and the Sommerfeld con�
stant of HF antiferromagnets.

2. EFFECTIVE HAMILTONIAN
OF AFM INTERMETALLIDES

The EPAM Hamiltonian in the representation of

creation  ( ) and annihilation ckσ (dlσ) operators
of a collectivized (localized) electron with quasi�
momentum k (with Wannier cell number l) and spin
moment projection σ has the form

(1)

The first sum describes noninteracting collectivized
electrons in external magnetic field H removing the
degeneracy of bare energy spectrum εk in spin
moment—projections σ = +1/2, –1/2:

where μB is the Bohr magneton. The second term takes
into account the presence of localized states with
energy Eσ = E0 – gσμBH, where E0 is the bare energy.
In the magnetic field, the localized energy level splits
into two Zeeman sublevels. The splitting depends on
the value of the g factor of the rare�earth ion. As usual,
the introduction of chemical potential μ is associated
with subsequent averaging over a large canonical
ensemble. The Coulomb interaction of two electrons
in the same ion is taken into account by the third term,

in which  = dlσ is the operator of the number of
localized electrons with spin moment projection σ and
U is the Hubbard repulsion energy. The last term in
Eq. (1) describes hybridization processes of intensity
Vk between two groups of electrons.

While determining the energy spectrum of heavy
fermions in the canted AFM phase, we assume that
localized level E0 is in the lower half of the conduction

ckσ
+ dlσ

+

�ˆ εkσ μ–( )ckσ
+ ckσ

kσ

∑ Eσ μ–( )dlσ
+ dlσ

lσ

∑+=

+ U n̂l↑n̂l↓

l

∑
1

N
������� Vke ikl– ckσ

+ dlσ H.c.+{ }.

lkσ

∑+

εkσ εk 2σμBH,–=

n̂lσ dlσ
+
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band. In the regime of strong electron correlations,
energy E0 + U of the upper Hubbard level is above the
top of the conduction band. If U � |Vk |, the use of the
atomic representation for localized states of f ions
makes it possible to explicitly separate high�energy
hybridization processes with the participation of
binary localized states from low�energy processes in
the case when transitions of electrons from the con�
duction band occur only to localized states with one
electron. Since the first hybridization processes occur
with a level with a high value of E0 + U, they can be
taken into account using the operator form of pertur�
bation theory. The implementation of such a program
leads to the effective Hamiltonian including the
exchange coupling of the spin moments of collectiv�
ized and localized electrons as well as the exchange
interaction between the spin moments of f ions [38].
Thus, the physical properties of HF AFM intermetal�
lides can be described using the modified Anderson
Hamiltonian

(2)
in which the terms are written in the two�sublattice
Wannier representation. The first term in Eq. (2) takes
into account the collectivized and localized states of
electrons:

(3)

Subscripts f and f ' denote the sites belonging to the F
sublattice, while subscripts g and g' mark the sites cor�
responding to the G sublattice. The creation (annihila�
tion) operators for conduction electrons belonging to

the F and G sublattices will be redenoted as  (af) and

 (bg), respectively. The third and fourth terms in
Eq. (3) describe the contributions of localized states
from sublattices F and G, respectively. The fifth (sixth)
sums in Eq. (3) describe the hoppings of conduction
electrons in sublattice F(G), while the last sum
accounts for such hoppings between the sublattices.
Quantity εσ = ε – 2σμBH defines the diagonal part of
the energy of the collectivized state in the Wannier
representation in a magnetic field, ε in the bare level of
the above energy, and tll ' are the matrix elements
reflecting the intensity of hoppings of collectivized
electrons from site l to site l ' (site indices l and l ' may
correspond to the F as well as G sublattices). The states

�ˆ �ˆ 0 �ˆ mix �ˆ exch,+ +=

�ˆ 0 εσ μ–( )afσ
+ afσ

fσ

∑ εσ μ–( )bgσ
+ bgσ

gσ

∑+=

+ Eσ μ–( )Xf
σσ

fσ

∑ Eσ μ–( )Xg
σσ

gσ

∑+

+ tff 'afσ
+ af 'σ

ff 'σ

∑ tgg 'bgσ
+ bg 'σ

gg 'σ

∑+

+ tfg bgσ
+ afσ afσ

+ bgσ+( ).

fgσ

∑

af
+

bg
+

of f ions are described in the atomic representation
using the Hubbard operators

For n = 0, vector |n〉 describes the state without elec�
trons, while for n = σ (σ = ↑, ↓) this vector describes
the one�electron state with spin moment projection σ.

States with two f electrons at the same site do not
participate in the formation of the Hilbert space of
effective Hamiltonian (2) since processes involving
binary states are taken into account using perturbation

theory. This explains the fact that  contains only
low�energy hybridization processes between localized
and collectivized states:

(4)

The first sum in this relation describes hybridization
processes between states from different sublattices
with matrix elements Wfg. Hybridization processes
within a sublattice are described by the second and
third terms.

The exchange part of Hamiltonian (2), which is
associated with virtual transition to binary states, can
be written in the form

(5)

Here, we have taken into account the s–f exchange
interaction between the spin moments of localized and
collectivized electrons, as well as the exchange inter�
action in the localized subsystem. The matrix ele�
ments for the s–f exchange interaction in the limits of
the same sublattice are denoted by Jff ' and Jgg', while
those for the same interaction from different sublat�
tices are denoted by Lfg. Matrix elements Iff ' and Igg'

reflect the intensity of the exchange coupling between
the spin moments of the localized states belonging to
the same sublattice. The exchange integrals between
the spin moments of localized stated from different
sublattices are denoted by Kfg. The behavior of the
exchange parameters upon a change in hybridization

Xl
m n, m| 〉 n〈 |.=

�ˆ mix

�ˆ mix Wfgafσ
+ Xg

0σ Wgf bgσ
+ Xf

0σ+( )
fgσ

∑=

+ Vff 'afσ
+ Xf '

0σ

ff 'σ

∑ Vgg 'bgσ
+ Xg '

0σ

gg 'σ

∑ H.c.+ +

�ˆ exch Jff ' Sf �f '⋅( )
ff '

∑ Jgg ' Sg �g '⋅( )
gg '

∑+=

+ Lfg Sf �g⋅ Sg �f⋅+( )
fg

∑

–1
2
�� Iff ' Sf Sf '⋅( )

ff '

∑
1
2
�� Igg ' Sg Sg '⋅( )

gg '

∑–

+ Kfg Sf Sg⋅( ).

fg

∑
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and the distance between lattice sites are analyzed in
[38].

The components of localized quasi�spin operators
Sl are connected with the Hubbard operators via
familiar relations

(6)

For collectivized states, the relations between the
components of the electron spin operator and the
Fermi operator have the form

3. SLAVE�BOSON REPRESENTATION
AND DIAGONALIZATION OF HAMILTONIAN 

IN THE MEAN�FIELD APPROXIMATION
FOR CANTED AFM PHASE

IN A MAGNETIC FIELD

In a magnetic field, the magnetic structure of an
HF antiferromagnet is deformed, and equilibrium
magnetization vectors RF and RG in the F and G sublat�
tices are oriented relative to each other at an angle dif�
fering from 180° (Fig. 1). This canting of the magnetic
sublattices due to the s–f exchange coupling of local�
ized and collectivized spins induces a rearrangement
of the Fermi excitation spectrum. As a result, the
dependence of the electron heat capacity on the exter�
nal magnetic field contains renormalizations associ�

Sl
x 1

2
�� Xl

σσ
, Sl

y

σ

∑ i σXl
σσ

,

σ

∑= =

Sl
z σXl

σσ
, Sl

+

σ

∑ Xl
↑↓

,= =

Sl
– Xl

↓↑ σ = σ–( ).=

σl
x cl↑

+ cl↓ cl↓
+ cl↑+( )/2, σl

y cl↑
+ cl↓ cl↓

+ cl↑–( )/2i,= =

σl
z cl↑

+ cl↑ cl↓
+ cl↓–( )/2.=

ated with the magnetic field dependence of the cant of
the magnetic sublattices.

We will analyze the above effects in the approxima�
tion disregarding relaxation processes. In this case, the
effect of the localized subsystem on the collectivized
one can be described in the mean�field approxima�
tion. Hybridization processes will be taken into
account in the slave�boson representation using the
average constraint at a latter stage [39]. It is well
known that such an approach provides a satisfactory
description for the energy spectrum of heavy fermions
in the nonmagnetic phase. This allows us to represent
the EPAM Hamiltonian in the form

(7)

where  is the Hamiltonian of the collectivized sub�
system,

(8)

and the Fourier transforms of hopping integrals are
defined for the Brillouin zone corresponding to the
AFM phase:

where N is the number of sites in the magnetic sublat�
tice. The effect of the localized subsystem is mani�

fested in the form of magnetizing field ~R|| =  =

 as well as the term ~R⊥ =  = –  describ�
ing processes with the flip of the spin moment projec�
tion in the collectivized subsystem.

After the two�stage Bogoliubov transformation

(9)

with transformation parameters

(10)

�ˆ �ˆ c �ˆ L �ˆ mix C,+ + +=

�ˆ c

�ˆ c tk σ J0 L0+( )R|| 2σμBH–+[ ]{
kσ

∑=

× akσ
+ akσ bkσ

+ bkσ+( ) Γk akσ
+ bkσ bkσ

+ akσ+( )+

+ J0 L0–( )R⊥/2[ ] akσ
+ akσ bkσ

+ bkσ–( ) },

tff ' N 1– tk ik f f '–( ){ },exp
k

∑=

tfg N 1– Γk ik f g–( ){ },exp

k

∑=

Sf
z〈 〉

Sg
z〈 〉 Sf

x〈 〉 Sg
x〈 〉

akσ αkσ βkσ–( )/ 2,=

bkσ αkσ βkσ+( )/ 2,=

αkσ ϕkσAkσcos ϕkσBkσ,sin–=

βkσ ϕkσBkσcos ϕkσAkσsin+=

2ϕkσcos Γkσ/νkσ, 2ϕkσsin– Δ⊥/νkσ,= =

Δ⊥ J0 L0–( )/R⊥/2,=

Γkσ Γk σ J0 L0+( )R || 2μBH–[ ],+=

νkσ Γkσ
2 Δ⊥

2+=

z

x0

mGmF

RFRG

H

Fig. 1. Direction of magnetization vectors in the canted
phase upon the application of magnetic field H along the z
axis. For H = 0, all vectors are collinear to the x axis.
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operator (8) assumes the diagonal form

(11)

Using the slave�boson representation [39] for the
Hubbard operators of the localized subsystem, we
denote the Fermi operators for the F sublattice by Λfσ,
whereas the Fermi operators for the G sublattice will be
denoted by χgσ. Taking into account the mean�field
effects induced by the action of exchange interactions
on the localized states, we obtain the Hamiltonian of
the localized subsystem in the quasi�momentum rep�
resentation:

(12)

Here, h|| = –gμBH + m||(J0 + L0) + R||(K0 – I0), h⊥ =

R⊥(K0 + I0) – m⊥(J0 – L0), m|| =  = , and

m⊥ =  = – . Parameter λ defines the renor�
malization of energy of the localized level emerging
when the slave�boson representation is used [39].

The diagonalization of  is carried out via the
transformation

(13)

where angle φ satisfies the following conditions:

(14)

This gives the following expression for :

(15)

where  = E0 + λ – σ  is the energy of localized
electrons in the canted phase disregarding hybridiza�
tion processes.

In the approach used here, the term  has the
form

(16)

�ˆ c ξkσ
– Akσ

+ Akσ ξkσ
+ Bkσ

+ Bkσ+{ },

kσ

∑=

ξkσ
± tk νkσ.±=

�ˆ L E0 λ σh||+ +( ) Λkσ
+ Λkσ χkσ

+ χkσ+( )
⎩
⎨
⎧

kσ

∑=

–
h⊥

2
���� Λkσ

+ Λkσ χkσ
+ χkσ–( )

⎭
⎬
⎫

.

σf
z〈 〉 σg

z〈 〉

σf
x〈 〉 σg

x〈 〉

�ˆ L

Λkσ φDkσcos 2σ φDkσ,sin+=

χkσ φGkσcos 2σ φGkσ,sin–=

2φcos
h||

HΛ

������, 2φsin–
h⊥

HΛ

������,–= =

HΛ h⊥
2 h||

2+ .=

�ˆ L

�ˆ L Ẽσ Dkσ
+ Dkσ Gkσ

+ Gkσ+( ),

kσ

∑=

Ẽσ HΛ

�ˆ mix

�ˆ mix Ṽk akσ
+ Λkσ bkσ

+ χkσ+( ){
kσ

∑=

+ W̃k akσ
+ χkσ bkσ

+ Λkσ+( ) } H.c.,+

where  = e0Vk,  = e0Wk, and  is the mean value
of the operator of the number of auxiliary bosons per
site. The Fourier transforms of the intra� and intersu�
blattice hybridization parameters are also defined for
the magnetic Brillouin zone:

As a result of application of transformations (9) and
(13), the equations of motion taking into account

operator  form a closed eighth�degree nonde�
composable system. Accordingly, the dispersion equa�
tion is also an eighth�degree equation, and the deriva�
tion of closed self�consistent equations becomes cum�
bersome.

The situation is radically simplified if we introduce
one more unitary transformation:

(17)

In this case, the hybridization part of Hamiltonian (2)
assumes the form

(18)

where  =  ± ,  =

 ± ,  = ϕkσ ± 2σφ. However,

the structure of  does not change as a result of
transformation (17):

(19)

It is significant that the equations of motion are now
decomposed into two independent fourth�degree
blocks.

Constant C in Hamiltonian (7) contains mean�
field corrections to the energy of the system, as well as
the term associated with constraint imposed on the
number of localized electrons (nf ≤ 1):

(20)

For final diagonalization of the quadratic form of
the EPAM Hamiltonian, which is defined by expres�

Ṽk W̃k e0
2

Vk Vff ' ik f f '–( )–{ },exp
f f '–( )

∑=

Wk Wfg ik f g–( )–{ }.exp

f g–( )

∑=

�ˆ mix

Dkσ
1

2
����� Pkσ Lkσ+( ),=

Gkσ
1

2
����� Pkσ Lkσ–( ).=

�ˆ mix v+ kσ,
c( ) Akσ

+
v+ kσ,

s( ) Bkσ
+–( )Pkσ{

kσ

∑=

– v– kσ,
s( ) Akσ

+
v– kσ,

c( ) Bkσ+( )Lkσ} H.c.,+

v± kσ,
c( ) Ṽk ψkσ

–cos W̃k ψkσ
+cos v± kσ,

s( )

Ṽk ψkσ
–sin W̃k ψkσ

+sin ψkσ
±

�ˆ L

�ˆ L Ẽσ Pkσ
+ Pkσ Lkσ

+ Lkσ+( ).

kσ

∑=

C 2NR||m|| J0 L0+( )– 4Nm⊥Δ⊥–=

+ NR⊥
2 K0 I0+( ) NR||

2 I0 K0–( ) 2Nλ e0
2 1–( ).+ +
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sions (11), (18), and (19), we apply the fifth unitary
transformation (λ = 1, …, 4)

(21)

Coefficients  of this transformation can be deter�
mined from the requirement of the diagonal form of
the operator part of the EPAM Hamiltonian in the
representation of new operators Zλkσ:

(22)

This requirement boils down to the solution of the sys�
tem of four homogeneous equations:

(23)

Using the condition for the existence of nontrivial
solutions of the given system, we obtain the dispersion
equation defining eight branches Eλkσ (λ = 1, …, 4,
σ = ±1/2) of the Fermi excitation spectrum of EPAM
in the canted AFM phase:

(24)

In the particular case with allowance for only the
intrasublattice hybridization (Vk ≠ 0, Wk = 0), the dis�
persion equation is simplified as follows:

(25)

In the opposite situation (Wk ≠ 0, Vk = 0), the disper�
sion equation has the form

(26)

Zλkσ uλ1 kσ, Akσ uλ2 kσ, Bkσ+=

+ uλ3 kσ, Pkσ uλ4 kσ, Lkσ.+

uλj kσ,

�ˆ c �ˆ mix �ˆ L+ + EλkσZλkσ
+ Zλkσ.

λkσ

∑=

ω ξkσ
–– 0 v+ kσ,

c( )( )*– v– kσ,
s( )( )*

0 ω ξkσ
+– v+ kσ,

s( )( )* v– kσ,
c( )( )*

v+ kσ,
c( )– v+ kσ,

s( ) ω Eσ– 0

v– kσ,
s( )

v– kσ,
c( ) 0 ω Ekσ–⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

×

uλ1 kσ,

uλ2 kσ,

uλ3 kσ,

uλ4 kσ,⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

0.=

ω ξkσ
––( ) ω ξkσ

+–( ) ω Eσ–( ) ω Eσ–( )

+ Ṽk
2

W̃k
2

–
2

ω ξkσ
––( ) ω Eσ–( ) v+ kσ,

s( ) 2
–

– ω ξkσ
––( ) ω Eσ–( ) v– kσ,

c( ) 2
ω ξkσ

+–( ) ω Eσ–( )–

× v– kσ,
s( ) 2

ω ξkσ
+–( ) ω Eσ–( ) v+ kσ,

c( ) 2
– 0.=

ω ξkσ
––( ) ω Eσ–( ) Ṽk

2
–[ ]

× ω ξkσ
+–( ) ω Eσ–( ) Ṽk

2
–[ ]

+ 4σ Ṽk
2

ψkσ
– HΛνkσsin

2
0.=

ω ξkσ
––( ) ω Eσ–( ) W̃k

2
–[ ]

× ω ξkσ
+–( ) ω Eσ–( ) W̃k

2
–[ ]

+ 4σ W̃k
2

ψkσ
+ HΛνkσsin

2
0.=

Equations (25) and (26) formally differ only in the
argument of the sine in the last term. In the paraphrase

(  = 0), both these equations give the standard mix�
ion spectrum.

To simplify analytic calculations, we will confine
further analysis to the case of one�sublattice hybrid�
ization (Wk = 0). For determining the coefficients of
transformation (21), we will use, in addition to

Eqs. (23), the unitarity condition  = 1. This

gives the following expression for the coefficients of
the fifth transformation:

(27)

where

Introducing the function

we express the initial operators of the EPAM effective
Hamiltonian in terms of operators Zλkσ; in the repre�
sentation of these operators, the Hamiltonian has the
diagonal form (see Eq. (22))

(28)

HΛ

uλ j k
σ

,
2
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× Eλkσ Eσ–( ) Ṽk
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2
+

+ Ṽk
2
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2
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2
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× Ṽk
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2
+sin
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2

.

Φλkσ
i j α( ) uλi kσ,* αcos uλ j kσ,* αsin+( )/ 2,=

i j, 1 2 3 4,, , ,=

akσ Φλkσ
12 ϕkσ–( )Zλkσ Φλkσ

21 ϕkσ( )Zλkσ–[ ],

λ

∑=

bkσ Φλkσ
12 ϕkσ–( )Zλkσ Φλkσ

21 ϕkσ( )Zλkσ+[ ],

λ

∑=

Λkσ Φλkσ
34 2σφ( )Zλkσ Φλkσ

43 2σφ( )Zλkσ+[ ],

λ
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4. SELF�CONSISTENT EQUATIONS

Diagonalization of the Hamiltonian with the help
of transformation (28) makes it possible to calculate
all of the mean values of the initial operators. This is
necessary for deriving a system of integral equations
for seven matching parameters: μ, λ, R||, m||, e0, R⊥,
and m⊥. For example, the expressions for the distribu�
tion functions of localized and collectivized electrons
have the form

(29)

(30)

where f(x) = 1/(exp((x – μ)/T) + 1) is the Fermi–
Dirac distribution function. In view of the equivalence
of magnetic sublattices, we have

Correlation functions (29) and (30) are used in the
first four matching equations for parameters μ, λ, R||,
and m||,

(31)

where n is the total number of electrons in the system.
It is well known that in the description of heavy fer�

mions with the help of slave bosons, the effective value
of hybridization becomes a function of external
parameters (temperature, magnetic field, and so on)
[39]. This dependence appears due to renorm factor

 appearing in the hybridization parameter in the
equations for the Green functions and, as a conse�
quence, in the matching equations. The equation for

χkσ Φλkσ
34 2σφ( )Zλkσ Φλkσ

43 2σφ( )Zλkσ–[ ].

λ

∑=

Λkσ
+ Λkσ〈 〉 Φλkσ

34 2σφ( )
2
f Eλkσ( )

λ

∑=

+ Φλkσ
43 2σφ( )

2
f Eλkσ( ),

λ

∑

akσ
+ akσ〈 〉 Φλkσ

12 ϕkσ–( )
2
f Eλkσ( )

λ

∑=

+ Φλkσ
21 ϕkσ( )

2
f Eλkσ( ),

λ

∑

Λkσ
+ Λkσ〈 〉 χkσ

+ χkσ〈 〉 , akσ
+ akσ〈 〉 bkσ

+ bkσ〈 〉 .= =

n 2 1
N
��� Λkσ

+ Λkσ〈 〉 akσ
+ akσ〈 〉+( ),

kσ

∑=

1
N
��� Λkσ

+ Λkσ〈 〉
kσ

∑ 1 e0
2
,–=

R||
1
N
��� σ Λkσ

+ Λkσ〈 〉 ,

kσ

∑=

m||
1
N
��� σ akσ

+ akσ〈 〉 ,

kσ

∑=

e0
2

this renorm factor can usually be derived from the
condition of the free energy minimum. In our case,
this equation has the form

(32)

The remaining two order parameters R⊥ and m⊥,
which define the transverse magnetization compo�
nents for localized and collectivized electrons, can be
determined from the solution of the matching equa�
tions:

(33)

where the mean values can be written, taking into
account relation (28), in the form

(34)

(35)

Equations (31)–(35) form the system of seven integral
equations, which will be subsequently used for self�
consistent calculation of the low�temperature ther�
modynamics of HF intermetallides with the AFM
phase canted by the magnetic field.

5. STRUCTURE OF THE GROUND STATE
AND THE EPAM FERMI EXCITATION 

SPECTRUM IN THE CANTED AFM PHASE

In numerical calculations, we assumed that order�
ing of ions corresponds to a body�centered cubic (bcc)
lattice, while the bare conduction band is formed due
to hoppings between nearest neighbors with tunnel
integral t1. In this case,

(36)

where b is the magnetic lattice parameter. To simplify
calculations, we took into account only the s–f
exchange processes between localized and collectiv�
ized electron states occurring within a cell. An analo�
gous simplification was also made for hybridization
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21 ϕkσ( )( )*Φλkσ

43 2σφ( ) f Eλkσ( ) ].

R⊥
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processes. These constraints lead to the following
equalities: Vq = V, Wq = 0, Jq = J, and Lq = 0, where V
and J are the values of the hybridization parameter and
s–f exchange integral, respectively. To eliminate
frustration effects in the localized electron sub�
system, we assumed that the exchange coupling
takes place only between the nearest spins from dif�
ferent sublattices. Thus, Iq = 0 and Kq =
8K1cos(qxb/2)cos(qyb/2)cos(qzb/2), where K1 is the
exchange integral for the nearest neighbors. All energy
parameters will be henceforth measured in the units of
|t1| (t1 < 0).

As the starting point, we consider schematically the
Fermi excitation spectrum in the AFM phase for H = 0.
This spectrum is determined by the solutions to dis�
persion equation (25) and is shown qualitatively in
Fig. 2 disregarding hybridization. The right and left
sides of the figure show the spectrum for σ = +1/2 and
–1/2, respectively. Four spectral branches Eλkσ (λ = 1,
2, 3, 4) are degenerate in quantum number σ (the left
and right branches in the figure are identical). The
straight lines correspond to the energy levels of local�
ized states of the f subsystem with bare energy E0,

which are split by exchange field . For better visu�
alization, the splitting of levels is enlarged in Fig. 2. In

actual practice, the value of  is two or three orders
of magnitude smaller than the bandwidth. The disper�
sion curves describe the bare spectrum of collectivized
electrons. Doubling of the number of branches as
compared to the paramagnetic case is due to the AFM
structure for which the corresponding decrease in the
Brillouin zone width takes place. In the case consid�
ered here, the quasi�momentum varies along the [111]
direction. For other directions, the pattern is qualita�
tively the same.

HΛ

HΛ

In the further analysis, we will confine ourselves to
the case when the localized level, as in Fig. 2, is within
the lower half of the bare band of collectivized elec�
trons and the chemical potential is in the immediate

vicinity of this level. Since the effective field  deter�
mining the splitting energy of f states is much smaller
than the conduction band width, the most significant
changes occur in the energy spectrum under the action
of hybridization processes and canting of magnetic
sublattices only in the vicinity of energy E0. For this
reason, considering the effect of the magnetic field, we
will accentuate attention only on the modification of
the Fermi spectrum in the immediate vicinity of this
energy region. Such analysis is of special importance
since modification of energy spectrum in this region is
responsible for all peculiarities of the low�temperature
thermodynamics of heavy fermions in the AFM
canted phase, while the uppermost spectral branches
with λ = 4 make zero contribution to the thermody�
namic parameters of the system.

Before we pass to analysis of dispersion relations
calculated self�consistently, let us consider the features
of the temperature dependence of the key parameter

in the theory of slave bosons, viz., . It has been reli�
ably established that the self�consistent solution of

equations for  in the paramagnetic phase leads to a
monotonic decrease in this parameter. The theory
acquires an important energy parameter T* defining

the temperature at which  vanishes. At T < T*, the
system is in a coherent regime. In the approximation
of a rectangular density of Fermi states with band half�
width D, we have

where C = 0.577 is the Euler constant. In this case, the
Kondo temperature considerably exceeds T*.

Self�consistent calculations show that the situation
slightly changes in the presence of exchange interac�
tions between localized spin moments and after the
emergence of long�range magnetic order. This is
because the system acquires a new energy scale (Néel
temperature TN in our case). It turns out that the tem�

perature dependence of  in the magnetically ordered
phase increases monotonically. This situation is illus�
trated in Fig. 3, obtained as a result of self�consistent
solution of the above system of integral equations for
the following values of the parameters: E0 = –4, V =
0.53, K0 = 0.002, J0 = 0.002, and n = 2.4. It can be seen
that at the point of magnetic ordering, the temperature

dependence of  changes and passes to the typically
paramagnetic behavior. The Néel temperature in this
case is always lower than the coherence temperature.
It should be emphasized that this dependence is typi�

HΛ

e0
2

e0
2

e0
2

T* 2eC

π
���� D2 μ2– λD

V2
������–

⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp=

e0
2

e0
2
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E0

Eks
j

s = −1/2 s = +1/2

k π
b
��= k π

b
��=

Fig. 2. Qualitative form of the bare band structure in the
EPAM for the AFM phase.
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cal and is observed for other values of model parame�
ters as well.

Figure 4 shows the spectrum for the AFM phase in
the vicinity of a localized level, which was calculated
using dispersion equation (25) and system of self�con�
sistent equations (31)–(35) for three temperature val�
ues. The model parameters were chosen as follows:
E0 = –4, V = 0.4, K0 = 0.02, J0 = 0.5, n = 2.2, and
magnetic field H = 0. The value of the Néel tempera�
ture of 23 K given in the figure (TN = 14.5 K for
UPd2Al3 [40] and TN = 35 K for CeRh2Si2 [41]) corre�
sponds to a bare conduction band width of 16 eV
(|t1| = 1 eV). If we choose smaller values of the band�
width, the Néel temperature will decrease in the same
proportion. Analogous scaling of energy values will be
used in the figures below. The most significant feature
of this spectrum is the presence of a narrow band of
heavy quasiparticles separated by gaps from the upper
and lower bands. This pattern of the spectrum basi�
cally differs from the spectral structure of HFs in the
paramagnetic phase, for which the energy spectrum of
heavy quasiparticles is separated by an energy gap only
from one side.

The width of the split band of HFs is on the order

of ; it can be seen from conditions (14) that it is
defined by the values of magnetic parameters of the
localized and collectivized subsystems. Figure 4b
shows the corresponding density of electron states in
the vicinity of the localized level on the same energy
scale as for the spectrum in Fig. 4a.

Comparing Figs. 4c–4f with Figs. 4a and 4b, we
can trace the temperature evolution of the band struc�
ture. In particular, it can be seen that with increasing
temperature, the width of the narrow band gradually
decreases, while the chemical potential, which was
initially inside this band, decreases to a value below the
bottom of this band. At a temperature on the order of
19 K, the narrow band degenerates into a level, and a
further increase in temperature leads to inversion of
this band (see Fig. 4c). As a result of inversion, the dis�
persion peak of the narrow band (E2kσ) corresponds to
a state at the center of the Brillouin zone. The inver�
sion of the narrow band is accompanied by a consider�
able decrease in the average magnetization R of local�
ized electrons. As the temperature approaches TN, the
lower gap (between the bands with λ = 1 and 2)
decreases and disappears (see Figs. 4e and 4f), while
the upper gap (hybridization gap of the paraphrase) is
preserved.

The application of an external magnetic field H
leads to canting of the magnetization vectors of the
sublattices. Due to the s–f exchange coupling between
electrons of the collectivized and localized sub�
systems, this cant induces a change in the spectral
characteristics of the system. The form of these
changes in the vicinity of the localized level is demon�
strated in Fig. 5. The model parameters were chosen
the same as in the previous calculation and the tem�

HΛ

perature was fixed at T = 1 K. The field of the spin�flip
transition for the chosen parameters is μBHc =
8.1 × 10–3. Figure 5a shows the spectrum of quasipar�
ticles calculated for H/Hc = 0.214. Comparison of this
spectrum with the spectrum calculated for H = 0 (see
Fig. 4a) shows that variation of the spectrum is
observed in two cases. The first modification is of sim�
ple origin and associated with the removal of degener�
acy in quantum number σ. The second feature is man�
ifested as follows: for σ = –1/2, regions can be singled
out on the first (λ = 1) and second (λ = 2) spectral
branches, which come closer upon an increase in the
magnetic field, while for σ = +1/2, analogous conver�
gence is observed for the second (λ = 2) and third
(λ = 3) branches. With a further increase in the mag�
netic field, this convergence of spectral regions is
enhanced (Fig. 5b). For H = Hc (Fig. 5c), the first and
second spectral branched for σ = –1/2, as well as the
second and third branches for σ = +1/2, come in con�
tact. As a result, we obtain a spectral structure corre�
sponding to the ferromagnetic phase for which the
splitting in the projection of spin moment σ is induced
by the effective field. Note that this is observed for the
same value of the magnetic field for which the antifer�
romagnetism vector turns zero.

Analysis of the dispersion curves in Figs. 4 and 5
shows that a distinguishing feature of the Fermi quasi�
particle spectrum with a canted AFM phase as com�
pared to the HF spectrum in the para� and ferromag�
netic phases is the presence of a narrow split band E2kσ
with a structure quite sensitive to slight variations in
temperature and magnetic field. The scale of the split
band width, as well as the scales of fields and tempera�
tures considerably affecting this band, is determined
by exchange and s–f exchange integrals as well as the
value of magnetization R. In the case when the chem�
ical potential lies in the narrow band, the low�temper�
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Fig. 3. Temperature dependences of relative renorm factor

 and relative sublattice magnetization for |t1| = 1 eV.e0
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ature thermodynamics of the system is determined to
a considerable extent by spectrum E2kσ.

The results for the collinear and canted AFM
phases were obtained from numerical solution of two
(σ = ±1/2) fourth�order dispersion equations (25)
describing the Fermi excitation spectrum Eλkσ for an
arbitrary relation between parameters. In the case
important for practical application in which the char�
acteristic energy of splitting is much smaller that the

width of the bare conduction band (  � W), the
expressions for the spectrum of heavy fermions
described by branches E2kσ can be obtained in analytic

HΛ

form. Indeed, if  � W, we can state that  = ±|Γk |
to a high degree of accuracy. In this case, to find the
elementary excitation spectrum in the vicinity of the

localized energy level ζ = E0 + λ, we can set (ω – ) ≈
(ζ  |Γk |) in dispersion equation (25). In this case, dis�
persion equation (25) assumes the form of a quadratic
equation, and its two solutions

(37)

HΛ ξkσ
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ξkσ
±

+−
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± ζ 1 γk–( ) ηkσ,±=
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Fig. 4. Temperature evolution of (a, c, e) the Fermi spectrum and (b, d, f) density of electron states in the EPAM for the AFM phase
in the vicinity of the localized level. The dot�and�dash line denotes the chemical potential. The Néel temperature is TN ≈ 23 K.
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describe the dispersion of Fermi excitations in this
energy range. The solid (dashed) curves on the right�
hand side of Fig. 6 describe the behavior of the energy

spectrum defined by solutions  ( ). The
model parameters were chosen the same as in calcula�
tion of the curves in Figs. 4 and 5. In this case, field
H = 0 and temperature T = 1 K. The dotted curve on
the left�hand side of Fig. 6 shows the branches of the

 spectrum calculated from dispersion equation
(25). In the collinear AFM phase, the spectrum is
degenerate in quantum number σ:  = .
Consequently, if our approximation is justified, the
dispersion curves on the left and right sides of Fig. 6
must coincide. It can be seen from comparison of the
curves that the behavior of the energy spectrum in the
vicinity of the localized level, which is described by
analytic expressions (37), is practically indistinguish�
able from the spectrum determined from the exact
solution to the dispersion equation. A discrepancy
appears only in the energy range beyond the neighbor�
hood of ζ and is not seen in the given figure.

Note that the mean dispersion curve on the right�
hand side of Fig. 6, which is represented by a solid
curve that transforms into a dotted curve, is associated
with the discontinuous type of solutions (37) at point
k = kc at which γk reverses its sign. In the region k < kc,

branch  corresponds to the E3kσ branch, while for
k > kc, it corresponds to the branch with λ =2. Branch

– h|| J0R|| 2μBH–( )/2 ) HΛ
2

/4}1/2
,+

Ωk +1/2,
– Ωk +1/2,

+

Eλk 1/2–,

Eλk 1/2–, Eλk +1/2,

Ωk σ,
+

 for k < kc corresponds to the E2kσ branch, while
in the range of large values of quasi�momentum, it
corresponds to the E1kσ branch. On account of such
behavior, we can write the analytic expression for the
spectrum of the split HF band in the form

(38)

It should be emphasized that this expression holds in
the entire range of magnetic fields in which the canted
phase of AFM intermetallide is formed. All dispersion
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Fig. 5. Quasiparticle spectrum of an HF antiferromagnet in the canted phase in the vicinity of the localized level for various values
of magnetic field: (a) H/Hc = 0.214, R = 0.379; (b) H/Hc = 0.821, R = 0.391; (c) H/Hc = 1, R = 0.393. The dot�and�dash line
shows the position of the chemical potential.
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Fig. 6. Quasiparticle spectrum of an HF antiferromagnet
in the collinear AFM phase in the vicinity of the localized
level, calculated from fourth�degree dispersion equation
(25) (for σ = –1/2) and by formula (37) (for σ = +1/2).
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curves with λ = 2 shown in Figs. 4 and 5 are success�
fully described by analytic expression (38).

In particular cases of the AFM, ferromagnetic
(FM), and paramagnetic phases (PM), Eq. (38) gives

(39)

E2kσ
AFM ζ 1 γk–( ) γk( )sgn–=

× γkΓk( )2 γkΔ⊥h⊥ h⊥
2

/4+ +{ }
1/2

,

E2kσ
FM ζ 1 γk–( ) γk( ) γkΓk σh||–( )2

⎩
⎨
⎧

sgn–=

Formula (38) makes it possible to also derive an
expression for effective mass m* of heavy quasiparti�
cles in the canted AFM phase. Expanding relation
(38) in the vicinity of small k, we obtain

(40)

where m0 is the effective mass of bare collectivized
electrons in the vicinity of the bottom of the band. For
dispersion relation (36), mass m0 can be determined
from the expression �2/2m0b

2 = |t1|. In the paramag�
netic phase, we obtain the following simple relation for
the effective mass of heavy quasiparticles:

(41)

The negativeness of the mass is responsible for the hole
nature of heavy quasiparticles in the paraphase.

6. THERMODYNAMIC PROPERTIES
OF HF INTERMETALLIDES

IN THE CANTED AFM PHASE

Numerical analysis of self�consistent equations
shows that for a given set of model parameters and
external conditions, several stable phases can form.
The choice of the stable state from metastable states is
dictated by the lowest value of free energy. Taking into
account relations (7) and (22), we can write the fol�
lowing expression for free energy:

(42)

Calculations show that the intensity of hybridization
processes affects the result of competition between the
AFM and PM phases. The change of the type of state
upon an increase in the hybridization parameter is
illustrated in Fig. 7. Calculations were performed for
the following parameters: E0 = –2, K0 = 0.02, J0 = 0.5,
n = 2.8, T = 1 K, and H = 0. Figure 7 shows that for a
hybridization parameter smaller than Vc ≈ 0.43, the
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AFM phase with the strongest magnetization is stable.
However, for V > Vc, the stable phase corresponds to
the paramagnetic solution with R = 0, while solutions
of the AFM type become metastable. Such a variation
of the stable phase of the system upon an increase in
the hybridization parameter is a particular case of the
first�order transition in the interaction parameter. For
zero temperature, this would correspond to a quantum
phase transition. Knowing the variation in the struc�
ture of the GS of the system upon an increase in V, we
can describe the evolution of the band structure upon
an increase in the intensity of hybridization processes.
For small values of V, the Fermi excitation spectrum in
the vicinity of the localized level has the form typical
of AFM ordering in the system (see Fig. 4a). With an
increasing hybridization parameter, the narrow band
shrinks and the hybridization gaps become wider. For
V = Vc, when the type of the ground state changes from
AFM to paramagnetic, the elementary excitation
spectrum acquires the form shown in Fig. 4e. It should
be emphasized that the energy spectrum correspond�
ing to states with heavy fermions is considerably mod�
ified in this case due to evolution of the long�range
AFM order due to a change in the hybridization
parameter. Rearrangement of magnetic ordering in
the localized subsystem induces a variation in the
spectral properties of Fermi quasiparticles. In this
case, hybridization plays the role of a parameter con�
trolling magnetization of the sublattices.

This scenario of jumpwise variation in the GS
structure of the localized subsystem upon an increase
in the hybridization parameter is not unique. Choos�
ing other values of the model parameters, we can cre�
ate conditions in which the AFM state remains a stable
phase down to very small values of sublattice magneti�
zation. This means that a transition from magnetically
ordered to the paramagnetic state may occur via a sec�
ond�order transition or via a first�order phase transi�
tion close to the second�order transition. This type of
evolution of the parameters of the stable phase is illus�
trated in Fig. 8. In this case, calculations were per�
formed with different values of the bare energy of the
localized level and electron concentration (E0 = ⎯4
and n = 2.2). The remaining model parameters were
chosen the same as in calculations of the curves in
Fig. 7. It can be seen that for all values of V, the solu�
tion describing the long�range magnetic order corre�
sponds to a lower energy than that for the paramag�
netic state. However, the value of magnetic moment R
decreases from R = 0.45 (for V = 0.1) to R = 0.06
(for V = 0.7). It should be noted in this connection
that it is precisely such small values of the sublattice
magnetization that are observed in experiments with
many HF antiferromagnets.

Our analysis of the Fermi excitation spectrum in
the AFM phase corresponds to the electron concen�
tration for which chemical potential μ is within the
narrow split�off band. The conditions for the existence
of the AFM solutions are observed precisely in this

case. Upon an increase in electron concentration n,
localized states become depleted and lattice magneti�
zation R decreases. The changes in the spectral struc�
ture and in the density of states emerging in this case in
the vicinity of the localized level are demonstrated in
Fig. 9. The model parameters used in calculating these
curves were as follows: E0 = –4, V = 0.7, K0 = 0.02,
and J0 = 0.5. The temperature was chosen at 1 K, and
the magnetic field was zero. For n = 2.4 (Figs. 9a and
9b), the chemical potential is approximately at the
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middle of the narrow band between the peaks of the
density of states (dot�and�dash curve). The system
exhibits a long�range AFM order with a large mag�
netic moment of the rare�earth ion (R = 0.460).
A decrease in the concentration to n = 2.2 (Figs. 9c
and 9d) leads not only to a decrease in chemical
potential μ, but also to a considerable rearrangement
of the dispersion curve for the narrow band, which is
manifested as a change in its curvature (inversion of
the narrow band). As well, the upper gap increases,
while the lower gap decreases but remains finite. From
the point of view of physics, the observed inversion of
the narrow band indicates the sign reversal of the
effective mass.

The results of the above calculations show that a
decrease in concentration n leads to substantial sup�
pression of the magnetic moment down to R = 0.061,
which, as noted above, correlates with the values of
magnetization in many HF antiferromagnets. Another

important aspect is the displacement of the chemical
potential so that it falls to the peak of the density of
states (see Fig. 9d). This facilitates the formation of
states with heavy fermions and strongly affects the
thermodynamic properties of the system (in particu�
lar, the electron heat capacity of HF antiferromag�
nets).

Figure 10 shows the results of solving the system of
self�consistent equations for various temperature val�
ues. The temperature dependences of sublattice mag�
netization R, heat capacity C of the system, and Som�
merfeld constant γ = C/T in zero magnetic field pre�
sented in the figure were obtained for two values of
electron concentration (n = 2.4 and 2.2). The remain�
ing model parameters were the same as for the curves
plotted in Fig. 9. Comparison of Figs. 10a and 10d
shows that upon a decrease in the concentration
accompanied by a displacement of the chemical
potential towards the peak of the density of states (see
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Fig. 9. Quasiparticle spectrum and density of states in the vicinity of the localized level for n = 2.4; R = 0.460 (a, b); n = 2.2, R =
0.061 (c, d).
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Fig. 9 and the notes to it), not only magnetic moment
R decreases, but also the values of critical temperature:
TN = 26.2 K for n = 2.4 (see Fig. 10a) and TN = 8.2 K
for n = 2.2 (see Fig. 10d). It should be noted for com�
parison that the characteristic Néel temperature of
classical HF antiferromagnets is approximately 10 K.

Figures 10b and 10e demonstrate a sharp change in
the heat capacity of the system in the vicinity of the
temperature of transition from the AFM to the para�
magnetic phase. The strong increase in the value of C
observed when TN is approached from the left is due to
the contribution of the magnetic degrees of freedom.

The existence of strong electron correlations in the
system hampers the separation of the electronic and
magnetic contributions to the thermodynamic param�
eters of HF antiferromagnets. However, at very low
temperatures T � TN, the electron heat capacity con�
siderably exceeds the magnetic heat capacity. For this
reason, ratio C/T makes it possible to estimate the
effective mass of electrons and their density of states.
This information can be obtained from Figs. 10c and
10f. For n = 2.4, at which the chemical potential is at
the middle of the narrow band between the peaks of
the density of states (see Fig. 9b), the heat capacity of
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the system is approximately 50 times higher than the
heat capacity of a gas of free electrons (see Fig. 10c).
Such quasiparticles are treated as heavy, and the order
of magnitude of their effective mass corresponds, for
example, to the mass of charge carriers in HF skutter�
udite LaFe4P12 [13].

As the concentration decreases to n = 2.2, the
chemical potential is shifted to the peak of the density
of states (see Fig. 9d), and the electron heat capacity
of the system increases by an order of magnitude (see
Fig. 10f). This means that the effective mass of heavy
quasiparticles in this regime attains a value of approx�
imately 500 masses of a free electron. Such values of
the quasiparticle mass are typical of classical HF sys�
tems.

Finally, we note that the temperature variations in
constant γ for n = 2.4 and 2.2 are different. In the
former case, the Sommerfeld constant increases
monotonically up to TN (see Fig. 10c), while in the lat�

ter case, it first decreases and then increases (see
Fig. 10f).

It was noted above that the application of a mag�
netic field cants the magnetizations of the sublattices.
This induces a modification of the spectral curves and
a change in the density of states. The rearrangement of
the GS must obviously affect the thermodynamic
properties of the system. Figure 11 shows the calcu�
lated temperature dependences of the heat capacity
and parameter γ for n = 2.4 for three values of the mag�
netic field below the spin�flip transition point. The
model parameters were chosen the same as those used
for calculating the curves in Fig. 10. It can be seen
from Fig. 11 that the application of the magnetic field
not only blurs the phase�transition region, but also
reduces the value of temperature Tmax corresponding
to the heat capacity peak on the C(T) curve. This
points to a decrease in the Néel temperature since it is
precisely Tmax that is interpreted in experiment as the
AFM transition temperature. Such a behavior of the
C(T) and γ(T) dependences was observed in experi�
ments with PuGa3 [24], Ce2Au2Cd [25], YbNiSi3 [26],
and PuPd5Al2 systems [25].

7. CONCLUSIONS

The main results of this study can be summarized
as follows.

1. The slave�boson representation has been used for
the first time to consider the spectral and thermody�
namic properties of AFM intermetallides with heavy
fermions, in which a magnetic field cants magnetic
sublattices. To derive the dispersion equation describ�
ing the branch of the Fermi�type elementary excita�
tion spectrum in the canted AFM phase, a sequence of
unitary transformation was employed. Such an
approach was employed to represent the eighth�order
determinant in an explicit block�diagonal form in
terms of two fourth�order determinants. The applica�
tion of this program radically simplified not only the
analytic part of the problem, but also the numerical
calculations involving the solution of a large number
of transcendental self�consistent equations.

2. The calculations revealed the features of forma�
tion of the heavy�fermion spectrum in rare�earth
intermetallides with AFM ordering of spin moments
of the localized subsystem. In particular, it was shown
that the state of heavy fermions in such systems corre�
sponds to a narrow band separated by energy gaps from
above and below. The magnetic field inducing the
canting of the magnetic sublattices considerably mod�
ifies the dispersion relation for this band and leads to a
change in the effective mass not only in magnitude,
but also in sign.

3. For the first time, an analytic expression describ�
ing the HF spectrum in wide ranges of magnetic fields
and temperatures were obtained for the noncollinear
phase with a nonzero antiferromagnetism vector. This
enabled us to establish explicit relations between the
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effective masses for the paramagnetic phase and col�
linear AFM phase, as well as the ferromagnetic phase
formed in the range of strong magnetic fields after the
spin�flop transition.

4. The effect of magnetic degrees of freedom of col�
lectivized electrons on canting of sublattice magneti�
zations in a magnetic field was taken into account.
This circumstance is especially important for HF
compounds with the metal�type ground state, in
which the charge carrier concentration is high. It is
found, in particular, that the thermodynamic princi�
ples can be observed in the low�temperature range
only in the framework of such a description.

5. The expressions obtained for the spectrum of
heavy fermions in various phases were used for analyz�
ing the thermodynamic behavior of the system. The
dependences of the sublattice magnetization and free
energy on the controlling parameters and temperature
were calculated. It was noted for the first time that the
existence of magnetic ordering leads to a qualitative
change in the temperature dependence of the renorm

factor  in the slave�boson representation. In the

AFM phase, the value of  increases monotonically
with temperature. The ranges of parameters in which
the magnetization of the sublattice assumes small val�
ues corresponding to experimental data on AFM HF
intermetallides have been determined.

6. For the first time, canting of magnetic sublattices
was taken into account in analyzing the behavior of
heat capacity in the noncollinear AFM phase. It was
shown that the changes in the electron heat capacity
induced by the magnetic field correlate with the avail�
able experimental data on AFM intermetallides.
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