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We consider the 2D Hubbard model in the strong-coupling case (U > W) and at low electron den-
sity (nd* < 1). We find an antibound state as a pole in the two-particle T-matrix. The contribution
of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Green-
function similar to the Hubbard-I approximation. We also discuss briefly the Engelbrecht-Randeria
mode which corresponds to the pairing of two holes below the bottom of the band for U > W and
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low electron density. Both poles produce nontrivial corrections to Landau Fermi-liquid picture
already at low electron density but do not destroy it in 2D. © 2011 American Institute of Physics.

[doi: 10.1063/1.3670026]

INTRODUCTION

At low electron density (nd”> < 1 — practically empty
band) and in the strong-coupling case U > W the effective
interactions in the 2D Hubbard model" can be described in the
T-matrix approximation (see Kanamori?). In the low energy
sector ¢ < & and in the framework of this description the 2D
Hubbard model becomes equivalent to a 2D Fermi-gas with
quadratic spectrum and short-range repulsion.’ Thus it can be
characterized by the 2D gas-parameter of Bloom:*

1
N— 1

fo in(1/nd)’ ey

where n = p2/2x is the electron density in 2D (for both spin

projections, taking into account that n,=n_,=n/2 in the

unpolarized case), pr is the Fermi-momentum, d is the inter-

site distance. Accordingly many properties of the 2D Hub-

bard model at low electron density, and in particular the
quasiparticle damping near the Fermi-surface

9) 83 EF

7 ~ ImZ(ep, p) ~ fo ;ln -

P

have Landau Fermi-liquid character (amended with the spe-
cific 2D logarithm),” where &= (p*/2m)-¢p is quasi-particle
spectrum in the low-energy sector ¢ < ¢ and f is given by
Eq. (1). Correspondingly the averaging of ImZX(e,,p) with
Fermionic distribution function ny(e,/T) produces the famil-
iar result y(T) ~ImX(T)~T?InT in 2D. Accordingly the
quasiparticle residue Z ~ (1 — agiz)—l is nonvanishing for
o — 0. However, as first mentioned by J. Hubbard' and
P. W. Anderson,® for U > W the presence of a band of a fi-
nite width produces at high energies an additional pole in the
two-particle T-matrix, well separated from all other poles,
with the energy:

1063-777X/2011/37(9—10)/6/$32.00

e~ U>0. 2)

This pole is usually called the antibound state. Already in the
first iteration of the self-consistent 7-matrix approximation
this pole yields a non-trivial contribution to the self-energy
2(e,p). As a result the dressed one-particle Green-function
acquires a two-pole structure, very similar to the Hubbard-I
approximation.'

THE THEORETICAL MODEL

We consider the simplest 2D Hubbard model on the
square lattice:

ﬁ, = ﬁ—,uﬁ = —IZC;CJJ + UZ”iT"il — ,uZnim
(ij)o i io
(3

where n;; = ¢ ci, is the density operator of electrons on site
i with spin-projection ¢, U is Hubbard repulsion, ¢ is hopping
integral, u is the chemical potential. The bandwidth W = 8¢
on the square lattice. After Fourier-transforming we get:

H' = Z EpCrCpo + UZ CrCyiCrqlCriqts (D)
po rr'q

where &, =-2t(cos p,d + cos p,d)—u is the quasiparticle spec-
trum of the uncorrelated problem. For low electron density
prd < 1 we can often use the quadratic approximation for
the spectrum:

&p = 3 (©)

where m=1/2td* is the band-mass; u=—(W/2)+e is
chemical potential and

© 2011 American Institute of Physics
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1, =&, + pu = —2t(cos p.d + cos pyd)
4 202 WP
N——+tpd=——+—.
2t 2 om
We will mostly consider the physically more transparent

strong-coupling case U > W at low electron density nd* < 1.

T-MATRIX APPROXIMATION

We start with the standard definition of the 7T-matrix in
2D (Refs. 4 and 7)

Ud?
T= o1 . (6)
1— Udzj P 1 —nre(ep) — np—o(eg—p)

(2n)* (@ =& = &-p +i0)

The poles of the T-matrix are governed by the condition:

| = UdZJ d’p 1— nrg(8p) — ”F—a(gq—p)' %)

(@ =& — & +i0)

For the antibound state for which w ~ U we can expand Eq.
(7) and get (see also Ref. 8):

1= UdzJ d’p 1 —nro(ep) — np—o(2g-p)
(2n)° @

e —2
X [1+7t”+t”w" “}, ®)

where ¢,=t,—1; &, ,=1, ~ll=¢,,. Equivalently we can
write:
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Ud* [ d* Ud>
1:—J p2 [l—nFo<8p)_nF*‘7(8P"1)] T
(27‘5) [6)]
( )

X J(jnl))Z [1 —nrq(ep) — ”F—rr(gp—q)] (tp+1p-g = 211)

w

2
and use that f%(tp +1,_,) =0 when we integrate over
the Brillouin zone. Thus:

Ud? d? d? Ud? [ d*
1= (1 +—2J—p2(fzu)
wd 2 2 o* ) (2n)
(16 (8p) + 1o (8p—g)] &9 + 8],

(10)

where we used that in unpolarized case n, =n_,=n/2. Note
that

1= d2J A _ & Jn/d %Jn/d dpy
Bz (21)? “njd 2T ) _gja 27

for the integration over the Brillouine zone. Hence:

-

1=—(1 —ndz)—

&

g
[

el\)

« J(;"%z [1ro(6p) + 1—a(ep-g)] [op + pg] . (11)

In the third term of Eq. (11) the integration is restricted by
Fermi-factors and hence we can use quadratic approximation
for the spectrum ¢, = (p2 /2m)—¢r. Then for the third term we
get:

Udz 0 0 T ] 2 2 _ 2 0 T ] 2 2 2
Y N 0) [4 8,,d8,,+J ngJ _qo(p +4q pqcosq)_gp> +J dng do (p +q°+ PqCOS(p_8F>:|
w e e 0o 2m e 0o T 2m
UdZ 0 0 q2 UdZ q2
= — = Nyp(0 {4[ &,de +2J de —} = — = Nyp(0 [—232 +2sp—], (12)
wz ( ) e PP e P 2m wz ( ) F 2m

where we used that

&’p.
(2n)

42
= J NF—(&p)Epq <P

JUF—G (&p-q) (2m)?

In Eq. (12) Nop(0) =m/27 is the density of states in 2D for
the quadratic spectrum. Hence:

U2u  Und? 2
~nd?) — w—” - HT <—23F + %) (14)

Accordingly for the antibound state:

U2u Und? 7
~U(1 —nd*) — 2ep — ).
Oy~ U(1 = nd’) U(l—nd2)+2U(1—nd2)( o

s5)

Or respectively

gy ~ U(1 — nd?)

2u nd? q*
— _|_ EF - =
1—nd?> 1 —nd? m

nd*2u nd> q*
=U(1 —nd*) —2u— -

(1= nd’) = 2u 1—nd2+1—nd2<8F 2m>
R L L
= Ul —nd) 2'u+1—nd2(gp 24) 1 — nd?2m’

(16)

By analogy with attractive-U Hubbard model® we can intro-
duce “bosonic” chemical potential:
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g = 2p — |Epl, (17

where

2
lfndz(gF_zu)

~ U(1 — nd®) + nd*w (18)

|Ey| = U(1 — nd®) +

is a “binding” energy of antibound pair and —(¢”/4m*) for
the spectrum, where the effective mass reads:

1 — nd*
m*:m%>>m for nd® < 1.  (19)
Then we can represent:
2 2
q q
= |Ep| — 2u — =——— 20
Wap = |Ep| — 21 e i 2 (20)

which is quite nice. The spectrum (20) closely resembles
the pole of the attractive-U Hubbard model for |E,|>ep.’
The important difference is, however, in the relative sign
between 2u and E,. In the attractive-U Hubbard model
up =2u+|Ep| and the real pairs are created below the bot-
tom of the band. Thus u ~ —(|E,|/2) and puz — 0 at low
temperatures. In the repulsive-U Hubbard model for low
electron density nd®> < 1: u =~ —(W/2)+ ep for low temper-
atures. Only in the case of half-filled band nd*=1 (one
electron per site) the chemical potential y ~ U/2 “jumps”
in the middle of the Mott—Hubbard gap Ay, = U. The sit-
uation resembles that for a semiconductor: the chemical
potential for nd* =1 lies in the middle of the forbidden gap.
Another important difference is connected with the hole-

like dispersion in Eq. (20) that is with the sign “—” in front
of ¢ /4m”.
The T-matrix close to the pole reads:’
T(w,q) ~ > Yo . 1)
oL+ ug +io
4m*

IMAGINARY PART OF THE SELF-ENERGY

In the first iteration to the self-consistent 7T-matrix
approximation (see Refs. 10 and 11):

2
ImZ(w,k) = J (;lnl))z ImT (w + &, p +K) [17(e,) + ns(ep + 0)]
PR
X lnF(sp) +np <— (p4—|’—nl:) - #B)

where ng(g),) is fermionic distribution function, nlg[—((p—i—k)2 /
4m*)—pp] is bosonic distribution function. Having in mind
that g =2u — |E,| ~ —U we get for U > T (Ref. 11):

. (22)
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(p+ k)2 1
g\ ————— —HUp | = — 0.
( 4m (P+k)°

e 4m'T ¢ T —1

Thus:

d’p
(2m)?

ImX(w,k) = nU
mE (0, k) = U | an

2
_(p+Kk) _#B]

+k)’
X 5<w+sp—|—/¢3+(p4nﬁ)>np(ap). (23)

Here again we have the important difference with attractive-U
Hubbard model where at low temperatures T — 0: 2ng=n
while np=0. In repulsive-U Hubbard model we have vice-
versa ng =0 and n=ng for T — 0.

Having in mind that m*/m > 1 for nd> < 1 we can
neglect (p+k)*/4m* in Eq. (23). Thus we get:'"

0
ImXZ(w,k) = —7tN2p(0)Upg J de,o(w + ¢, + ug)
= —nNap (0)Up[0(w + pp) — 0(w + pp — r)].

(24)

REAL PART OF THE SELF ENERGY

Correspondingly for the real part of the self-energy:'*"'!

ReX(w,k) = JReT(w +&5,p+K)[ng(w+¢,) +np(e,)] ﬁ
T
(25)
and again neglecting ng(w+e¢y,) for U > T we get:
ReXZ(w,k) = UN,p(0) an(ep)dsp ® -+ 8]’( k)2.
p+
o+ &+ ug + o
(26)
For m* /m>>1: (p+k)*/4m* is small and thus:
0 -+ ¢
ReX(w, k) = UNp(0) J de,————
o T+ 8+ g
0
de
= UNyp(0) |er — —r
| + pgl }
= UNyp(0) |ep — ppgln ——— . 27
wl0)or i ]

Assuming that @ + pp| > ¢ and expanding the logarithm in
the second term we get:

g ond®
o+ 2 o+

ReZ(w, k) = UN,p(0) (28)

Thus the pole of the dressed one-particle Green-function
(Ref. 12) G (w,k) = Gy ! (w,k) — Z(w, k) reads:
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nd> o
—g—U— =0. 29
w—¢ —U 2 ot (29)
Correspondingly:
2 Und®
"+ | Up— & — 2 @ — & ptp =0;
Und®\ * Und®\ *
Hp — & — ) Hp — & — 2
o+ 5 — 5 —eug =0
As aresult:
Und? Und? 2
Hp — & — 2 Hp & — 2
w1y = _ft 2 + &g
(30)

Having in mind that y3 ~ —U we can expand the square root
in Eq. (30). Then:

Und?
Mp — & —
W12 = — 3 2
Und?
Up — & —
2 Eklip
+ . (31
2 + Und? @D
Hp — & — 7

We know that pz < 0 and |ug| > {|8k|; U’;"Z} . That is why

Und? Und?
Up — & — 5 Up — &k — )
2 T 2
and hence:
Und?
Mp — & —
Wip = — 3 2
Und?
Mp — & —
2 Erp
. 32
+ 2 * el
Hp — & — )
Finally:
Und? exllp
w; = — — & — —
1 HUp k ) Und?
Hp — & —
2
? Und®’
Mp — & — )

The dressed Green-function G(w,Kk) reads:
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1 1
Glok) =—CTH _ Ofl { ]

(0— o) (0—0w) o —aw w—w ©—w

(o1t g 1 w2 + g 1

- (a)l—,uB)w—wl_ (wl—(m)w—wz
1 1

o)l—a)z_wl—wz

:(“"+“B> ! _(“’2“‘3) L o
W1 — W) W — W Wy — W) W — Wy

Let us check the poles structure:

_|_

o 4,_4,Qmﬁ) 7 R
» Mp — & — 5
_ CkMp
O—w =0 Unde
Hp — & — 7
(33)

But ug =2u—|E,| =~ —|E,| ~ —U(1-nd?) and

Und? nd?
— ~-Ull——.
HUp ) ( ) )

_ Und®
2

Of course ‘,uB > |ex|. Hence:

d? U1 — nd?
w—wlzw—sk—U(l—n—)—gk( nd’)

R

nd? e (1 — nd®)
= — & — 1_7 - @ 7
W — & U( 2)—!— 1_n_dz

nd? nd?

2 2
FkU(l —ndz) Sk(l —ndz)
@O = nd® B nd®
( U)(l T) )
d2
%w—8k<1—n7>. (36)

In the same time the first term in Eq. (34) yields:

L o+ p
W — W)W — Wy

2

1 1 — nd? d?
- - "d2 ~— . (37)
 — 1—”51 2(w — )
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The second term in Eq. (34) reads:

nd?
11— ) — U — nd®
I o+pug 1 gk( 2) U - nd5)
_ _ ~ 2
W— Wy W — W W— U(l—ﬁ)
2
1 U(—nd)
T w— o nd>
Ull—-—
(-5)
1 nd?
Thus
nd? (1 ”dz)
2 2
G(w,Kk) ~
(@,k) ul nd? nd? + . nd?
w 3 28k W — & )
(39)

and we completely recover the Hubbard-I approximation.''

The first pole in (39) corresponds to the Upper Hubbard band
(UHB). Thus Zyyp = ndz/ 2. The second pole corresponds to
the lower Hubbard band (LHB): Zyup = (1-"£). Of
course, Zyup+Zr g = 1. We can rewrite G(w,k) as:

Zius
w — SkZLHB +io
Z
+ ndé’”‘g GY)
w — U(l _T> — ZyHBEk + 10

G(w,k) =

Note that the second iteration to the self-consistent 7T-matrix
approximation does not change the gross features of Eq.
(40). Thus the antibound state yields nontrivial corrections
to Landau Fermi-liquid picture already at low electron den-
sity, but does not destroy it in 2D. The simplest Hartree-
Fock contribution to the thermodynamic potential QQ from

the upper Hubbard band AQNJZ(w,p)Go(w,p)éﬂT‘)’z%‘;

with Gy(w,p) and X(w,p) given by Egs. (28) and (29) yields
AQ ~ ZUHBn8F~n3'

ENGELBRECHT-RANDERIA MODE

For the sake of completeness let us discuss briefly the
Engelbrecht—Randeria mode'* which also corresponds to the
pole of the T-matrix for U > W and nd® < 1. According
to'* it has a spectrum for ¢ < 2pg:

1
WER & g — EXp e 41)

Note that while antibound state exists also in 3D physics, the
Engelbrecht—-Randeria mode is specific for 2D Hubbard
model. .

In Eq. (41) o, =4 —2¢ and exp{—flﬂ} = nd?® in
agreement with (1). Note that for ¢ =0:

wgr = —2¢ep — 2epnd* < 0. (42)
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The collective character of Engelbrecht—Randeria mode is
connected with the fact that in the absence of fermionic
background (for ¢=0) wgr=0 in Eq. (42). Moreover
wrr < —2¢p. Hence this mode lies below the bottom of the
band and corresponds to the binding of two holes (Recall
that the antibound state lies above the upper edge of the
band).
In terms of the “bosonic” chemical potential 1:

7
R —— 43
WER R 4~ Mg, (43)
where in terms of u ~ —(W/2) + er, up=2p+ |Ep| and the
binding energy |E,| ~ W + 2¢znd”.

CONCLUSION

We considered the excitation spectrum of the Hubbard
model at low electron density, where a small parameter (gas
parameter) allows a controlled expansion. On the level of the
first iteration to the self-consistent T-matrix approximation
we found the contribution of the 7T-matrix pole correspond-
ing to the antibound state to the self-energy X. As a result
we got a two-pole structure of the dressed one-particle
Green-function which closely resembles the Hubbard-I
approximation.

It would be interesting to find the possible contribution
of the Upper Hubbard band to the ground-state energy or
compressibility and to build the bridge between the
Galitskii-Bloom Fermi-gas expansion for the ground-state
energy (or compressibility) and the Gutzwiller type of
expansion for the partially filled band'® when the electron
density is increased.

For the sake of completeness we also analyzed the
Engelbrecht-Randeria mode which corresponds to the pair-
ing of two holes below the bottom of the band. According
to'* this mode, when keeping the full g-dependence for 0 <
q < 2pp, gives nonanalytic corrections ~|w|’ /% to the imagi-
nary part of the self-energy ImX(w) in 2D. It also contributes
to the thermodynamics at 7=0 in the same order in density
as the contribution of the antibound state:
AQ~epn-nd*~n*>0 — amounting to an increase of the ther-
modynamic potential Q.'"* Thus the Engelbrecht—Randeria
mode as well as the Hubbard-Anderson mode corresponding
to the antibound state yield interesting corrections to the
Landau Fermi-liquid picture in 2D already at low electron
density, but do not destroy it completely in contrast to the
1D-case, where we have the Luttinger liquid state and a van-
ishing quasiparticle residue Z — 0 for & — 0.'°
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