ISSN 1063-7834, Physics of the Solid State, 2010, Vol. 52, No. 7, pp. 1424–1426. © Pleiades Publishing, Ltd., 2010. Original Russian Text © A.M. Vorotynov, G.A. Petrakovskiï, V.V. Rudenko, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 7, pp. 1330–1331.

MAGNETISM AND FERROELECTRICITY

Exchange Dependence of the Spin-Hamiltonian Constants for Antiferromagnetically Coupled S-Ion Pairs

A. M. Vorotynov, G. A. Petrakovskiĭ, and V. V. Rudenko*

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, 660036 Russia

* *e-mail: rvv@iph.krasn.ru* Received November 12, 2009

Abstract—Experimental data that indicate the existence of an exchange-dependent contribution to singleion spin-Hamiltonian constants for antiferromagnetically coupled *S*-ion pairs in diamagnetic crystals are reported and generalized.

DOI: 10.1134/S1063783410070164

Earlier, investigation of the effect of a crystal field on magnetic anisotropy of a magnetically concentrated crystal was usually reduced to the choice of an isostructural diamagnetic analog with close lattice parameters (or a series of analogs) [1], which was doped with the corresponding impurity in amounts necessary for the observation of the electron paramagnetic resonance (EPR) spectrum of individual ions. The energy levels, which were calculated using a Hamiltonian written in the single-ion approximation and the molecular-field approximation for a magnetically concentrated crystal with the constants derivedI imental data available in the literature on ion pairs

(

 $MBO_3 + Fe^{3+}$ (M = Ga, In, Lu, Sc), CaO + Mn²⁺, MgO + Mn²⁺, and CsCdCl₃ + Mn²⁺ crystals) for the axial spin-Hamiltonian constant D_S [6–9] in order to demonstrate the existence of exchange-dependent contributions.

and the molecular-field approximation for a magnetically concentrated crystal with the constants derived In fins paper, we treated and generalized the characterized ental data available in the literature on ion pairs have the form [6-9]. The energies of these states have the form [6-9]

$$E_{S} = (J/2)[S(S+1) - s_{i}(s_{i}+1) - s_{j}(s_{j}+1)]$$

Here, *S* is the total spin number, which for each multiplet of the pair takes one of the values $S = s_i + s_j$, $s_i + s_j - 1$, ..., $s_i - s_j$; $s_i = s_j = 5/2$; s_i and s_j are the spin numbers of ions in the pair; and *J* is the exchange parameter.

According to [7, 9], the Hamiltonian of the strong exchange interaction for each individual multiplet can be represented in terms of the total spin

$$\mathcal{H} = g\beta HS_z + (D_S/3)O_2^0(S_z).$$

Here, the external field is directed along the axial axis. The fourth-order anisotropic terms are ignored. The spin-Hamiltonian constant D_s has the form [6–9]

$$D_S = 3\alpha_S D_{\rm dip} + \beta_S D_{cS};$$

 $\alpha_S = (1/2)[S(S+1) + 4s_i(s_i+1)]/(2S-1)(2S+3)$ and $\beta_S = [3S(S+1) - 3 - 4s_i(s_i+1)]/(2S-1)(2S+3)$ are the nonlinear functions of the total spin *S*, which are given in [6–9] and tabulated in [7]; D_{dip} is the dipole interaction constant; and D_{cS} is the constant including the contributions from the crystal field D_{cf} , the local

Compound	A, Oe	$D_{c0} + D_{cf},$ Oe	D _{dip} , Oe	D' _{dip} , Oe
$CaO + Mn^{2+}$	35.3	-183.8	-494.4	-498.9
$CsCdCl_3 + Mn^{2+}$	-89.7	557.2	-402.1	-407.9
$MgO + Mn^{2+}$	-15.7	334.3	-567.9	-565.6
$GaBO_3 + Fe^{3+}$	-100	1194	-71	-82
$InBO_3 + Fe^{3+}$	-55	642	-70	-69
$ScBO_3 + Fe^{3+}$	-39	458	-68	-72.6
$LuBO_3 + Fe^{3+}$	-8	-9	-78	-77

Constants of the spin Hamiltonian of exchange-coupled S-ion pairs in diamagnetic crystals

distortion due to the "foreign" pair D_{c0} , and the singleion exchange mechanism $A\sqrt{S(S+1)}$. The experimental values of D_{cS} can be determined from the expression [6–8, 10]

$$D_{cS} = (D_S/\beta_S) - (3\alpha_S D'_{dip}/\beta_S).$$
(1)

The experimental dependence is described using the fitted function

$$D_{cS}(S) = (D_{c0} + D_{cf}) + A\sqrt{S(S+1)}.$$

The expression for the single-ion exchange constant $A\sqrt{S(S+1)}$ is written in this form, because the anisotropic exchange interaction always includes the isotropic exchange parameter. Each multiplet with the total

Dependences of the single-ion spin-Hamiltonian constants D_{cS} for antiferromagnetically coupled Mn²⁺-Mn²⁺ and Fe³⁺-Fe³⁺ ions in CaO, CsCdCl₃, MgO, and *M*BO₃ (*M* = Ga, In, Sc, Lu) crystals on the quantity |**H**^{ex}|/|*J*/gβ|.

PHYSICS OF THE SOLID STATE Vol. 52 No. 7 2010

spin S is in its own isotropic exchange field that appears in the pair interaction:

$$|\mathbf{H}^{\text{ex}}| = (1/g\beta)(\partial |E_S|/\partial |\mathbf{S}|)$$
$$= |J/g\beta|\sqrt{S(S+1)} \approx |J/g\beta|(S+1/2).$$

Equation (1) is also in agreement with the data reported in [4], where the Hamiltonian term describing the single-ion exchange mechanism is obtained in the third order of perturbation theory, which, in particular, is linear in the isotropic exchange interaction. The experimental results for the spin-Hamiltonian constants D_s in $MBO_3 + Fe^{3+}$ (M = Ga, In, Lu, Sc), $CaO + Mn^{2+}$, and MgO + Mn²⁺ crystals are presented in the form of dependences on the total spin S in [6]. These dependences were previously fitted to determine the spin-Hamiltonian parameters D_{dip} , $D_{c0} + D_{cf}$, and A, which have been published only partially [6] (numerical experimental values of the spin-Hamiltonian constant D_S for the CaO + Mn²⁺ and MgO + Mn^{2+} crystals are given in [7]). The parameters D_{dip} , $D_{c0} + D_{cf}$, and A calculated from the dependences $D_{S}(S)$ for the CaO + Mn²⁺, MgO + Mn²⁺, and $CsCdCl_3 + Mn^{2+}$ crystals are presented for the first time (see table). The experimental data on the spin-Hamiltonian constant D_S for the CsCdCl₃ + Mn²⁺ crystal are reported in [10].

The experimental value of the dipole interaction constant $D'_{dip} = \{D_3 - \beta_3[D_{cf} + D_{c0} + A\sqrt{12}]\}/3\alpha_3$ can be determined with a higher accuracy than D_{dip} from the data obtained for the multiplet with S = 3. The constants D_3 , $(D_{c0} + D_{cf})$, and A, which are necessary for this determination, can be taken from data on the dependence $D_S(S)$ [6, 7, 10]. This approach to the determination of the dipole interaction constant D'_{dip} made it possible to construct the monotonic dependences $D_{cS}(|\mathbf{H}^{ex}|)$ dependences (see figure). Note that, when constructing the experimental dependence described by Eq. (1), the point for S = 3 is especially sensitive to the error in the determination of the constant D_3 and the dipole interaction constant because the quantity β_3 is small.

Therefore, the single-ion exchange constant includes the correlation correction $\sqrt{S(S+1)}$, which must be taken into account in writing the Hamiltonian for pairs in terms of the total spin *S*. As can be seen from the figure, this notation should have a general form.

REFERENCES

1. L. Rimai and T. Kushida, Phys. Rev. 143 (1), 160 (1966).

- 2. S. Geschwind, Phys. Rev. 121 (2), 363 (1961).
- 3. G. P. Rodrigue, H. Meyer, and R. V. Jones, J. Appl. Phys. **31** (5), S376 (1960).
- 4. A. E. Nikiforov, V. Ya. Mitrofanov, and A. N. Men, Phys. Status Solidi B 45 (1), 65 (1971).
- A. S. Moskvin, I. G. Bostrem, and M. A. Sidorov, Zh. Éksp. Teor. Fiz. **104** (1), 2499 (1993) [JETP **77** (1), 127 (1993)].
- V. V. Men'shikov, S. G. Ovchinnikov, V. V. Rudenko, A. N. Sudakov, V. I. Tugarinov, and A. M. Vorotynov, J. Magn. Magn. Mater. 267 (3), 289 (2003).
- 7. E. A. Harris, J. Phys. C: Solid State Phys. 5 (3), 338 (1972).
- A. M. Vorotynov, S. G. Ovchinnikov, V. V. Rudenko, and A. N. Sudakov, Fiz. Tverd. Tela (St. Petersburg) 42 (7), 1275 (2000) [Phys. Solid State 42 (7), 1313 (2000)].
- 9. J. Owen, J. Appl. Phys. 32 (3), S213 (1961).
- S. N. Martynov and S. B. Petrov, Phys. Status Solidi B 149 (1), K41 (1988).

Translated by G. Tsydynzhapov