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1. INTRODUCTION: AUTOCORRELATIONS 
AND CROSS CORRELATIONS

Amorphous and nanocrystalline materials have
been widely used in various modern electronic devices
based on the propagation and transformation of elec�
tromagnetic, elastic, and spin waves. Theoretically,
these materials are characterized by the two main
properties: (1) inhomogeneity of all parameters of the
Hamiltonian (density of the material; elastic force
constants; exchange, magnetic anisotropy, and other
parameters), and (2) extended correlations of these
inhomogeneities for which the correlation length is
determined by both the topological and compositional
disorders and can vary over a wide range (several tens
and several hundreds of interatomic distances). The
existence of large correlation lengths renders it impos�
sible to use well�developed theoretical methods that
take into account effects of uncorrelated (δ�corre�
lated) inhomogeneities for calculating a number of
effects in these materials.

Effects of inhomogeneities with arbitrary correla�
tion lengths on the spectrum and damping of spin
waves in terms of the continuum model were taken

into account in the first nonvanishing order of pertur�
bation theory in our earlier works [1–3]. Later, in the
same approximation, effects of correlated inhomoge�
neities on the spin wave spectrum were included in the
lattice model of a ferromagnet [4, 5] and in the contin�
uum model [6]. Effects of inhomogeneities with arbi�
trary correlation lengths on the spectrum and damping
of elastic waves in the isotropic medium were taken
into account in [1, 7, 8].

In these randomly inhomogeneous media, the fre�
quency ω'(k) and damping ω''(k) of waves are func�
tionals of the correlation functions that describe the
stochastic properties of spatial functions of the param�
eters of the medium. In [1–6, 8], effects of each fluc�
tuating parameter of the medium Ai(x) (where x =
{x, y, z}) were considered separately: for example, it
was assumed that the exchange constant α(x) is inho�
mogeneous and all other spin Hamiltonian parameters
are constant; then, the problem of effects of inhomo�
geneities of the magnetic anisotropy β(x) was analyzed
under similar conditions, etc.
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The random function Ai(x) for each ith parameter
of the medium was represented in the form

(1)

where Ai and γi are the mean value and the relative
root�mean�square deviation of the function Ai(x),
respectively, and ρi(x) is the centered (  = 0)

and normalized (  = 1) homogeneous random
function of the coordinates. The stochastic character�
istics of the random function ρi(x) are described by the
autocorrelation function Kii(r) or the spectral density
Sii(k) of inhomogeneities (related to the autocorrela�
tion function by the Fourier transform):

(2)

where |r | is the distance between two points in the
space and the angle brackets indicate averaging over an
ensemble of realizations of the random function ρi(x).
From physical considerations and analysis of a num�
ber of exactly solvable models (see, for example, [9–
12]), the autocorrelation functions Kii(r) were simu�
lated by rapidly decreasing functions with arbitrary
correlation lengths rii (exponential, Gaussian, and
Karman functions were examined). The quantity 2rii

determines the length of correlated (and, correspond�
ingly, shortest) fluctuations. In the particular case of a
polycrystal (nanocrystal), in the absence of any disor�
der inside each crystallite, the quantity 2rii corre�
sponds to the mean size of the crystallite. In this case,
the spectral density Sii(k) of inhomogeneities is also a
monotonically decreasing function with the spectrum

cut by the correlation wave number kii = .

It should be noted that, in some specific cases,
inhomogeneities can arise that are described by non�
monotonically decreasing correlation functions.
Krivoglaz [13], who investigated the specific features
of X�ray scattering in supersaturated solid solutions,
was most likely the first to call attention to the fact
that, in these media, the mean concentration profile is
disturbed only in small local volumes. According to
the law of conservation of atoms in each local volume,
the neighboring positive and negative half�waves of
deviation of the concentration from the mean concen�
tration appear correlate with each other. Therefore,
the correlation function of the concentration is also
characterized by the negative half�wave after the posi�
tive half�wave and the integral of the autocorrelation
function Kii(r) over the volume vanishes. In our previ�
ous works (see references in review [14]), we investi�
gated the effects caused by these correlation functions.
However, the topological disorder, which is typical of
amorphous and nanocrystalline media, does not obey
the local laws of conservation and leads to monotoni�

Ai x( ) Ai 1 γiρi x( )+[ ],=

ρi x( )〈 〉

ρi
2 x( )〈 〉

Kii r( ) ρi x( )ρi x r+( )〈 〉 ,=

Sii k( ) 1

2π( )3
����������� Kii r( )e ik– r⋅ r,d∫=

rii
1–

cally decreasing correlation functions [9–12], which
will be studied in the present work.

Therefore, the inhomogeneity of each parameter of
the medium adds two arbitrary constants to the theory:
the root�mean�square deviation γi and the correlation
length rii (or the correlation wave number kii) of the
fluctuations of this parameter Ai. The corresponding
quantities either should be determined from a com�
parison of the developed phenomenological theory
with experimental data or should be calculated from
microscopic models of inhomogeneities in this partic�
ular medium.

The main result of the theory developed in [1–3] is
that, in the vicinity of the wave number k = kii/2, the
laws of dispersion ω'(k) and damping ω''(k) should be
changed and the corresponding change should be dif�
ferent for inhomogeneities of different physical
parameters. In particular, the exchange inhomogene�
ity leads to a bending of the dispersion curve ω'(k) for
spin waves toward smaller values of the frequency ω' in
the range k ~ kii/2, whereas the inhomogeneity of the
magnetic moment results in a bending toward larger
values of the frequency ω'. The dispersion curve ω'(k)
for elastic waves also has different bendings in this
range in the case of inhomogeneities of both the elastic
constants and the density of the material. The magni�

tudes of these effects are proportional to . The qual�
itative character of the modification of the dispersion
curves ω'(k) and ω''(k) does not depend on the form of
the simulating correlation function when this function
is characterized by a sufficiently rapid decay of the
correlations. All these effects are associated with the
difference in the wave scattering from correlated
(k > kii/2) and uncorrelated (k � kii/2) regions of
inhomogeneities. This theory was used to develop the
experimental method of correlation spin�wave spec�
troscopy, which made it possible to measure the corre�
lation lengths of inhomogeneities rii and the root�
mean�square deviations γi in many amorphous and
nanocrystalline magnetic alloys [14] and to determine
the dependences of the quantities rii and γi on the com�
position and heat treatment of the alloys.

The theory in which the inhomogeneities of each
parameter are considered separately is approximately
valid in a number of cases. One of them is the situation
where the contribution from fluctuations of one of the
parameters of the medium to the modification of the
dependences ω'(k) and ω''(k) is dominant. A typical
example is provided by electromagnetic waves for
which the equations, as a rule, contain only one inho�
mogeneous parameter, i.e., the permittivity. Another
case corresponds to the situation where the modifica�
tions in the wave spectrum due to the inhomogeneities
of different parameters are observed in different ranges
of wave numbers k (owing to the considerable differ�
ence between their correlation lengths rii) and these
inhomogeneities can be treated approximately as sta�
tistically independent. In all these cases, autocorrela�

γi
2
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tion functions of type (2) are usually referred to as cor�
relation functions.

However, in the general case, the averaging of sto�
chastic wave equations containing several inhomoge�
neous parameters Ai(x) leads to the fact that the quan�
tities ω'(k) and ω''(k), like all nonrandom characteris�
tics of a random system, become functionals of not
only the autocorrelation functions Kii(r) of each
parameter Ai but also the functions of mutual correla�
tions (cross correlations) Kij(r) between the parame�
ters (or their spectral densities Sij(k)):

(3)

where i ≠ j and the averaging is performed over an
ensemble of realizations of both random functions
ρi(x) and ρj(x).

Thus, an analysis of averaged equations describing
the wave spectrum and damping of an inhomogeneous
medium should be preceded by the calculation or
physically justified simulation of the functions Kii(r)
and Kij(r). Consistent calculations of these functions
can be performed for only a limited number of the
simplest cases. In particular, in our earlier work [7],
the dispersion law ω'(k) and damping ω''(k) in an iso�
tropic medium were investigated for the case where the
elastic waves u(x, t) propagate against the background
of the topological disorder described by the metastable

isotropic strains ε(x) ≡ (x). In this model, the den�
sity of the material p(x) and the elastic constants λ(x)
and μ(x) depend on the same random function ε(x).
The function p(x) can be explicitly written, and the
elastic constants λ(x) and μ(x) can be represented in
the form of an expansion into a power series in this
function. As a result, all autocorrelation functions Kii

and all cross correlation functions Kij that enter into
the expressions for the quantities ω'(k) and ω''(k) after
the averaging of the elasticity equations were expressed
through the only correlation function of the random
quantity ε(x). Although this representation led to the
addition of a number of arbitrary constants (coeffi�
cients of the expansion of the parameters of the
medium λ and μ into a power series in terms of ε) to
the theory, the total number of arbitrary constants in
the theory decreased drastically because only one cor�
relation length and one root�mean�square fluctuation
of the random function ε(x) entered into the theory
instead of the correlation lengths rii and rij .

However, these simplest cases when all parameters
of the medium can be represented as exact functions of
the topological or compositional disorder of the alloy
are more likely the exceptions. Materials with a quite
complex composition that contains up to five or six
different components required for imparting any spe�
cial properties to the material (for example, zero aver�
age magnetostriction) have been studied and used in

Kij r( ) ρi x( )ρj x r+( )〈 〉 ,=

Sij k( ) 1

2π( )3
����������� Kij r( )e ik– r⋅ r,d∫=

uii
0

modern materials science. Therefore, in the general
case, it has been assumed that, between each two
parameters of the material, there are correlations such
that a spatial fluctuation of one parameter in any
neighborhood of the point x will favor the appearance
of a spatial fluctuation of the other parameter in the
same neighborhood. However, in this case, the fluctu�
ation of the latter parameter should not reproduce
exactly the form of the fluctuation of the former
parameter. In the theory of random fields, these corre�
lations are taken into account by the functions Kij(r) of
mutual correlations (cross correlations) between these
two parameters. Unlike the autocorrelation function
Kii(r), which is equal to unity at r = 0, the function
defined by relationship (3) at r = 0 is equal to some
dimensionless coefficient κij . This coefficient charac�
terizes the magnitude and sign of the cross correlations
between the parameters Ai and Aj and can take on arbi�
trary values in the range between –1 and +1. A partic�
ular magnitude and sign of the coefficient κij should be
determined from experiments or calculated using a
microscopic model that includes real and, in some
cases, complex physical relations between the param�
eters Ai and Aj . This formalized description makes it
possible to study effects of cross correlations on the
spectrum of the system at the first stage in the general
form without detailed discussion of physical mecha�
nisms that result in the appearance of these cross cor�
relations.

In the limiting cases κij = ±1, the stochastic cross
correlations transform into deterministic relations
between the inhomogeneities of different parameters.
For κij = 1, the random functions ρi(x) and ρj(x) coin�
cide with each other. For κij = –1, these functions are
mirror images of each other: negative deviations of the
function ρi(x) with the same magnitude and form cor�
respond to positive deviations of the function ρj(x) and
vice versa. For the isotropic elastic system, the special
case κij = 1 coincides with the model of the functional
dependence between the parameters p(x), λ(x), and
μ(x), which was investigated in [7]. In the general
case, the presence of cross correlations does not
change the root�mean�square deviations γi and γj of
the random functions Ai(x) and Aj(x) and leads to a
partial stochastic spatial synchronization of these
functions with the degree determined by the magni�
tude of the cross correlation coefficient κij.

In our previous work [15], we investigated effects of
cross correlations between inhomogeneities of the
exchange parameter α(x) and the magnetic anisotropy
parameter β(x) on the spectrum and damping of spin
waves in a ferromagnet. It was demonstrated that the
positive cross correlations between these parameters
result in an enhancement of the modification of the
dispersion law and in an increase in the damping of
spin waves. The negative cross correlations lead to the
opposite effects: a weakening of the modification of
the dispersion law and a decrease in the damping of
spin waves.



348

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 110  No. 2  2010

IGNATCHENKO, POLUKHIN

The purpose of this paper is to calculate the com�
bined effects of inhomogeneities of the force constants
λ(x) and μ(x) and the density of the material p(x) on
the spectrum and damping of elastic waves in the iso�
tropic medium in the presence of cross correlations
with an arbitrary magnitude and sign between the ran�
dom functions μ(x) and λ(x), p(x) and μ(x), and p(x)
and λ(x).

2. THE MODEL AND METHOD:
ONE�DIMENSIONAL INHOMOGENEITIES

Let us consider the model of an isotropic elastic
medium in which the force constants λ(x) and μ(x)
and the density of the material p(x) (where x = {x, y,
z}) are inhomogeneous. The equation of motion of the
displacement vector u(x, t) has the form

(4)

where the indices s and f take on values x, y, and z and
the summation over all coordinates is performed for
the doubly repeated index f. The parameters p(x),
λ(x), and μ(x) dependent on the coordinates can be
represented in the form

(5)

where p and Δp, λ and Δλ, and μ and Δμ are the means
and the root�mean�square fluctuations of the above
parameters, respectively, and ρp(x), ρλ(x), and ρμ(x) are
the dimensionless centered (  = 0,  = 0,

 = 0) and normalized (  = 1,  =

1,  = 1) random functions of the coordinates.
Braces indicate averaging over an ensemble of realiza�
tions of the corresponding random functions.

The laws of dispersion and damping of elastic waves
are derived using one�dimensional inhomogeneities as
an example. In this case, the displacement vector u is a
function of only one coordinate z and the time t. For
the transverse components ut of the vector u, Eq. (4)
takes the form

(6)

For the longitudinal component ul, we have

p x( )
∂2us

∂t2
��������– ∂

∂xs

������ λ x( )
∂uf

∂xf

������⎝ ⎠
⎛ ⎞+

+ ∂
∂xf

����� μ x( )
∂us

∂xf

������⎝ ⎠
⎛ ⎞ ∂

∂xf

����� μ x( )
∂uf

∂xs

������⎝ ⎠
⎛ ⎞+ 0,=

p x( ) p 1 γpρp x( )+[ ], γp Δp/p,= =

λ x( ) λ 1 γλρλ x( )+[ ], γλ Δλ/λ,= =

μ x( ) μ 1 γμρμ x( )+[ ], γμ Δμ/μ,= =

ρp x( )〈 〉 ρλ x( )〈 〉

ρμ x( )〈 〉 ρp
2 x( )〈 〉 ρλ

2 x( )〈 〉

ρμ

2 x( )〈 〉

∂2ut

∂t2
������� vt

2∂
2ut

∂z2
�������– Δp

p
�����ρp z( )

∂2ut

∂t2
�������–=

+ Δμ
p

������ ρμ z( )
∂2ut

∂z2
�������

∂ρμ z( )
∂z

�������������
∂ut

∂z
������+ ,

(7)

Here, vt =  and vl =  are the veloc�
ities of the transverse and longitudinal waves, respec�
tively.

By assuming that u(z, t) ~ u(z) and performing
the Fourier transform with respect to z,

(8)

where k is the wave vector, from Eqs. (6) and (7), we
obtain the equations for the Fourier transforms of the
function u(z):

(9)

(10)

We average Eqs. (9) and (10) over random realizations
of the functions ρp(k – k1), ρλ(k – k1), and ρμ(k – k1)
and decouple the formed correlators  in the first
nonvanishing order of the perturbation theory. The
scheme of decoupling can be illustrated using Eq. (9)
as an example. After averaging, this equation takes the
form

∂2ul

∂t2
������� vl

2∂
2ul

∂z2
�������– Δp

p
�����ρp z( )

∂2ul

∂t2
�������–=

+ Δλ
p

������ ρλ z( )
∂2ul

∂z2
�������

∂ρλ z( )
∂z

�������������
∂ul

∂z
������+

+ 2Δμ
p

�������� ρμ z( )
∂2ul

∂z2
�������

∂ρμ z( )
∂z

�������������
∂ul

∂z
������+ .

μ/p λ 2μ+( )/p

e i– ω t

u z( ) u k( )eikz k,d∫=

u k( ) 1
2π
����� u z( )e ikz– z,d∫=

ω2
vt

2k2–( )ut k( ) ω2γp ρp k k1–( )ut k1( ) k1d

∞–

∞

∫–=

+ μ
p
��γμk k1ρμ k k1–( )ut k1( ) k1,d

∞–

∞

∫

ω2
vl

2k2–( )ul k( ) ω2γp ρp k k1–( )ul k1( ) k1d

∞–

∞

∫–=

+ λ
p
��γλk k1ρλ k k1–( )ul k1( ) k1d

∞–

∞

∫

+ 2μ
p

�����γμk k1ρμ k k1–( )ul k1( ) k1.d

∞–

∞

∫

ρu〈 〉
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(11)

At the first step, we decouple the mean of the prod�
ucts of the functions ρi (i = p, μ) and ut in Eq. (11)
according to the general rules into the product of the
means and the correlator of the product of the cen�
tered values of these functions; that is,

(12)

where

(13)

The product of the means in relationship (12) vanishes
because the functions ρi are centered. Therefore, the
averaged equation (11) should not contain terms pro�
portional to the first powers of the quantities γi and

correlators of the type  are retained in the inte�
gral terms of this equation.

At the second step, the quantity ut(k) is formally
expressed from Eqs. (9) with an increase in the indices
on the wave number k by unity in this relationship:

(14)

By subtracting the quantity  from this expres�

sion, we substitute the centered value  into the corr�

elators  of Eq. (11). In this case, the terms

 vanish because the functions ρi are centered.
Therefore, the performed operation is equivalent to
the direct substitution of expression (14) into Eq. (11),
which takes the form

ω2
vt

2k2–( ) ut k( )〈 〉

=  ω2– γp ρp k k1–( )ut k1( )〈 〉 k1d

∞–

∞

∫

+ μ
p
��γμk k1 ρμ k k1–( )ut k1( )〈 〉 k1.d

∞–

∞

∫

ρiut〈 〉 ρi〈 〉 ut〈 〉 ρiut〈 〉 ,+= �

ut k( ) ut k( ) ut k( )〈 〉 .–=�

ρiut〈 〉�

ut k1( ) ω2γp
ρp k1 k2–( )ut k2( ) k2d

ω2
vt

2k1
2–

����������������������������������������

∞–

∞

∫–=

+ μ
p
��γμk1

k2ρμ k1 k2–( )ut k2( ) k2d

ω2
vt

2k1
2–

��������������������������������������������� .

∞–

∞

∫

ut k1( )〈 〉

ut
�

ρius〈 〉�

ρi ut( )〈 〉

ω vt
2k2–( ) ut k( )〈 〉 ω4γp

2=

×
ρp k k1–( )ρp k1 k2–( )ut k2( )〈 〉 k1 k2dd

ω2
vt

2k1
2–

������������������������������������������������������������������������∫∫

– ω2γpγμ
μ
p
��

(15)

By carrying out the same transformations with
Eq. (10) for the longitudinal waves, we bring it into a
form similar to Eq. (15) but more cumbersome

because, apart from the terms proportional to , ,
and γpγμ, this equation contains the terms proportional

to , γργλ, and γλγμ. In these equations, the means of
the products of three random functions under the inte�
gral sign are decoupled in the first nonvanishing order
of perturbation theory (the Bourret approximation
[16]); that is,

(16)

where s = t, l and each of the subscripts i and j takes on
values p, λ, and μ. In this relationship, the correlator

 (where  = ρiρj – ) on the right�
side is rejected. The substitution of expression (14)
into this correlator with an increase in the indices on
the wave number k by unity would lead to the next
term of the expansion of the perturbation theory, etc.

Since ρi(z) and ρj(z) are homogeneous random
functions, they satisfy the relationship

(17)

where Sij(k) are the components of the spectral density
matrix of the random functions ρi(k)) and ρj(k). The
components of the correlation matrix of the random
functions ρi(z) and ρj(z) are defined by the relationship

(18)

where r is the distance between two points. The diago�
nal components (i = j) of the correlation matrix are
autocorrelation functions of the ith inhomogeneous
parameter, and the off�diagonal components (i ≠ j)
describe the cross correlations between the ith and jth
parameters. The components Kij(r) and Sij(r) are
related by the Fourier transform (the Wiener–

×
kk1 ρμ k k1–( )ρp k1 k2–( )ut k2( )〈 〉 k1 k2dd

ω2
vt

2k1
2–

��������������������������������������������������������������������������������∫∫

– ω2γpγμ
μ
p
��

×
k1k2 ρp k k1–( )ρμ k1 k2–( )ut k2( )〈 〉 k1 k2dd

ω2
vt

2k1
2–

���������������������������������������������������������������������������������∫∫

+ γμ
2μ2

p2
����

kk2k1
2 ρμ k k1–( )ρμ k1 k2–( )ut k2( )〈 〉 k1 k2dd

ω2
vt

2k1
2–

�������������������������������������������������������������������������������������.∫∫

γp
2 γμ

2

γλ
2

us k2( )ρi k k1–( )ρj k1 k2–( )〈 〉

≈ us k2( )〈 〉 ρi k k1–( )ρj k1 k2–( )〈 〉 ,

us k2( )Pij〈 〉� �
Pij

�
ρiρj〈 〉

ρi k '( )ρj* k ''( )〈 〉 Sij k '( )δ k ' k ''–( ),=

Kij r( ) ρi z( )ρj z r+( )〈 〉 ,=
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Khintchin theorem for homogeneous random func�
tions)

(19)

Taking into account expressions (16) and (17), we
perform the integration in Eq. (15) and the corre�
sponding equation for  over k2. Then, the quanti�

ties  and  can be removed from the
integral sign, and we obtain the complex dispersion
relations in the following general form:
for the transverse waves,

(20)

and for the longitudinal waves,

(21)

Here,

(22)

In these relations, the terms proportional to , ,

and  account for effects of the inhomogeneities of
the density of the material and the force constants.

Kij r( ) Sij k( )eikr k,d∫=

Sij k( ) 1
2π
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The terms proportional to the products γpγλ, γpγμ, and
γλγμ include effects of cross correlations between the
corresponding inhomogeneities.

It is assumed that the correlations exponentially
decay for the autocorrelation functions of the density
of the material Kpp(r) and the force constants Kλλ(r)
and Kμμ(r), as well as for the cross correlation func�
tions between the fluctuations of the density and force
constants Kpλ(r) and Kpμ(r) and between the force con�
stants Kλμ(r):

(23)

where r = |x – x' |, κij are the dimensionless correlation

coefficients lying in the range –1 < κij < 1, kii =  and

kij =  are the correlation wave numbers, and rii and
rij are the correlation lengths.

In the general case, the correlation length rii for
inhomogeneities of each parameter i can be different.
Moreover, the cross correlation lengths rij between
inhomogeneities of different parameters i and j can
also be different. For simplicity, we restrict ourselves to
the case where all correlation lengths are identical to
each other. This situation can be encountered, for
example, in nanocrystalline alloys in which the mate�
rial in the volume of each grain (crystallite) is homo�
geneous, but the parameters of each grain differ from
each other due to random deviations in the alloy’s
composition from average. In this case, all correlation
lengths are approximately identical: rii ≈ rij ≈ rc (kii ≈
kij ≈ kc), where the quantity 2rc corresponds to the
mean grain size in the nanocrystalline alloy. Generali�
zation of the results to the case of different correlation
lengths does not involve fundamental problems but
leads to cumbersome expressions.

According to formula (19), the following spectral
densities correspond to correlation functions (23):

(24)

The calculations of integrals (22) with the use of the
theory of residues with these spectral densities lead to
the following relationships for the integrals entering
into relation (20):
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where

(26)

For the integrals entering into relation (21), we find

(27)

where

(28)

Relations (20) and (21) can be represented in the
form

(29)

where Rt and Rl are the right�hand sides of relations
(20) and (21), respectively. We consider the complex
dispersion law in the first order of perturbation theory
by setting ω ≈ vtk and ω ≈ vlk on the right�hand sides
of expressions (29) and representing ω in the form ω =
ω' + iω'' on the left�hand sides of these expressions. By
introducing the dimensionless quantities u = k/kc and
β = vt/vl, we derive the laws of dispersion and damp�
ing of transverse and longitudinal elastic waves with
allowance for mutual correlations between inhomoge�
neities of different parameters in the first nonvanishing
order of perturbation theory in the final form. These
laws for the transverse waves have the form

(30)

(31)

For the longitudinal waves, we obtain more complex
expressions, because, in this case, they include the
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ratio β between the velocities of transverse and longi�
tudinal waves:

(32)

(33)

The denominator 1 + 4u2, which enters into all
relationships (30)–(33), leads to the bending of curves
ω'(k) and ω''(k) in the vicinity of k = kc/2, because
these curves are characterized by different asymptotics
at 2u � 1 and 2u � 1. This is a well�known effect,
which was first revealed in our earlier work [1] for both
spin and elastic waves. We consider the dispersion law
and damping of transverse elastic waves. The expres�
sion in braces in dispersion law (30) represents the
coefficient (dependent on the wave number k) so that
the difference of this coefficient from unity character�
izes a change in the wave velocity due to the inhomo�
geneity. It can be seen that, in the absence of cross cor�
relations, inhomogeneities γp of the density of the
material lead to an increase in this coefficient and
inhomogeneities γμ of the elastic constant result in its

decrease. However, the quantities  and  enter into

relationship (30) with the coefficients u2 and 1 + 3u2,
respectively. Therefore, for identical relative fluctua�
tions γp and γμ, the curve ω'(k) will deviate from the
unperturbed dispersion law toward lower frequencies.
The appearance of positive and negative cross correla�
tions leads to a decrease and increase in this deviation,
respectively. The damping of transverse waves (expres�
sion (31)) in the absence of cross correlations is pro�

portional to the sum of  and . The appearance of
the positive mutual correlations κpλ results in a
decrease in the damping of waves, and the appearance
of the negative mutual correlations leads to an increase
in the damping of waves. This effect seems to be the
most interesting, because, from general physical con�
siderations, it can be expected that positive correla�
tions arise between the inhomogeneities of the density
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and the elastic constants, which lead to the decrease in
the damping of waves.

Now, we consider relationships (32) and (33) for
the dispersion law and damping of longitudinal waves.
In this case, the coefficient of change in the wave
velocity in braces in relationship (32) also consists of
the difference between two terms: the positive part
contains the density fluctuations γp and the negative
part involves fluctuations of the elastic constants γλ
and γμ. The cross correlations κpλ, kpμ, and κλμ can
enter into both parts depending on their sign. The
inhomogeneities of all elastic parameters γp, γλ, and γμ
lead to an increase in the damping of waves (relation�
ship (33)). The effects associated with the cross corre�
lations for the longitudinal waves depend on the type
of parameters for which the cross correlations between
inhomogeneities manifest themselves. The difference
of the component κpλ or κpμ (or both these compo�
nents) from zero leads to a decrease in the damping at
κpλ > 0 and κpμ > 0 and to an increase in the damping
at negative cross correlations. However, the difference
of the component kλμ from zero (for κpμ = κpλ = 0) rad�
ically changes the situation: the damping increases at
positive values of kλμ and decreases at kλμ < 0.

3. THREE�DIMENSIONAL 
INHOMOGENEITIES

In this case, the displacement vector u is a function
of all three coordinates and time. By assuming that
u(x, t) ~ exp(–iωt)u(x) and performing the Fourier
transform of the function u(x)

(34)

from Eq. (4), we obtain the vector equation for the
Fourier transform of the function u(x):

(35)

With the aforementioned method, it is easy to show
that the right�hand side of the averaged equation
should not contain terms proportional to the first pow�
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ers of the quantities γi. Then, we increase the indices
on k in Eq. (35) by unity:
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According to this method, the function u(k1) should be
expressed from this relationship. However, unlike the
case of one�dimensional inhomogeneities, this cannot
be carried out directly. Therefore, we use the following
procedure. By scalarly multiplying Eq. (36) by k1, we
find

(37)

We express the scalar product k1 ⋅ u(k1) from
Eq. (37) and substitute it into the left�hand side of
Eq. (36). As a result, Eq. (36) takes the form from
which the function u(k1) can be formally expressed as
follows:
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We substitute this relationship into the right�hand side
of Eq. (35) and average the derived equation over ran�
dom realizations of the random functions ρp(k), ρμ(k),
and ρλ(k). Since the general relationships are com�
plex, we initially demonstrate further calculations for
the simplest situation where only the density of the
material is inhomogeneous and both force constants
are homogeneous (γp ≠ 0, γμ = γλ = 0). In this case, the
averaged vector equation is equivalent to the following
system of equations for the averaged transverse

 and longitudinal  waves:

(39)

where the indices s and f take on the values t and l and
δsf is the Kronecker symbol.

The means of the products of three random func�
tions are decoupled according to the approximate
expression (16). The components of the spectral den�
sity matrix Sij(k) and the correlation matrix Kij(r) are
defined by three�dimensional analogs of relationships
(17) and (18), and they are related to each other by
three�dimensional analogs of the Fourier transforms
(19).

After the approximate decoupling of correlations
(similar to expression (16)) and integration over k2, we
have the system of linear homogeneous equations for

the quantities  and . The determinant
of this system has the form

(40)

where

(41)

In the coordinate system with the z axis coinciding
with the direction of the vector k, in the absence of
inhomogeneities (γp = 0), the tensor Psf has a diagonal
form and the equation Psf(ω, k) = 0 leads to the inde�
pendent dispersion laws for the transverse and longitu�
dinal waves.

It is assumed that the decay of correlations is char�
acterized by exponential isotropic functions for both
the autocorrelation functions of all inhomogeneous
parameters and the cross correlations between inho�
mogeneities of these parameters,

(42)

where r = |r |, as well as by the corresponding compo�
nents of the spectral density matrix,

(43)

We substitute the expression for the quantity Spp(k)
into the integrals in expression (41) and change over in
these integrals to the spherical coordinate system.
After replacement of x = cosθ and integration over the
azimuthal angle ϕ, we find

(44)

where we introduce the dimensionless quantities u = k/kc, u1 = k1/kc, and uω = ω/kc.
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It follows from relationships (44) that the tensor
Psk(ω, k) remains diagonal at γp ≠ 0. Therefore, by
equating determinant (40) to zero, we obtain the inde�
pendent equations for the complex laws of dispersion
of the transverse and longitudinal waves:

(45)

(46)

where  =  = Ltpp,  = Lltppx = Lltppyy , and

 = Lltppzz.

As in the case of one�dimensional inhomogene�
ities, Eqs. (45) and (46) were represented in a form
similar to relationships (29) and ω ≈ vtk and ω ≈ vlk
were approximately set on the right�hand sides of
these equations. In integrals (44), we changed the lim�

its of integration by using the relationship  

, which is valid for these integrands. The inte�

grals over the variable u1 were calculated with the the�
ory of residues. Then, integration over the variable x
was performed exactly with the tables of integrals [17].
This results in cumbersome expressions, which are
somewhat simplified in the first order of perturbation
theory for transverse (uω ≈ vtu) and longitudinal (uω ≈
vlu) waves. As an illustration, we write one of these
expressions in the form

(47)

where q± = (1 ± β2)u2, p± = (1 ± β)2u2, and β = vt/vl. It
can be seen that, in the three�dimensional case, the
dispersion and damping laws contain not only rational
functions of the argument u but also transcendental
functions of rational functions of this argument.

By representing ω in the form ω = ω' + iω'', we
obtain the dispersion and damping laws in the case of
inhomogeneity of the density of the material in the fol�
lowing form:
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for transverse elastic waves,
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and for longitudinal elastic waves,
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Here, L' and L'' are the real and imaginary parts of
expressions (44), respectively. It can be seen from
these relationships that, as a result of the inhomogene�
ities of the density of the material, the dispersion and
damping laws for the longitudinal and transverse waves
depend not only on the intrinsic velocities but also on
the ratio β between the velocities of the transverse and
longitudinal waves. This ratio enters into relationships
(48)–(51) directly and via the parameters p± and q±.

Now, we turn back to the complete expression (38)
for the function u(k1) with the inhomogeneities of
both the density of the material and the force con�
stants. After the substitution of this expression into the
right�hand side of Eq. (35), we obtain the cumbersome
relationship in which the correlations are decoupled
using the procedure described above for the case of the
inhomogeneity in density. As in the last case, we derive
the independent equations for the complex dispersion
laws for the transverse and longitudinal waves. These
equations account for the inhomogeneities of all
parameters of the material and the cross correlations
between these inhomogeneities. From these equa�
tions, we derive the complex dispersion relations ω(k)
in the following form:

for the transverse waves,

(52)

and for the longitudinal waves,
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(53)

These relations contain 22 complex integral
expressions, which can be written in the generalized
form

(54)

where
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In relationships (54), we can single out two groups
of integrals that describe processes of different physi�

cal natures: the integrals  containing no β deter�
mine the contribution of scattering processes for waves
of the same type to the modification of the dispersion
law, and all the other integrals containing β determine
the contribution of scattering processes with a change
in wave type. Integrals (54) over the variable u1 were
calculated with the theory of residues. Then, integra�
tion over the variable x could be exactly performed
with the tables of integrals [17].

By representing ω in the form ω = ω' + iω'' and all
relationships for L as L = L' + iL'', the dispersion and
damping laws for the transverse and longitudinal waves
can be easily separated from expressions (52) and (53).
The cumbersome relationships obtained were ana�
lyzed graphically. Furthermore, the limiting expres�
sions corresponding to small and large wave numbers
were examined analytically. As for the one�dimen�
sional inhomogeneities, the main changes in both
curves ω'(k) and ω''(k) are observed in the vicinity of
the quantity k = kc/2, which separates the range of
waves scattering from uncorrelated (k < kc/2) and cor�
related (k > kc/2) regions of fluctuations. For trans�
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Fig. 1. (a) Dispersion and (b) damping laws for transverse elastic waves in the medium with different coefficients of cross corre�
lations κpμ between three�dimensional inhomogeneities of the corresponding parameters of the material: κpμ = 0 (solid curves),
κpμ = 0.9 (dashed curves), and –0.9 (dot�dashed curves). The dotted straight line represents the dispersion law in a homogeneous
medium.
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verse waves, the dispersion law in the limiting cases is
written in the form

(55)

and the damping is described by the expressions
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(56)

where A and B are some constants dependent on the
parameters γi and κij. Since the limiting relationships
for the longitudinal waves are cumbersome owing to
the complex dependences in their coefficients on the
parameters, they are not presented in this paper. The
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Fig. 2. (a, b) Dispersion and (c, d) damping laws for longitudinal elastic waves in the medium for different coefficients of cross
correlations κij between three�dimensional inhomogeneities of different parameters of the material. (a–d) Solid curves corre�
spond to the laws for the cross correlation coefficients κij = 0. Dashed curves indicate the laws for the cross correlation coefficients
(a, c) κpλ = κpμ = 0.9, κλμ = 0 and (b, d) κpλ = κpμ = 0, κλμ = 0.9. Dot�dashed curves represent the laws for (a, c) κpλ = κpμ =
⎯0.9, κλμ = 0 and (b, d) κpλ = κpμ = 0, κλμ = –0.9. Dotted straight lines correspond to the dispersion law in a homogeneous
medium.
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damping of both longitudinal and transverse waves
obeys universal relationships different for scattering
from uncorrelated and correlated regions of the fluc�
tuations:

(57)

The changeover from the Rayleigh law ω'' ∝ k4 to the
law ω'' ∝ k2 in the vicinity of the crossover point kc/2
was investigated in our previous works [1, 7].

The dependences ω'(k) and ω''(k2) for different
cross correlation coefficients κij between inhomogene�
ities are plotted in Figs. 1 and 2. These dependences
were calculated using identical root�mean�square

fluctuations γi:  =  =  = 0.8. It can be seen from
Fig. 1a that, in the absence of cross correlations, the
dispersion curve of the transverse elastic waves (solid
curve) deviates from the unperturbed dispersion law
(dotted curve) toward low frequencies with further
bending in the same direction in the vicinity of the
point k/kc = 0.5. With the appearance of positive cross
correlations between the inhomogeneities of the quan�
tities p and μ, the dispersion curve (dashed curve)
becomes close to the unperturbed dispersion law and
its bending decreases. The negative cross correlations
enhance the modification of the dispersion law (dot�
dashed curve). The damping ω'' of the transverse elas�
tic waves as a function of k2 is presented in Fig. 1b. In
these coordinates, the function ω''(k2) according to
the limiting relationships (56) has the form of a parab�
ola to the left of the crossover point (k/kc)

2 = 0.25 and
a straight line to the right of this point. The appearance
of the positive and negative cross correlations between
the inhomogeneities of the quantities p and μ leads to
a decrease (dashed curve) and an increase (dot�dashed
curve) of the damping. Figure 2 shows the depen�
dences ω'(k) and ω''(k2) for the longitudinal elastic
waves with due regard for the cross correlations
between the inhomogeneities of different parameters
of the material. In this case, in the absence of cross
correlations, the dispersion law ω'(k) has an inflection
point rather than the bending point in the vicinity of
the point k/kc = 0.5 (solid curves in Figs. 2a, 2b). This
is associated with the appearance of one more cross�
over point at k/kc ≈ β in the dependence ω'(k) for the
longitudinal waves. In order to separate this crossover
from the crossover at k/kc = 0.5, the value of β was
chosen as β = 0.2 in constructing the graphs (as a rule,
the parameter β lies in the range 0.2 ≤ β ≤ 0.5). The
existence of this second crossover was first revealed in
[7]. As a result of the positive cross correlations
between the inhomogeneities of the density and elastic
constants (κpμ, κpλ), the curve ω'(k) comes close to the
unperturbed dispersion law (dashed curve in Fig. 2a).
The negative cross correlations κpμ and κpλ enhance

ω ''
k4

, k � kc/2,

k2
, k � kc/2.⎩

⎨
⎧

∝

γp
2 γμ

2 γλ
2

the modification of the dispersion law in the range
k/kc > 0.5 (dot�dashed curve in Fig. 2a). The cross
correlations between the elastic constants μ and λ lead
to directly opposite effects: the positive and negative
cross correlations κλμ increase and decrease the modi�
fication of the dispersion law, respectively (Fig. 2b).

The dependences of the damping ω''(k2) (Figs. 2c,
2d) also exhibit both crossover points. The additional
crossover in these coordinates corresponds to the
point (k/kc)

2 ≈ β2 = 0.04. Therefore, the Rayleigh law
ω'' ∝ k4 manifests itself only in a narrow range to the
left of this point. As for the transverse waves, the
damping law ω'' ∝ k2 manifests itself to the right of the
point of the main crossover (k/kc)

2 = 0.25. As in the
case of one�dimensional inhomogeneities, the
appearance of the positive cross correlations between
inhomogeneities of the density and elastic constants
results in a decrease in the damping (dotted line in
Fig. 2c) and the appearance of the negative cross cor�
relations leads to an increase in the damping (dot�
dashed curve). The cross correlations between the
inhomogeneities of the elastic constants lead to the
opposite effects (Fig. 2d): the positive and negative
cross correlations increase and decrease the damping,
respectively.

4. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

At first glance, we obtain a paradoxical result: the
positive cross correlations (κij > 0) between inhomoge�
neities of some parameters of the material lead to an
enhancement of the modification of the dispersion law
and an increase in the damping of elastic waves,
whereas the cross correlations with the same sign
between inhomogeneities of other parameters of the
material result in a weakening of this modification and
a decrease in the damping of waves. Since the negative
cross correlations (κij < 0) always lead to effects oppo�
site to those observed for the positive cross correla�
tions, their effects are characterized by the same ambi�
guity.

This ambiguity is eliminated if we take into account
the fact that parameter p corresponds to the kinetic
part of the Hamiltonian and the parameters μ and λ
belong to the potential part. This allows us to assume
that the character of the effects of cross correlations
changes depending on whether both parameters
belong to the same part of the Hamiltonian (both
parameters belong to the potential or kinetic part) or
these parameters correspond to different parts of the
Hamiltonian. Indeed, parameters μ and λ belong to
the potential part of the Hamiltonian and the positive
cross correlations between their inhomogeneities lead
to the enhancement of the modification of the disper�
sion law and to the increase in the damping of elastic
waves. Parameter p characterizes the inertness of the
elastic system and corresponds to the kinetic part of
the Hamiltonian, and the positive cross correlations
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between inhomogeneities of p and μ or p and λ result
in the weakening of the modification of the dispersion
law and the decrease in the damping of elastic waves.
Let us analyze the results obtained in our earlier work
[15] from this point of view. Both inhomogeneous
parameters considered in [15] (the exchange parame�
ter α and the magnetic anisotropy β) belong to the
potential part of the spin Hamiltonian. Correspond�
ingly, the positive cross correlations between them
according to the above assumptions should lead to an
enhancement of the modification of the dispersion law
and an increase in the damping of spin waves. This
result was actually obtained in the calculations carried
out in [15].

The physical mechanism responsible for the differ�
ences between the effects of cross correlations can be
understood in terms of the following simplified model
of an inhomogeneous medium. The dispersion law for
transverse elastic waves in a homogeneous isotropic
medium is defined by the expression

(58)

In the case of very smooth inhomogeneities with a
characteristic size of 2rc that is considerably larger
than the wavelength (kc � k), the medium can be
approximately represented as consisting of a set of
homogeneous regions with a size 2rc, so that the
parameters of the medium p and μ are constant within
these regions but are different in different regions (the
model of independent grains (crystallites)). When the
fluctuations of the quantities p and μ do not correlate
with each other, the frequency at specific k can differ
substantially in different regions, because the parame�
ter μ increases and the parameter p decreases (or vice
versa) with respect to the mean values of these quanti�
ties and the frequency of waves is determined by the
ratio between μ and p. The positive cross correlations
lead to a spatial synchronization of fluctuations of two
random functions without a change in the root�mean�
square deviations of each function. Therefore, in each
our region, the deviation (with any sign) of the quan�
tity μ from its mean value corresponds to the deviation
(with the same sign) of the quantity p from its mean
value. As a result, a random scatter in the frequencies
of waves in different regions decreases. We can even
imagine a hypothetical limiting situation where the
frequency of elastic waves will be almost identical over
the entire space, despite strong deviations of the
parameters μ and p in different spatial regions. The
negative cross correlations result in the spatial syn�
chronization of deviations of the quantities μ and p
with opposite signs and, correspondingly, in a larger
scatter in the frequencies of waves in different regions
as compared to the case κpμ = 0.

A similar analysis for the cross correlations between
the quantities p and μ or p and λ can be performed for

ω μ
p
��k.=

longitudinal waves for which the dispersion law is
determined by the expression

(59)

However, this example can also be used to qualitatively
examine the effects of cross correlations between the
quantities λ and μ. In the absence of these cross corre�
lations, apart from the cases of a simultaneous increase
or decrease in the parameters λ and μ, there are situa�
tions where an increase (decrease) in the quantity λ is
accompanied by a decrease (increase) in the quantity
μ. The presence of positive cross correlations excludes
the latter situations: in this case, the parameters λ and
μ increase or decrease in a synchronous manner,
which enhances the scatter of the frequencies ω in dif�
ferent regions of the material.

The same qualitative examination of the effects of
cross correlations between different parameters of the
Hamiltonian can be carried out for a simplified model
of the inhomogeneous medium for spin waves. How�
ever, in this case, it should be kept in mind that the role
of the inertial parameter entering into the kinetic part
of the Hamiltonian is played not by the gyromagnetic
ratio but by the inverse quantity, i.e., the magnetome�
chanical parameter pm = g–1. It is this parameter that is
contained ahead of the kinetic term ∂M(x, t)/∂t in the
Landau–Lifshitz equation. The expression for the fre�
quency of spin waves takes the form

(60)

where M is the magnetization and H is the magnetic
field. In this expression, as in relationships (58) and
(59), the frequency is determined by the ratio between
the parameters of the potential part of the Hamilto�
nian and the parameters of its kinetic part. Therefore,
all the above considerations for the elastic waves can be
repeated for the spin waves. In particular, the positive
cross correlations between the inhomogeneities of the
exchange α and the anisotropy β will lead to an
increase in the damping and the same correlations
between α and pm or β and pm will result in a decrease
in the damping.

The analysis of the results obtained in this paper
and in our previous work [15], as well as the aforemen�
tioned qualitative consideration of the model of inde�
pendent grains, allows us to formulate the general reg�
ularity of the effects of cross correlations, irrespective
of the physical nature of waves: the effects of cross cor�
relations between inhomogeneities of any two param�
eters of the material on the wave spectrum depend on
whether both parameters related by the cross correla�
tions belong to the same part of the Hamiltonian (i.e.,
both belong to either the kinetic or the potential part
of the Hamiltonian) or they belong to different parts of
the Hamiltonian. The positive cross correlations lead
to an enhancement of the modification of the disper�

ω λ 2μ+
p

�������������k.=

ω αk2 β+( )M H+
pm

���������������������������������,=
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sion law and to an increase in the damping of waves in
the former case and to a decrease in these characteris�
tics in the latter case. Correspondingly, the negative
cross correlations in each of these cases result in the
opposite effects.

These regularities can be used in designing and
developing a technology for preparing amorphous and
nanocrystalline alloys for creating conditions favor�
able for useful cross correlations (to decrease the
damping of waves) and for limiting adverse cross cor�
relations that increase damping. The specific effects
revealed in our work due to the cross correlations can
be experimentally observed in situations in which we
can expect considerable changes in the cross correla�
tion coefficients κij, for example, for a series of sam�
ples of alloys or solid solutions with different ratios
between components upon the transition of an amor�
phous material to a nanocrystalline state during
annealing, etc. The separation of the effects associated
with these cross correlations in processing the results
of these experiments is complicated by the fact that the
change in the cross correlation coefficients can be
accompanied by a change in the root�mean�square
fluctuations of the parameters of the medium. How�
ever, it can be seen from formulas (30)–(33), (55), and
(56) and Figs. 1 and 2 that there exist situations in
which the effects determined by the root�mean�square
fluctuations and the effects caused by the cross corre�
lations affect the form of the curves ω'(k) and ω''(k)
differently.
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