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1. INTRODUCTION

At present, multilayered film structures (one�
dimensional superlattices), which consist of periodi�
cally alternating layers of two materials with different
physical properties, have been investigated extensively.
In particular, among these structures are photonic and
magnonic crystals that have received much attention.
It is known that the spectrum of waves of any nature in
periodic structures has a band structure characterized
by the reciprocal lattice vector q (|q | ≡ q = 2π/l, where
l is the period of the one�dimensional superlattice). At
the edge of the Brillouin zones of the superlattice with
the wave vector k = nq/2, the degeneracy is removed
and gaps (band gaps) appear in the wave spectrum.
The band gap Δωn is determined by the superlattice
parameter λ (the relative change in the physical
parameter of the neighboring layers) and the zone
number n. Layered structures have been frequently
described using one�dimensional models that allow
for the exact solution of the wave equation, such as the
sinusoidal superlattice and the superlattice with a rect�
angular profile [1–13]. In the sinusoidal superlattice,
the wave equation is brought into the Mathieu equa�
tion; in this case, the band gap in the wave spectrum is

determined by the eigenvalues of this equation (see,
for example, [9, 14]). Specifically, in a ferromagnetic
sinusoidal superlattice with an inhomogeneous aniso�
tropy parameter at λ � 1 (the limit of narrow band
gaps), we have Δωn ~ λn at the Brillouin zone bound�
ary. In the study of the wave spectrum for the sinusoi�
dal superlattice in the vicinity of the boundary of the
first Brillouin zone, the power dependence on λ for a
small value of this parameter makes it possible to
ignore the band gaps at the boundaries of all the other
Brillouin zones. The model of the superlattice with a
rectangular profile corresponds to the layered struc�
ture with alternation of two layers with different values
of any physical parameter. It should be noted that this
parameter in each layer is constant and the interface
has a size of the order of atomic sizes. In the contin�
uum model, the superlattice is described by a piece�
wise constant function and the interface has a zero
width. In a ferromagnetic superlattice with a rectangu�
lar profile formed by layers with different anisotropy
parameters, at λ � 1, we have Δωn ~ λ/n at the bound�
aries of odd Brillouin zones and Δωn ~ (λ/n)2 at the
boundaries of even Brillouin zones [9–12]. Therefore,
in the layered structure even at λ � 1, it is important to
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investigate the wave spectrum with allowance made for
its multiband structure.

In natural materials and composite systems,
despite considerable progress in the preparation of the
latter systems, the periodicity in the layer arrangement
occurs only approximately. There are always devia�
tions from the periodicity due to the natural or techno�
logical factors. This circumstance has stimulated the
appearance of theoretical works devoted to the study
of the transition from ideally periodic superlattices to
partially stochastized superlattices.

The spectral properties of superlattices with ran�
dom inhomogeneities will be described using the
method of averaged Green’s functions (see, for exam�
ple, [15]), according to which a random medium is
described by the correlation function K(r) dependent
on the distance between two points of the medium: r =
x – x'. The correlation function of the superlattice
K(r) is determined by the random spatial modulation
method developed in our earlier works [10, 16, 17],
which is the generalization of the well�known method
for determining the time correlation function for a
random frequency (phase) modulation of a radio sig�
nal [18, 19] to the case of a spatial (in the general case,
three�dimensional) modulation of the superlattice
period. In our previous works [10, 16, 17, 20–22],
these methods were used to investigate the spectrum of
waves and their damping in the superlattice containing
one�dimensional phase inhomogeneities that simulate
random displacements of interfaces of the superlattice
from their initial periodic positions and three�dimen�
sional isotropic phase inhomogeneities simulating
random deformations of the interfaces. In particular, it
was revealed that, as the band gap in the wave spectrum
decreases as a result of the one�dimensional and three�
dimensional inhomogeneities, two peaks in the imag�
inary part of the averaged Green’s function that corre�
spond to the gap edges broaden, approach each other,
and merge together into one peak. In [16, 23], the
spectrum and high�frequency susceptibility of the ini�
tial sinusoidal superlattice containing two�dimen�
sional phase inhomogeneities that simulate deforma�
tions of boundaries between layers that are identical
for all layers were studied by the method of averaged
Green’s functions in combination with the random
spatial modulation method. It was found that, for
waves propagating in the direction of the superlattice
axis, the imaginary part of the averaged Green’s func�
tion is characterized by a specific behavior at the
boundary of the first Brillouin zone: the peak corre�
sponding to the edge of the band gap with a lower fre�
quency remains almost unchanged with an increase in
the root�mean�square fluctuation of the two�dimen�
sional inhomogeneities γ2, whereas the peak corre�
sponding to the edge of the band gap with a higher fre�

quency broadens and decreases sharply in height up to
its complete disappearance with an increase in the
quantity γ2. It is of interest to investigate these effects
in a layered system that is more adequate to real struc�
tures. For this purpose, in the present work, the high�
frequency susceptibility (Green’s function) of the
superlattice with an initially rectangular profile in the
presence of two�dimensional inhomogeneities is stud�
ied with due regard for a multiband structure of the
wave spectrum.

2. THE MODEL AND CORRELATION 
FUNCTION

The superlattice is characterized by the depen�
dence of a particular material parameter A on the spa�
tial coordinates x = {x, y, z}. The physical nature of the
parameter A(x) can be different. This parameter can
be the density of the material, force constant of an
elastic medium, magnetic anisotropy, magnetization,
exchange for a magnetic system, etc. The parameter
A(x) can be represented in the form

(1)
where A is the average parameter, ΔA is its root�mean�
square deviation, and λ = ΔA/A. The function ρ(x) is
centered (〈ρ(x)〉 = 0) and normalized (〈ρ2(x)〉 = 1) and
describes both the periodic dependence of the param�
eter A(x) along the superlattice axis z and the random
spatial modulation of this parameter. Angle brackets
indicate the averaging over an ensemble of random
realizations of the function ρ(x).

Let us consider a superlattice having a rectangular
profile for which a material parameter in the initial
state when random inhomogeneities are absent
depends only on the coordinate z. According to the
approach proposed in [10] to the description of super�
lattices with one�dimensional and three�dimensional
inhomogeneities, the function ρ(x) can be written in
the form of the infinite series

(2)

which at u2(x⊥) = 0 and ψ = 0 (ideal superlattice) is an
expansion of a piecewise constant function into a Fou�
rier series. The positive and negative ranges of the
function ρ(x) along the superlattice axis z correspond
to alternating layers of the multilayered structure, and
zero points of the function ρ(x) correspond to the
boundaries of the superlattice layers. In the framework
of this interpretation, the function u2(x⊥) simulates
random deformations of the surfaces of these bound�
aries. The phase ψ independent of the coordinates is
characterized by a uniform distribution on the interval
(–π, π); x⊥ = {x, y}.

A x( ) A ΔAρ x( ),+=

ρ x( ) 4
π
�� 1–( )m

2m 1+
�������������

m 0=

∞

∑=

× 2m 1+( ) q z u2 x⊥( )–( ) ψ+[ ]{ },cos
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The correlation function K(r) depends only on the
difference between the coordinates r = x – x' and is
defined by the expression

(3)

Here, the averaging is performed over the homoge�
neous random phase ψ and the random function χ,
where

(4)

We calculate the correlation function K(r). The prod�
uct of the functions ρ(x) and ρ(x + r) can be repre�
sented in the form

(5)

where r⊥ = {rx, ry}. The second term in curly brackets
after averaging over the phase ψ vanishes. The expres�
sions with m' ≠ m in the first term due to the averaging

K r( ) ρ x( )ρ x r+( )〈 〉ψχ.=

χ x⊥ r⊥,( ) q u2 x⊥ r⊥+( ) u2 x⊥( )–[ ].=

ρ x( )ρ x r+( ) 8

π2
���� 1–( )m m'+

2m 1+( ) 2m' 1+( )
������������������������������������

m' 0=

∞

∑
m 0=

∞

∑=

× q 2m 1+( ) rz u2 x⊥ r⊥+( )+( )[cos{

– 2m' 1+( )u2 x⊥( ) 2m m m'–( ) z ψ/q+( )+ ]

+ q 2m 1+( ) rz u2 x⊥ r⊥+( )–( )[cos

– 2m' 1+( )u2 x⊥( ) 2 m m' 1+ +( ) z ψ/q+( )+ ] },

over ψ also vanish. As a result, after this averaging, we
have

(6)

Then, by averaging relationship (6) over χ under the
assumption of the Gaussian distribution of quantities
χ, we obtain the expression for the correlation func�
tion K(r) in the form

(7)

where Km(r⊥) is defined by the formula

(8)

Here, Q2(r⊥) = q2〈[u2(x⊥ + r⊥) – u2(x⊥)]2〉 is the
dimensionless structure function of the superlattice.

The structure function in the case of two�dimen�
sional inhomogeneities was obtained in [23] in the
form

(9)

Here, C � 1.78 is the Euler constant,

is the integral exponential function, and the parameter

γ2 = qσ2/  determines the root�mean�square fluc�
tuations of the random function u2(x⊥), where σ2 and
k2 are the root�mean�square fluctuation and the cor�
relation wave number of the gradient of u2(x⊥), respec�
tively.

In the case of the ideal superlattice (γ2 = 0), the
correlation function is represented by the expression

(10)

By summing up this series, we obtain the periodic
function that within one period has the form

(11)

This function is shown in Fig. 1. It should be noted
that, in the nonideal superlattice (γ2 ≠ 0) at r⊥ = 0, the
correlation function will have the same form. At r⊥ ≠ 0,
in the superlattice with two�dimensional inhomoge�
neities, the dependence of the correlation function on

ρ x( )ρ x r+( )〈 〉ψ
8

π2
���� 1

2m 1+( )2
�������������������
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∞
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Fig. 1. Correlation functions of the superlattice. (1) Corre�
lation function K(r) defined by formula (11) for the ideal
superlattice (γ2 = 0). (1–4) Correlation functions K(r)
described by formulas (7)–(9) for the superlattice with

two�dimensional inhomogeneities at  = 0.3, k2/q =

0.05, and k2r⊥ = (1) 0, (2) 1, (3) 5, and (4) 15.
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rz becomes smoother and remains periodic along the z
axis with the superlattice period. In Fig. 1, this depen�

dence is shown for  = 0.3 and the ratio q/k2 = 20. In

the directions perpendicular to the z axis, the correla�
tion function K(r) decreases monotonically. In Fig. 2,
curve 1 shows the dependence K(r) constructed using
relationships (7)–(9) at rz = 0. In Fig. 2, curves 2 and
3 shows the functions K0(r⊥) and K1(r⊥) with the struc�
ture function Q2(r⊥) represented by expression (9). It
can be seen from this figure that their sum amounts to
approximately 0.9 of the correlation function K(r) at
r⊥ = 0 and almost coincides with K(r) at k2r⊥ > 1.

The substitution of relationship (9) for the struc�
ture function Q2(r⊥) into formula (8) leads to a com�
plex expression for the correlation function K(r),
which can be used with difficulty in further calcula�
tions. Therefore, we approximate the decreasing part
of the correlation function Km(r⊥) by the simple for�
mula

(12)

which generalizes the modeling expression for the cor�
relation function of the initially sinusoidal superlattice
[23] to the case of the multilayered system. This

γ2
2

Km r⊥( ) 8

π2
���� 1

2m 1+( )2
������������������� 1 C

2

e
2

����k2
2
r⊥

2
+⎝ ⎠

⎛ ⎞
2m 1+( )

2
γ2

2
–

,=

expression was obtained from the limiting relation�
ships for the function Q2(r⊥):

(13)

where e is the base of the natural logarithm. Figure 3
shows the decreasing parts K0(r⊥) and K1(r⊥) of the
correlation function that are determined by expression
(8) with the structure function Q2(r⊥) in the form (9)
(curves 1, 3) and the approximating functions K0(r⊥)
and K1(r⊥) in the form of relationship (12) (curves 2, 4)

for  = 0.3. It can be seen from Fig. 3 that the model
correlation function adequately describes the exact
correlation function over the entire range of variation
in r⊥ and has asymptotics that coincides with the
asymptotics of the exact function at both k2r⊥ � 1 and
k2r⊥ � 1.

3. HIGH�FREQUENCY SUSCEPTIBILITY

By performing the Fourier transform with respect
to the time in the wave equation describing spin waves
in the ferromagnetic superlattice with the inhomoge�
neous magnetic anisotropy parameter β(x), we obtain

(14)

Q2 r⊥( ) γ2
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2
r⊥

2
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Fig. 2. Correlation functions of the superlattice at rz = 0:
(1) function K(r) (relationships (7)–(9)) and (2, 3) func�
tions K0(r⊥) and K1(r⊥) (relationships (8), (9)) at m = 0

and 1, respectively.  = 0.3, k2/q = 0.05.γ2
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Fig. 3. Functions Km(r⊥) for m = (1, 2) 0 and (3, 4) 1.
Curves 1 and 3 were constructed using relationships (8)
and (9), and curves 2 and 4 were obtained from the approx�

imating function (12).  = 0.3, k2/q = 0.05.γ2
2



548

PHYSICS OF THE SOLID STATE  Vol. 52  No. 3  2010

MANKOV, TSIKALOV

where the function m+ is m+ = m+(x, ω) and A = β and
ΔA = Δβ in formula (1). Equation (14) corresponds to
the situation when the directions of the external mag�
netic field H, the constant component of the magneti�
zation M0, and the magnetic anisotropy axis coincide
with the direction of the superlattice axis z. In this
case, we have m+ = Mx + iMy, where Mx and My are the
projections of the magnetization vector onto the cor�
responding coordinate axes,

ω is the frequency of the spin wave, ω0 = g[H + (β –
4π)M0] is the frequency of the homogeneous ferro�
magnetic resonance, g is the gyromagnetic ratio, M0 =
|M0|, and α is the exchange constant.

The Fourier transform of the averaged Green’s
function for Eq. (14) has the form

(15)

where M(ν, k) is the classical analog of the mass oper�
ator, which in the Bourret approximation [24] can be
represented in the form [22]

(16)

In a thin film, the magnetic susceptibility is  ~ G
[20]. In this respect, hereafter, in the study of the spin
waves in the superlattice with the inhomogeneous
anisotropy parameter, we will discuss the behavior of
the Green’s function G(ν, k).

Substituting the correlation function K(r) in the
form of expression (7) with Km in the form of relation�
ship (12) into expression (16) and changing over to the
spherical coordinate system with the polar axis along the
vector k (k || Oz), we have

(17)

where c = cosϑ and ϑ is the polar angle. Here, we
investigate the high�frequency susceptibility at the
boundaries of odd Brillouin zones (k = krp ≡ pq/2).
After integrating over r in expression (17), substituting
the obtained relationship into the Green’s function

ν
ω ω0–
αgM0
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1

∫

(15), and introducing the dimensionless quantities, we
obtain

(18)

where

νrp = , a = (2m + 1)2 , p = 1, 3, 5, … is the number
of the odd zone, and

(19)

Here,

(20)

H
v
(z), Y

v
(z), and Γ(z) are the Struve, Neumann, and

gamma functions, respectively. However, relationship

(19) holds true at (2m + 1)2  ≠ N, where N is an inte�

ger number. At (2m + 1)2  = N, instead of the func�
tion Jjhm(c, Xp), simpler expressions enter into rela�

tionship (18). For example, at (2m + 1)2  = 1, the
following function should be written under the integral
sign in relationship (18):
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At (2m + 1)2  = 2, the corresponding function has
the form
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If j = h = 1 is chosen in formula (20) at m = 0 and p =
1, it transforms into the expression for the quantity w
in [23].

The integral over c in relationship (18) was calcu�
lated numerically. For large arguments of the Struve
and Neumann functions, we used the asymptotics of
their difference [14]:

(23)

where |ξ| � 1 and |argξ| < π. It should be noted that,
according to the used approximation of narrow band
gaps, the inequality Λ/νr1 � 1 is valid in relationship
(18). Moreover, relationship (18) was derived using the
condition for the smallness of the damping associated

with the two�dimensional inhomogeneities  � kr1.

In the absence of inhomogeneities in the superlat�
tice and by disregarding the natural damping of waves,
the band gap in the spectrum at k = krp (corresponding
to the spacing between the levels of the split spectrum

ν+(krp) and ν–(krp)) is Δνg = Λ1/p, Λ1 = . In
this case, the dependence G''(ν) = ImG(ν) will exhibit
two δ�shaped peaks with the separation Δνp = Δνg. The
presence of random inhomogeneities in the superlat�
tice leads to a modification of these peaks. As the root�
mean�square fluctuations increase, the peaks
broaden, decrease in the height, and approach each
other until they merge together into one peak (for one�
dimensional inhomogeneities) [10] or only one peak
broadens and drastically decreases in the height up to
the complete disappearance, whereas the second peak
remains unchanged (for two�dimensional inhomoge�
neities) [23]. In this case, we have Δνp ≠ Δνg; however,
the quantity Δνp can be used for evaluating the behav�
ior of the band gap Δνg.

It can be seen from relationship (18) that the mul�
tizone scheme used for the calculations allows us to
examine the frequency dependence of the magnetic
susceptibility (Green’s function) at the boundaries of
all odd Brillouin zones. Let us consider the boundary
of the first Brillouin zone (p = 1). Since, as follows
from expressions (7)–(9) and Fig. 2, the correlation
function K(r) is described with a high accuracy by the
first two terms, in numerical calculations in relation�
ship (18), we take into account only terms with m = 0
and m = 1 in the sum over m; i.e., we consider the wave
spectrum at the boundary of the first Brillouin zone
with the inclusion of the influence of the third zone.
The results of the calculations of the imaginary part of
the Green’s function (18) at the boundary of the first
Brillouin zone with a high accuracy reproduce graphs
in Fig. 2 from [23] upon change in the normalization

H
v

ξ( ) Y
v

ξ( )–

=  1
π
�� Γ 1/2( )

Γ v 1/2+( ) ξ/2( )1 v–
���������������������������������������� Γ 3/2( )

Γ v 1/2–( ) ξ/2( )3 v–
����������������������������������������+

⎩ ⎭
⎨ ⎬
⎧ ⎫

,

k2γ2
2

2 2Λ/π

from Λ to Λ1. This agreement is associated with the
fact that, in the expansion of the function describing
the ideal superlattice with the rectangular profile into
a Fourier series, the first harmonic (m = 0) with the
period l has the largest amplitude. As a result, the main
contribution to the Green’s function G(ν) at the
boundary of the first Brillouin zone is made by the
term in relationship (18) with j = h = 1 that is close to
the Green’s function for the sinusoidal superlattice
[23].

Let us now analyze the boundary of the third Bril�
louin zone of the superlattice (p = 3). As before, we
take into account only the first two terms in the sum
over m in relationship (18). The results of the calcula�
tions of the imaginary part of the Green’s function
(18) at the boundary of the third Brillouin zone are
presented in Fig. 4. It can be seen from this figure that
the peak at the edge of the band gap in the wave spec�
trum with a lower frequency remains almost
unchanged with an increase in the quantity γ2, whereas
the peak at the edge of the band gap with a higher fre�
quency broadens and decreases in the height with an
increase in the quantity γ2. Therefore, the qualitative
behaviors of the peaks of the magnetic susceptibility at
the boundaries of the first and third Brillouin zones
coincide with each other. However, the right peak at
the boundary of the third zone disappears at a consid�
erably smaller value of γ2. A finite height of the left
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Fig. 4. Imaginary parts of the Green’s function (18) at the
boundary of the third Brillouin zone of the superlattice
with two�dimensional inhomogeneities for η21 = 4,

νr1/Λ = 20, and  = (1) 0, (2) 0.03, (3) 0.05, (4) 0.10, and

(5) 0.16.
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peak in Fig. 4 and its nonzero width are due to the
introduction of the “bare damping” Γ0/Λ = 0.03 in the
numerical calculations in order to eliminate the diver�
gences.

The dependences of the separation between the
peaks of the imaginary part of the Green’s function (18)
on the square of the root�mean�square fluctuation of

the two�dimensional inhomogeneities  at the
boundaries of the first and third zones are plotted in
Fig. 5. It should be noted that, in this and subsequent fig�
ures, there are points additionally marked by the aster�

isk. At these points, the relationship (2m + 1)2  = 1 is
satisfied and expression (21) instead of Jjhm(c, Xp) was
used in the Green’s function (18). It can be seen from
Fig. 5 that these points fit well the sequence corre�

sponding to other values of . As can be seen from
Fig. 5, one peak at the boundary of the third Brillouin

zone at the value of  that is approximately one order
of magnitude smaller than that at the boundary of the
first Brillouin zone remains in the dependence of the
magnetic susceptibility on the frequency. However, the
band gap in the wave spectrum at the boundary of the

γ2
2

γ2
2

γ2
2

γ2
2

third Brillouin zone decreases under the influence of
two�dimensional inhomogeneities to a considerably
smaller extent as compared to that in the presence of
one�dimensional inhomogeneities. According to [10],
the band gap in the wave spectrum of the superlattice
with one�dimensional inhomogeneities is determined
by the relationship

(24)

where η1 = qk1/Λ and γ1 and k1 are the relative root�
mean�square fluctuation of one�dimensional inho�
mogeneities and their correlation wave number,
respectively. It can be seen from this relationship that
the closure of the band gap in the wave spectrum at the
boundary of the third Brillouin zone occurs at the val�

ues of  that are two orders of magnitude smaller than
those corresponding to the closure of the band gap at
the boundary of the first Brillouin zone. Therefore, the
influence of the two�dimensional inhomogeneities on
the spectrum at the boundaries of the odd Brillouin
zones turns out to be considerably less pronounced as
compared to the one�dimensional inhomogeneities. It
should be noted that, as the zone number p increases,
this tendency manifests itself to a greater extent.

The half�widths of the peaks at half�height of the
corresponding peaks of the function G''(ν) at the
boundaries of the first and third zones are presented in
Fig. 6. The dependences of the half�widths of the left

and right peaks on the quantity  for two�dimen�
sional inhomogeneities at the boundaries of the first
and third zones were constructed by subtracting the
bare damping Γ0/Λ = 0.03 from the calculated half�
widths of the peaks. Therefore, the half�widths in Fig.
6 do not correspond to those in Fig. 4. In particular,
the half�width of the left peak after this operation
becomes approximately equal to zero. It can be seen
from Fig. 6 that there is a sharp asymmetry in the half�
widths of the left and right peaks, which for the latter
peak almost linearly increases with an increase in the

quantity . The half�width of the right peak at the
boundary of the third zone is larger than that at the

boundary of the first zone for the same values of .

The slope of the straight line Γ3( ) is also larger than

the slope of the straight line Γ1( ), even though the
ratio between the slopes in Fig. 6 is visually opposite,
which is associated with the difference between the
scales of the upper and lower horizontal axes. These
results are in agreement with the data obtained in [10]
on the damping of waves  in the superlattice with
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Fig. 5. Dependences of the separation between the peaks of
the imaginary part of the Green’s function Δνp/Λ1 on the

quantity  at the boundaries of the (1) first and (2) third

Brillouin zones. Points 3 and 4 indicate the values of  =

1/(2m + 1)2 for which function (21) was used in the inte�
grand of relationship (18). Solid curves I and III were
obtained by the interpolation of the sequences of points 1,
3 and 2, 4, respectively.
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the one�dimensional inhomogeneities. For the open
band gap in the wave spectrum, we have

(25)

According to this expression, the damping depends

linearly on  at the boundary of any odd Brillouin
zone and the slope of the straight line increases with an
increase in the zone number p. It should be noted that,
as follows from expression (25), the coefficient of the

quantity  for  at p = 3 as compared to the coeffi�

cient for  at p = 1 increases by a factor of ≈30,
whereas this coefficient for the superlattice with the
two�dimensional inhomogeneities increases by a fac�
tor of only three.

The dependences of the positions of the maxima of
the left and right peaks on the root�mean�square fluc�
tuation at the boundaries of the first and third Bril�
louin zones are plotted in Fig. 7. It can be seen from
this figure that there is an insignificant asymmetry in
the positions of the peaks with respect to the centers of

νg'' γ1
2
k1qp

3
.=

γ1
2

γ1
2 νg''

νg''

the band gaps and a shift in these centers toward the
high�frequency range. It should also be noted that,
when the right peak disappears, the left peak appears
to be shifted from the center of the band gap in the
ideal superlattice toward the low�frequency range.

Now, we discuss the revealed effect of the asymme�
try of the width and amplitudes of the peaks of the
Green’s function due to the presence of two�dimen�
sional inhomogeneities in the superlattice. For this
purpose, the mass operator of the Green’s function is
conveniently expressed through the spectral density
S(k), i.e., the Fourier transform of the correlation
function. In this case, within the Bourret approxima�
tion, we have

(26)

The spectral density of the superlattice with two�
dimensional inhomogeneities that corresponds to the
correlation function (7) can be written in the form
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Fig. 6. Dependences of the half�widths of the peaks of the
imaginary part of the Green’s function Γp/Λ1 on the quan�

tity  at the boundaries of the first Brillouin zone for the

(1) right and (5) left peaks (upper axis ) and the third

Brillouin zone for the (2) right and (6) left peaks (lower

axis ). Points 3, 4, 7, and 8 indicate the values of  =

1/(2m + 1)2 for which expression (21) was used in the inte�
grand of relationship (18).
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(27)

where ks⊥ = {ksx, ksy}. Substituting the spectral density
S(k – ks) in this form into expression (26) and inte�
grating over ksz, we obtain

(28)

Since we consider the main branch of the wave spec�
trum in the range kz > 0, the terms associated with the
second term in square brackets in expression (27) are
omitted in relationship (28). As is known, the law of
conservation of the angular momentum in an inhomo�
geneous medium is invalid. However, constraints that
follow from the law of conservation of the energy of
the incident and scattered waves and the dispersion
law of the scattered wave are imposed on the magni�
tude of the wave vector. The law of conservation of the
energy in the propagation of the wave in the superlat�
tice with the two�dimensional inhomogeneities is
determined by the pole on the real axis in the inte�
grand of expression (28); that is,

(29)

The same pole determines the damping of the incident
wave. Let us consider the boundary of the first Bril�
louin zone: kz = kr1 = q/2. At m = 0, from relationship
(29), we obtain the conservation law derived in [23]:

(30)

where νr1 =  is the frequency corresponding to the
center of the band gap in the ideal superlattice at the
boundary of the first Brillouin zone. The conservation
law (30) is satisfied only at frequencies ν > νr1. Conse�
quently, the damping will arise only in the range of the
first peak of the unperturbed Green’s function at ν =
νr1 + Λ1/2 (Fig. 6). At frequencies ν < νr1, the wave
scattering is forbidden. As a result, the damping of
waves will be absent in the range of the left peak of the
Green’s function at ν = νr1 – Λ1/2. For m > 0 and fre�
quencies ν in the vicinity of νr1, the conservation law
(29) at the boundary of the first Brillouin zone (kz =
kr1) cannot be satisfied. This means that the terms with
m > 0 in relationship (18) will not make a contribution
to the damping of waves in the vicinity of the boundary
of the first zone.

At the boundary of the third Brillouin zone (kz =
kr3 = 3q/2) at m = 1, from expression (29), we derive

(31)
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where νr3 =  is the frequency that corresponds to
the center of the band gap at the boundary of the third
Brillouin zone. This law can hold true at frequencies
ν > νr3, and the wave scattering is forbidden at fre�
quencies ν < νr3. This implies that the damping will
arise in the range of the right peak of the Green’s func�
tion and be absent in the range of the left peak (Figs. 4,
6). At the boundary of the third Brillouin zone for m =
0, from expression (29), we also have relationship (30);
however, with the difference that the frequency ν var�
ies in the vicinity of νr3. At these frequencies ν, the
conservation law (30) can be obeyed. This means that
there is a contribution of the first term with m = 0 in
relationship (18) to the damping of waves in the vicin�
ity of the boundary of the third Brillouin zone. How�
ever, at the boundary of the third Brillouin zone, there
arises an asymmetry of the peaks of the Green’s func�
tion (Fig. 4) due to the conservation law (31). At m > 1
and frequencies in the vicinity of νr3, the conservation
law (29) at the boundary of the third Brillouin zone
cannot be satisfied. Consequently, the terms with m >
1 in relationship (18) will not make a contribution to
the damping of these waves. This circumstance addi�
tionally justifies the above choice of the first two terms
in the sum over m in relationship (18) in the numerical
investigation of the Green’s function.

Therefore, it follows from expression (29) that, at
the boundary of an odd Brillouin zone with the num�
ber p (kz = krp), the damping of waves in relationship
(18) is described by the terms with m ≤ (p – 1)/2,
whereas the terms with m inconsistent with this rela�
tionship do not contribute to the damping.

4. CONCLUSIONS

Thus, the high�frequency susceptibility of a layered
ferromagnetic structure (superlattice that initially has
a rectangular profile) with two�dimensional inhomo�
geneities has been investigated. These inhomogene�
ities can be treated as a limiting case of defects
extended along the superlattice axis when the correla�
tion length in this direction is considerably larger than
the correlation length of inhomogeneities in the xy
plane:  � . In practice, this situation can occur
when the inhomogeneities of the surfaces of the super�
lattice layers result from the inhomogeneous deforma�
tion of the substrate surface onto which these layers are
deposited. In this case, the deformations random in
the xy plane can be reproduced almost in phase on the
surface of each new deposited layer and the superlat�
tice can be approximately described by the correlation
function that has a finite correlation length in the xy
plane of the layers and an infinite correlation length
along the z axis.

kr3
2

r̃ || r̃⊥
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The correlation function of the layered system with
two�dimensional phase inhomogeneities has been cal�
culated. By approximating the correlation function
with a simple relationship, it has been demonstrated
that the effect of the asymmetry of the amplitudes and
widths of the peaks of the Green’s function at the
edges of the band gap in the wave spectrum due to the
two�dimensional inhomogeneities, which was previ�
ously revealed in [23] for the first Brillouin zone of the
sinusoidal superlattice, takes place in a multilayered
ferromagnetic system with an inhomogeneous mag�
netic anisotropy parameter at the boundaries of all odd
Brillouin zones. This effect results from the law of
conservation of the energy of incident and scattered
waves [23] and, most likely, can be observed for super�
lattices of other types in the presence of two�dimen�
sional inhomogeneities. In particular, this effect can
be expected in an initially ideal one�dimensional
superlattice with an arbitrary thickness of layer inter�
faces [11]. In practice, the effect of peak asymmetry
can be used for investigating inhomogeneities in
superlattices. The experimental observation of this
effect for the high�frequency susceptibility would indi�
cate the presence of two�dimensional inhomogene�
ities in the superlattice.
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