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Abstract
Using coupled mode theory we consider transmission in a T-shaped waveguide coupled with
two identical symmetrically positioned nonlinear micro-cavities with mirror symmetry. For
input power injected into the central waveguide we show the existence of a symmetry breaking
solution which is a result of mixing of the symmetrical input wave with an antisymmetric
standing wave in the Fabry–Pérot interferometer. With growth of the input power, a feature in
the form of loops arises in the solution which originates from bistability in the transmission in
the output left/right waveguide coupled with the first/second nonlinear cavity. The domains of
stability of the solution are found. The breaking of mirror symmetry gives rise to
nonsymmetrical left and right outputs. We demonstrate that this phenomenon can be explored
for all-optical switching of light transmission from the left output waveguide to the right one by
application of input pulses.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is believed that future integrated photonic circuits for
ultrafast all-optical signal processing require different types
of nonlinear functional elements such as switches, memory
and logic devices. Therefore, both the physics and designs
of such all-optical devices have attracted significant research
efforts during the last two decades, and most of these studies
utilize the concepts of optical switching and bistability. One
of the simplest bistable optical devices which can be built
up in photonic integrated circuits is a single micro-cavity
coupled with an optical waveguide or waveguides [1]. Its
transmission properties depend on the intensity of incident
light when the cavity is filled with a Kerr nonlinear material.
If the characteristic optical wavelength much exceeds the size
of the nonlinear cavity, it can be presented by a single isolated
mode coupled with the waveguide.

For an extension of the number of nonlinear cavities,
say two, coupled with the photonic crystal (PhC) waveguide,
one can expect, at first sight, two bistable resonances as was

indeed obtained in [2–5]. However, the effects of self-induced
variation of resonance properties and mutual interference of
the nonlinear cavities could give rise to a much richer variety
of resonance phenomena. The situation crucially depends
on the architecture and symmetry of the system. If the
coupled cavities are different, both eigenmodes, bonding and
antibonding are coupled with the waveguide between the
cavities. However, for the nonlinear cavities the coupling with
the antibonding mode might turn to zero in a self-consistent
way. This results in hidden eigenmodes, bound states in
continuum (BSC). Nevertheless the lack of the superposition
principle in the nonlinear system gives rise to excitation of the
BSC by transmitting light over the waveguide. This results in
resonances of a rather peculiar butterfly shape [6, 7].

The case of two identical nonlinear cavities coupled
symmetrically with the single waveguide is especially
interesting by symmetry breaking with growth of input power.
This phenomenon is developed in nonlinear optics [8–12] with
the establishment of one or more asymmetric states which no
longer preserve the symmetry properties of the original state.
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Figure 1. A schematic T-shaped waveguide coupled with two
identical nonlinear optical cavities shown by filled bold circles. The
cavities are coupled with output waveguides 2 and 3 via the constant
γ shown by dotted lines. The input wave amplitude labeled as
S1+ = Eine−iωt is applied through waveguide 1.

In particular Maes et al [13, 14] considered symmetry breaking
for the cavities aligned along the waveguide, i.e. the Fabry–
Pérot architecture close to the system considered in [10]. This
system is symmetric relative to the inversion of the transport
axis if equal power is injected on both sides of the coupled
cavities. The case of the cavities aligned perpendicular to the
waveguide was considered in [15, 16]. The symmetry breaking
was found also for the case of many coupled nonlinear optical
cavities in a ring-like architecture [17, 18]. It is worth
noting that the phenomenon of the symmetry breaking is well
established also in two nonlinear fiber couplers [19–21]. The
Schrödinger lattice with two or more nonlinear sites is an
adequate model of these optical systems [22].

Maes et al [13] also proposed a switching device that
employs a symmetry breaking bifurcation. Because of the
symmetry there are always two equivalent asymmetric states:
one where the left output power is larger than the right
output power, and the mirrored state, where the right output
is larger than the left output. By increasing or decreasing
one of the inputs, it is possible to switch between these two
states. Thus, this scheme provides the option of switching
with positive pulses, which is not obvious in single-cavity
devices. In the present paper we explore that approach for
the T-shaped waveguide coupled with two identical nonlinear
micro-cavities, as shown in figure 1. The input light power
can provoke symmetry breaking to result in different outputs
in the terminals 2 and 3. Sharply changing the light incident
on waveguide 1 we demonstrate all-optical switching between
left and right outputs.

2. Coupled mode equations

We consider a light given by the amplitude S1+ incident on
the waveguide 1 and outputs into all three terminals, as shown
schematically in figure 1. The outgoing amplitudes are labeled
as S1−, S2− and S3−. Each nonlinear optical cavity is assumed
to be given by single mode amplitudes A j , j = 1, 2 and
coupled with the photonic crystal waveguides 2, 3 via the
coupling constant γ shown in figure 1 by dotted lines. For
simplicity, in the present paper we neglect the direct coupling

of the cavities and the couplings of the cavities with the input
waveguide 1.

We describe the process of the light transmission and
excitation of optical cavity modes using the coupled mode
theory (CMT). This approach was presented by Snyder for
propagation in nonuniform media, where the modes are those
associated with both the discrete and continuous eigenvalue
spectrum [23, 24]. We note that the idea of separation of
total Hilbert space into the discrete and continuous states with
further projection of the total space onto the subspace of
discrete states was first raised by Livsic [25] and independently
by Feshbach [26] to formulate the concept of a non-Hermitian
effective Hamiltonian in the quantum theory of scattering. For
the present system we use the CMT formulated in [27, 28]:

i Ȧ1 = (ω1 − iγ )A1 + i
√

γ σ2−eiφ

i Ȧ2 = (ω2 − iγ )A2 + i
√

γ σ3−eiφ
(1)

where the eigenfrequencies of the nonlinear optical cavities are
shifted because of the Kerr effect

ω j = ω0 + λ|A j |2, j = 1, 2. (2)

The phase φ as shown in figure 1 is the optical length through
which light goes between the T-junction and the cavities. These
CMT equations are to be complemented by the equations for
light amplitudes at each cavity

S2− = σ2−eiφ − √
γ A1,

S3− = σ3−eiφ − √
γ A2,

σ2+e−iφ = −√
γ A1,

σ3+e−iφ = −√
γ A2.

(3)

The T-connection connects ingoing and outgoing amplitudes
by the S-matrix as follows( S1−

σ2−
σ3−

)
=

( a c c
b d e
b e d

)( S1+
σ2+
σ3+

)
. (4)

In particular, if we follow the continuity and Kirchhoff
equations we obtain a = d = −1/3, b = c = e = 2/3.
Equations (1), (3) and (4) form a full system of equations for
nine amplitudes A1, A2, σ2+, σ2−, σ3+, σ3−, S1−, S2−, S3−.

After simple algebra we obtain the following equations(
i
∂

∂ t
− Heff

) (
A1

A2

)
= 2i

3

√
γ eiφ S1+(t)

(
1
1

)
, (5)

where we take that the incident amplitude S1+ = Eine−iωt and

Heff =
(

ω1 − iγ (1 − 1
3 e2iφ) − 2

3 iγ e2iφ

− 2
3 iγ e2iφ ω2 − iγ (1 − 1

3 e2iφ)

)
. (6)

For the sake of simplicity we take for the optical length [7, 14]

φ = ω − ωc. (7)

The solution of the stationary CMT equation (5) for
A j(t) = A j e−iωt and S1+(t) = Eine−iωt is given by the
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inverse of the matrix ω − Heff, whose matrix elements in turn
depend on this solution via equation (2). A numerical self-
consistent procedure of the solution gives us the frequency
behavior of the light intensities presented in figure 2(a) for
the small input amplitude Ein = 0.05. There are, at least,
three branches for small Ein. The first one shown by a solid
gray line preserves the mirror symmetry. Thereby this state
shows the same feature as the single nonlinear cavity coupled
with the waveguide, i.e. resonance enhancement of the light
intensities with further bistability if we increase the input
power. This feature is not seen in figure 2(a) but is clearly
seen in figures 4(a) and (b) for larger input amplitude. The
other two branches break the mirror symmetry and are related
by the symmetry transformation I1 ↔ I2 where I j = |A j |2.
One of these branches shown in figure 2(a) by solid (I1) and
dashed (I2) lines has the form of closed curves which limit the
points marked by stars for Ein → 0. These points define the
BSC which for the present case of the T-shaped structure are
standing waves between two off-channel cavities. As shown
in [6, 7, 30], the BSC exists for the special case of singular
matrix ω − Heff(ω). The condition for the BSC is formulated
as follows

det[ω − Heff(ω)] = 0. (8)

It is easy to see that it happens if the following equation is
fulfilled

e2iφ = 1, φ = πm, (9)

where m is the integer. This quantization condition differs from
the condition for the Fabry–Pérot system [7, 29] φ = πm/2.
This difference is due to the waveguide 1 being connected
with the T-shaped system at the middle as shown in figure 1.
Therefore only that state is trapped between three waveguides
which has nodal points at all connections shown in figure 1 by
bold points. From the first condition for the BSC ω = ω0 +λI j

and equation (7) we instantly obtain the BSC frequencies and
intensities

ωb = ωc + πm, A1 = −A2,

I j = (ωc − ω0 + πm)/λ.
(10)

Substituting the parameters given in figure 2 one can find that
the positions of BSCs marked by a star are exactly described
by these simple equations.

If the system were linear, light incident on waveguide 1
would excite both cavities symmetrically A1 = A2, while
the antisymmetric BSC localized between the cavities would
exist independently of the input light [30]. However, in the
nonlinear system there is no principle of linear superposition.
This results in mixing of the transport symmetrical solution
with the antisymmetric BSC [6, 7, 15] to give rise to the mirror
symmetry breaking. In what follows we define that mechanism
of symmetry breaking as symmetric and antisymmetric mixing
(SAM). Thus, as soon as Ein �= 0 the BSC becomes a
quasi-bound state. The solution for the intensities acquires a
specific shape of closed curves for each intensity, as shown
in figure 2(a). These closed curves are reflected in the
transmission resonance of a peculiar shape of butterfly as
shown in figure 2(b) obtained first in [7]. For the aim of all-
optical switching the phenomenon of the symmetry breaking

Figure 2. The frequency behavior of (a) light intensities I1 = |A1|2
(solid blue line) and I2 = |A2|2 (dashed red line), and (b) the
transmissions TL (solid blue line) and TR (dashed red line) from the
input waveguide 1 into the output ones 2 and 3, respectively, for
Ein = 0.05. The stability domain of the branch is marked by a thick
line. The symmetry preserving state is shown by a gray solid line.
The parameters of the CMT model are ωc = 0.1, ω0 = 0, γ = 1,
λ = 0.1. The BSC points given by equation (10) are marked by stars.
Gray filled areas skip from the first BSC to the second one.

solution is the most important. Correspondingly we obtain that
the outputs in the left and right waveguides are not equal. The
symmetry breaking branches localized around the BSC point
shown by stars in figure 2 exist at any Ein �= 0 and, therefore,
the phenomenon has no threshold in the input power. However,
the stability is restricted by the input power and crucially
depends on the frequency ωc. These SAM symmetry breaking
solutions are shown in figures 2–4. Figure 3 demonstrates the
SAM solution evolving for ωc → 0. The stability was studied
by standard methods given, for example, in the [31, 32] with
details given in [15].

As we increase ωc, the domain of stability of these SAM
solutions is shrinking. However, as we increase the input
amplitude (Ein > 0.64 for ωc = 0.75), a feature in the form
of a loop arises in the symmetry breaking solution, as shown

3



J. Phys.: Condens. Matter 23 (2011) 315303 E Bulgakov and A Sadreev

Figure 3. The same as in figure 2 but for ωc = 0, Ein = 0.2.

Figure 4. The frequency behavior of light intensities (a) and the output transmissions TL and TR for Ein = 0.65, and (b) and (d) for the
stronger input amplitude Ein = 0.7. The parameters of the CMT model are ωc = 0.75, ω0 = 0, γ = 1, λ = 0.1. The intensity of the
first/second cavity is shown by a dashed/solid line. Correspondingly the left/right output transmissions are shown by dashed/solid lines.
Domains of stability are distinguished by the thickness of lines. The gray line corresponds to the symmetry preserving solution which is
stable.

in figure 4(a). The loop feature in the intensities is reflected
in the output transmission in the form of loops too as shown
in figure 4(c). With further growth of the input amplitude Ein

the loops are expanded providing almost complete blocking of
the output into the right waveguide, as shown in figures 4(b)
and (d). There is a symmetrically equivalent branch which
blocks the output into the left waveguide. The loops are the
result of bistable transmission through the left/right output
waveguide coupled with the first/second nonlinear cavity.
Assume I1 � I2, so we can neglect nonlinearity in the second

cavity. Then the approximate solution of equation (5) is

A1 ≈ { f [ω − ω0 + iγ (1 − e2iφ(w))]}
× {[(ω − ω0 − λ|A1|2)(ω − ω0 + iγ (1 − e2iφ(w)))

+ 4γ 2e4iφ(ω)/9]}−1

A2 ≈ { f [ω − ω0 − λ|A1|2 + iγ (1 − e2iφ(w))]}
× {[(ω − ω0 − λ|A1|2)(ω − ω0 + iγ (1 − e2iφ(w)))

+ 4γ 2e4iφ(ω)/9]}−1,

(11)
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Figure 5. The transmissions to the left and right waveguides
calculated by use of exact equations (5) (thick line) and by use of
approximated equations (11) (thin lines) for ωc = 1, Ein = 0.88.

where f = 2i
√

γ eiφ(ω)/3. One can see that because of the
nonlinearity of the first equation in equation (11) a bistability
might occur for the first cavity mode A1. Then the second
cavity mode A2 simply follows A1 through the second equation
in equation (11). In figure 5 we show the transmission
calculated approximately with the use of equation (11) (thin
line). Comparison with the solution of exact equations (5)
(thick line) demonstrates good agreement. This, indeed, shows
that the additional features of the loop type in the symmetry
breaking solution are related to the individual bistabilities of
the transmission in the separate structure segment waveguide
2 or 3 with the corresponding nonlinear cavity 1 or 2. The
solutions crucially depend also on the frequency position of
the BSC ωc , as shown in figure 3.

Figure 6 demonstrates that the symmetry breaking
solution is dependent on the input amplitude Ein. One can
see that there is a domain in Ein where the transmission to the
left output waveguide is almost fully suppressed for a given
branch. For the second mirrored branch the transmission to
the right waveguide is suppressed. This result is extremely
important for the switching of the output power from the left
waveguide to the right one. In order to switch the system from

Figure 7. The time dependence of the light amplitudes |A1|, |A2| in
the cavities (solid and dashed respectively) which follow the
impulses of the input amplitude Ein (gray). We take the cavities as
oscillating in a nonsymmetric way: A1 = 0, A2 = 1.

one asymmetric state to the other we follow [13, 17] and apply
pulses of the input power injected into the waveguide 1. The
direct numerical solution of the temporal CMT equation (5)
with S1+(t) = Ein(t)e−iωt is shown in figure 7 which
demonstrates the switching effect. The stepwise time behavior
of amplitude Ein(t) is shown by a gray line. One can see that
after the first impulse of the input amplitude the oscillations of
the cavity amplitude relax onto the stable stationary solutions
with broken symmetry. Moreover after each next impulse the
state of the system transmits from one asymmetric state to the
other as was observed by Maes et al [13].

3. Conclusions

We extended the phenomenon of symmetry breaking in
the T-shaped photonic crystal waveguide coupled with two
identical nonlinear cavities using the coupled mode theory.
The phenomenon had already been established in the Fabry–
Pérot interferometer architecture for cavities aligned along
the waveguide [10, 13, 14] and in the architecture of the
cavities aligned perpendicular to the waveguide [15, 16]. In
the present T-shaped waveguide we find that the symmetry
breaking originates from the antisymmetric BSC which is

Figure 6. (a) The light intensities at the cavities and (b) the transmissions TL (dashed) and TR (solid) versus the input amplitude Ein for
ω = 0.3, ωc = 0.75, λ = 0.1, γ = 0.1. The domain of stability is emphasized by thick lines in (b).
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trapped between three waveguides. Because of the lack of
the principle of linear superposition in the nonlinear system
the antisymmetric BSC couples with the symmetric transport
solution. As a result the solution breaks the symmetry. This
SAM mechanism has no threshold in the light power incident
on the input waveguide. However, the domain of stability of
the symmetry breaking state crucially depends on the optical
length ωc of the light path from the T-connection to the micro-
cavities.

With growth of the input power the symmetry breaking
is expected to be strong. Then the light intensity in the
first cavity might be weak while the second cavity can be
excited to be so strong that the optical bistability occurs for
separate transmission in the right output waveguide. This
results in loops in the transmission onto the right waveguide.
Equivalently this consideration is applied to the left waveguide
coupled with the first nonlinear cavity too. The left/right
light output might be almost blocked, which is the most
important property of the symmetry breaking branches for the
all-optical switching of outputs in the T-shaped waveguide. We
demonstrated the switching mechanism based on the symmetry
breaking solutions in the T-shaped waveguide coupled with two
nonlinear cavities. This phenomenon gives a method of almost
perfect all-optical switching of output light from waveguide 2
to waveguide 3 by application of a sharp change of the input
light intensity. This process is shown in figure 7.
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