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Abstract
Several experimental and theoretical studies indicate the existence of a critical point separating
the underdoped and overdoped regions of the high-Tc cuprates’ phase diagram. There are at
least two distinct proposals on the critical concentration and its physical origin. The first one is
associated with the pseudogap formation for p < p∗, with p∗ ≈ 0.2. The other relies on the
Hall effect measurements and suggests that the critical point and the quantum phase transition
(QPT) take place at optimal doping, popt ≈ 0.16. Here we have performed a precise density of
states calculation and found that there are two QPTs and the corresponding critical
concentrations associated with the change of the Fermi surface topology upon doping.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The mystery of high-Tc superconductivity in layered cuprates
is closely related to their common pattern of doping dependent
transitions from an antiferromagnetic insulator at zero doping
to an overdoped metal. A number of experimental and
theoretical studies have indicated that the transition is not
smooth and a critical point separates the underdoped (UD)
and overdoped (OD) regions. It is tempting to associate
such a critical point with the pseudogap formation for
p < p∗, with p∗ = 0.19–0.24 [1–5]. There is no doubt
that the proximity of the pseudogap and the superconductivity
with two energy scales, T ∗ and Tc, is essential for high-
Tc superconductivity [6]. On the other hand, the Hall
effect measurements suggest that the critical point and the
quantum phase transition (QPT) take place at optimal doping,
popt = 0.16 [7, 8]. To resolve this controversy, here we
study the doping dependent electronic structure of the single-
layer cuprate like La2−x SrxCuO4 in the regime of strong
electron correlation within the t–t ′–t ′′–J ∗ model. By a very
precise density of states (DOS) calculation we have found two
QPTs associated with the changes of the Fermi surface (FS)
topology. At optimal doping, xc1 = popt = 0.151, the DOS
reveals the logarithmic divergence while at the pseudogap QPT,
xc2 = p∗ = 0.246, there is a Heaviside-type step in the DOS.

Angle-resolved photo-emission spectroscopy (ARPES)
reveals a change of the FS topology from the small hole
pockets to the large hole FS near the optimal doping [9, 10].
This provides a link between the QPT and changes of the FS.
Here we apply the general Lifshitz ideas [11] on the QPT
induced by the FS transformations, but first we will discuss
how these transformations are induced by doping.

It is easy to obtain a large FS in cuprates by a single-
electron approach such as the local density approximation
(LDA) or the tight-binding method. However, to get the small
hole pockets around the (±π/2,±π/2) points of the Brillouin
zone one has to go beyond the weak-coupling approximations
and take the strong electronic correlations into account. Such
small pockets have been found in a doped antiferromagnetic
(AFM) Mott insulator by exact diagonalization [12, 13] and
quantum Monte Carlo calculations [14, 15] for the finite
clusters as well as by a perturbative treatment of the infinite
lattice [16–19] and by using the slave-particles [20, 21].
According to these studies, after the long-range AFM order
vanishes with increasing hole concentration nh = 1 + p
(in La2−x Srx CuO4, p = x), a short-range AFM order still
persists even at optimal doping [22]. The short-range magnetic
order determines the self-energy and hole dispersion resulting
in the small hole pockets around the (±π/2,±π/2) points
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in the UD cuprates; its fluctuation results in the pseudogap
formation [23–25]. Due to the strong electronic correlations
intrinsic for cuprates, a theory of the electron dynamics has
to fulfil a ‘no-double occupancy’ constraint. This constraint
is introduced explicitly in the mean-field theory of a d-type
superconductivity within the RVB approach [26] for the t–J
model [27], and in the variational Monte Carlo studies [28].

2. Method

Contrary to the phenomenological approaches, such as
assuming that the second order QPT exists at p = pc [29],
we deal with a microscopically derived t–t ′–t ′′–J ∗ model
without free parameters. To properly fulfil the ‘no-double
occupancy’ constraint at every step of our calculations we
use the Hubbard X -operators, Xhg = |h〉〈g|, where |h〉 and
|g〉 are the local eigenvectors corresponding to three states:
one-hole states |σ 〉, σ = ±1/2, and the Zhang–Rice singlet,
|S〉, which is a two-hole state. The relation between X -
operators and single-electron annihilation operators is given
by a f σ = ∑

h,g γσ (h, g)Xhg
f , where the coefficients γσ (h, g)

determine the partial weight of the quasiparticle excitation
g → h in the process of a particle annihilation on site f
with spin σ . The ‘no-double occupancy’ constraint means the
absence of direct excitations from and to the lower Hubbard
band and the exclusion of the two-electron (zero-hole) state
|0〉 = d10p6 from the local Hilbert space. It is demonstrated
straightforwardly by the exact calculation of the two-electron
state occupation number that 〈n f ↑n f ↓〉 = 〈X00

f 〉 = 0; this
constraint is provided by X -operator algebra. Nevertheless
the virtual interband (between the lower and upper Hubbard
bands) hopping t12

f g results in the exchange interaction
J f g = (t12

f g)
2/Ueff.

For La2−xSrx CuO4, all intraband and interband hopping
parameters (t11

f g and t12
f g), single-site energies of holes in p- and

d-orbitals, and the charge transfer gap Ueff have been calculated
by the ab initio LDA + GTB approach [30] which combines
LDA and the generalized tight-binding (GTB) method for
strongly correlated systems. The low energy effective model
is the t–t ′–t ′′–J ∗ model where J ∗ means that besides the
Heisenberg exchange term a three-site correlated hopping H3

is also included, Ht−J ∗ = Ht J + H3, where

Ht J =
∑

f,σ

(ε − μ)Xσσ
f +

∑

f

2(ε − μ)X SS
f

+
∑

f 
=g,σ

[

t11
f g X Sσ̄

f X σ̄ S
g + J f g

4
(Xσ σ̄

f X σ̄ σ
g − Xσσ

f X σ̄ σ̄
g )

]

,

H3 =
∑

f 
=m 
=g,σ

t12
f m t12

mg

Ueff

(
Xσ S

f X σ̄ σ
m X Sσ̄

g − Xσ S
f X σ̄ σ̄

m X Sσ
g

)
.

Here the hole creation operator is now ã†
f σ = 2σ X Sσ̄

f and its
algebra is different from the bare fermion’s one (2σ = ±1 for
σ = ↑,↓). The spin operators are also easily expressed via
X -operators, S+

f = Xσ σ̄
f , Sz

f = (Xσσ
f − X σ̄ σ̄

f )/2.
Our approach is essentially a perturbation theory with

the small parameter t/U contrary to the usual Fermi liquid
perturbation expansion in terms of U which is large in cuprates.
We use a method of irreducible Green’s functions which is

similar to the Mori-type projection technique, with the zero-
order Green’s function given by the well-known Hubbard
I approximation. Beyond it there are spin fluctuations.
To provide a description of them, the self-energy was
calculated in the non-crossing approximation by neglecting
vertex renormalization that is equivalent to the self-consistent
Born approximation (SCBA) [31]. The resulting electron self-
energy contains the space–time dependent spin correlation
function C(q, ω) and results in the finite quasiparticle lifetime,
Im �(k, ω) 
= 0. Note that at low temperatures T � 10 K the
spin dynamics is much slower than the electron one. A typical
spin fluctuation time, 10−9 s, is much larger than the electronic
time 10−13 s [32]; that is why we can safely neglect the time
dependence of the spin correlation function, C(q, ω) → Cq.
The self-energy becomes static, �(k, ω) → �(k), and we
have Im � = 0. Note that �(k, ω) here is the object, which is
completely different from the one in the Fermi liquid approach
because here it is built by the diagrams for the X -operators, not
the standard Fermionic annihilation–creation operators a f σ .
In the usual Fermi liquid expansion, dynamical self-energy
definitely plays a crucial role in the lightly doped cuprates.
Here, our theory starts from a different limit where the lowest
order approximation is represented by the Hubbard I solution.
The corrections to the strongly correlated mean-field approach
are small because the starting point is already a reasonable
approximation for the Mott–Hubbard insulator. That is proved
by the small effect of the frequency dependence of the self-
energy in [34, 31]. Moreover, the doping dependence of the
FS is determined by Re �, and it is qualitatively similar in our
approach [33] and in the approach which properly takes Im �

into account [34, 31].
The vertex corrections to the self-energy are small far from

the spin–density wave or the charge-density wave instabilities,
which is true for moderate doping. Our approximation for the
self-energy is done in the framework of the mode-coupling
approximation which has been proved to be quite reliable even
for systems with strong interaction [35, 36]. As shown in the
spin-polaron treatment of the t–J model, the vertex corrections
to the non-crossing approximation are small and give only
numerical renormalization of the model parameters [37].

The Green’s function 〈〈X σ̄ S
k |X Sσ̄

k 〉〉ω for a hole moving on
the background of short-range AFM order is

G(k, ω) = (1 + x)/2

ω − ε + μ − 1+x
2 tk − 1−x2

4
t̃2
k

Ueff
+ �(k)

, (1)

where

�(k) = − 2

1 + x

1

N

∑

q

{[

tk−q − 1 − x

2
Jq + 1 − x

2

t̃2
k−q

Ueff

− 1 + x

2

2t̃k t̃k−q

Ueff

](
3

2
Cq + Kk−q

)

− 1 + x

2

t̃2
q

Ueff
Kq

}

.

Here, tk and t̃k are the Fourier transforms of hoppings
t11

f g and t12
f g , respectively. The self-energy is determined by

static spin correlation function C0n = 〈S+
0 S−

n 〉 and kinetic
correlation function K0n = ∑

σ 〈ã†
0σ ãnσ 〉 between sites 0 and

n. These correlation functions and their Fourier transforms Cq

2
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Figure 1. Mean-field FS transitions with doping x as calculated from poles of equation (1). There are two topological changes: the first one
between x = 0.13 and 0.16, and the second one between 0.22 and 0.25; see [33] for detailed discussion.

and Kq represent the AFM short-range order and the valence-
bond order, respectively. In contrast to the approach of [31],
we calculate these correlation functions self-consistently up
to n = 9 (ninth coordination sphere) together with the
chemical potential μ. To get the spin correlation function
we also obtain the spin Green’s function 〈〈Xσ σ̄

q |X σ̄ σ
q 〉〉ω in a

spherically symmetric spin liquid state [38, 39] with 〈Sz〉 = 0
and the equal correlation functions for each spin component,
〈S+

0 S−
n 〉 = 2〈Sz

0 Sz
n〉 = C0n . Both C0n and K0n are essentially

doping dependent and C0n decrease with the doping [33].
While the nearest neighbor function C01 is finite for all studied
x up to x = 0.4 with a kink at x = p∗ = 0.24, more distant
spin correlations fall down to zero for x > p∗.

The calculated FS twice changes its topology with
doping [33], see figure 1. Small hole pockets around
(±π/2,±π/2) points are present at small doping; then they
increase in size and touch each other in the non-symmetric
points k = ±π(1,±0.4) at xc1 = popt = 0.151. Above popt,
there are two FSs around (π, π) with the outer one being hole-
like and inner being electron-like. The electron FS collapsed at
xc2 = p∗ = 0.246, and at x > p∗ we have only one large hole
surface around (π, π). A similar conclusion on the coexistence
of hole and electron FSs at some intermediate doping have been
also drawn recently [40, 41], and earlier for the spin–density
wave state of the Hubbard model [42].

It should be stressed that the standard DOS calculations
with routine precision (400 × 400 points in the quarter of the
Brillouin zone) which we used before to solve the Tc equation
for the magnetic mechanism of dx2−y2 -wave pairing [46] is not
enough to find the effect of QPT on DOS. To get the results
presented below we used 104 × 104 k-points which lead to an
increase of precision by 625 times.

3. Results

From the previous consideration it follows that the FS
topological transitions in cuprates are induced by doping and

they are due to the non-rigid band behavior of the quasiparticles
in the strongly correlated systems. According to the general
Lifshitz analysis [11] for the three-dimensional (3D) system,
a change of topology at the energy ε = εc either by the
appearance of a new segment (such as we found at p∗) or by
change of its connectivity (such as at popt) would result in the
additional DOS, δN(ε) ∼ (ε − εc)

1/2, and a change in the
thermodynamic potential, δ	 ∼ (εF − εc)

5/2 (the QPT is of
order 2.5), where εF is the Fermi energy. However, due to
the strong anisotropy of electronic and magnetic properties,
cuprates are quasi-two-dimensional (2D) and not isotropic 3D
systems. The electron hopping perpendicular to the CuO2

layers in a single-layer La2−x SrxCuO4 (LSCO), Bi2Sr2CuO6+δ

(Bi2201), etc is negligibly small. We do not consider here
YBa2Cu3O7−δ (YBCO) and Bi2Sr2CaCu2O8+δ (Bi2212) with
two CuO2 layers in the unit cell where the bilayer splitting of
the FS appears, so we calculate DOS for the electrons in the
doped single CuO2 layer.

The change of the FS topology at xc1 = popt results
in the logarithmic divergence of DOS (figure 2), while the
emergence of the new electron-like pocket below xc2 = p∗
results in a step in the DOS (figure 3). The total DOS is a
sum of the singular and regular contributions. We would like
to stress that both logarithmic and step DOS singularities are in
perfect agreement with the general properties of the van Hole
singularities for the 2D electrons [43]. Contrary to the 3D
systems, the thermodynamical potential for the 2D electrons
has a singular contribution δ	 ∼ (εF − εc)

2 for the step
singularity and δ	 ∼ (εF − εc)

2 ln |εF − εc| for the logarithmic
singularity [44]. Thus QPT at xc2 = p∗ is of the second order,
while at xc1 = popt the singularity is stronger. It immediately
follows that the Sommerfeld parameter γ in the electronic heat
capacity γ = Ce/T has also a singular step contribution at
x � p∗, and

δγ ∝ ln(εF − εc) ∝ ln |x − xopt| (2)

near xc1 = popt. Similar divergence in the specific heat

3
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Figure 2. Regular, singular and total DOS N(ε − εc1) near the
optimal doping, εc1 = εF(popt), as calculated from the Green’s
function (1). The dotted line shows the logarithmic fitting. In the
inset, the doping dependence of the superconducting critical
temperature Tc(x) is shown; the optimal doping is 0.151. Note that
the energy ε − εc1 is the energy of holes.

Figure 3. Regular (hole pocket), singular (electron pocket) and total
DOS N(ε − εc1) near the pseudogap critical point εc2 = εF(p∗).
Below p∗ = 0.24 (ε < εc2) a singular step-like contribution to the
total DOS appears. Note that the energy ε − εc1 is the energy of
holes.

was found within the dynamical cluster approximation for the
Hubbard model [45].

To check whether the coincidence of xc1 with popt and
xc2 with p∗ is occasional or not, we have calculated the
superconducting critical temperature dependence Tc(x) in the
same model [46] and the kinetic energy as a function of
doping. The Tc(x) dependence is an inverse parabola with the
maximum at xopt (see inset in figure 2), which indeed equals
xc1. Note that it is not a coincidence since, like in the BCS
theory, the maximum in Tc(x) is determined by the maximum
DOS, and at xc1 we have a logarithmic singularity. Kinetic
energy, Ekin = ∑

n t11
0n K0n , reveals a remarkable kink at

xc2 = p∗ (figure 4). Above p∗, Ekin(p)/Ekin(p∗) ∼ 1 + p,
which is expected for a conventional 2D metal with hole

Figure 4. The doping dependence of the dimensionless kinetic
energy Ekin(p)/Ekin(p∗). The calculated dependence is shown by the
filled (red) circles. Above p∗ it obeys a conventional law and is
proportional to (1 + p). The extrapolation of this law to the region
p < p∗ (blue dashed line) emphasizes the depletion of part of the
kinetic energy in the pseudogap region. The calculation for the
idealized triangular pseudogap model (3) is shown by the filled
triangles.

concentration nh = 1 + p and Ekin ∼ εF ∼ nh. The
extrapolation of this law below p∗ (shown in figure 4 by
the blue dashed line) reveals that the actual Ekin is smaller.
We associate this depletion of the kinetic energy with the
pseudogap formation and try to fit it with a simple free
electron gas with a triangular pseudogap DOS (Loram–Cooper
model [1, 2]):

N(ε) =
⎧
⎨

⎩

g, |ε − εF| > Eg

g
|ε − εF|

Eg
, |ε − εF| < Eg .

(3)

Here Eg = J (p∗ − p)/p∗ is a doping dependent pseudogap
and J is the nearest neighbor exchange parameter. This fitting
is shown by the filled triangles and it reflects some decrease of
the kinetic energy due to the pseudogap but does not provide
a quantitative agreement. Apparently, better fitting is given by
the exponential law, Ekin(p)/Ekin(p∗) = exp[−4Eg(p)/J ].
This analysis confirms that the QPT at xc2 is indeed related
to the pseudogap and the coincidence of xc2 and p∗ is not
occasional.

A singular contribution to the Hall coefficient near the
optimal doping has been measured for Bi2Sr0.51La0.49CuO6+δ

single crystals and for La2−x SrxCuO4 thin films under a strong
magnetic field of 60 T [8]. According to our theory, these
extra carriers are induced by the singular DOS. To continue
discussion in terms of the critical points, not the critical
energies, we note that near the critical point εF(x) − εc1 =
k(x − xopt). In figure 5 we plot the calculated singular DOS
Nsing(z), z = x − xopt, together with the singular contribution
to the Hall coefficient, nHall(1.5 K) − nHall(100 K) [8]. The
optimal doping in the LSCO thin film xopt = 0.17 is shifted
from the bulk value xopt = 0.15 in the Bi2201 which may be
due to the strains in the films. The general agreement of the
calculated singular DOS and Hall data provides further support
for our analysis.

4
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Figure 5. Comparison of experimental (blue squares) singular Hall
coefficient [8] for Bi2Sr0.51La0.49CuO6+δ (a) and for La2−x Srx CuO4

(b) and our calculated (red filled circles) singular DOS, Nsing(εF(x)),
near the optimal doping as follows from equation (2). Agreement
with results on bulk single crystals (a) is better than with results on
thin films (b).

4. Discussion

Now we are going to compare our results with the other
relevant studies and discuss the retardation effects for the
electronic self-energy. These effects determine Im �(k, ω) and
hence the quasiparticle spectral weight and line width. Our
approach allows us to go beyond the static limit and to get
the frequency dependent real and imaginary parts of the self-
energy by the Mori-type projection technique; for the Hubbard
model, calculations of such type have been done in [31]. The
authors of [31] obtain very similar concentration dependence
of the FS (see figure 6 in their paper) as we have. This
agreement proves that Im �(k, ω) is not so important for the
shape of the FS. Nevertheless it is important for the spectral
weight. In particular, the spectral weight of the inner pocket
around (π, π) is small due to the finite quasiparticle lifetime.
Thus the ARPES intensity for this pocket is small and that may
be the reason why it has never been observed by ARPES.

The energy dependence of the electron self-energy
is crucial and determines the Mott–Hubbard transition in
the Hubbard model, as was convincingly demonstrated by
the dynamical mean-field theory (DMFT) [47]. Cluster
generalization of DMFT [48–51] is necessary to study electron
correlations in a 2D CuO2 layer where the nearest neighbor
spin correlations require the momentum dependent self-
energy. The cellular DMFT (CDMFT) method provides k
dependent self-energy and results in the phase diagrams that
have features similar to the ones experimentally observed in
cuprates [52–56]. Recently, the exact diagonalization version
of CDMFT (CDMFT + ED) was used to study the electronic
structure of the doped Mott–Hubbard insulator [57, 58]. The
sequence of the FS transformations with doping in [57, 58]
is very similar to ours. At a small doping x , four-hole
pockets expand with x until they touch the Brillouin zone
boundary (|kx | or |ky| equal to π ). Then at xc1 = popt they

merge into two concentric FSs around (π, π). With further
doping, the smaller surface disappears leaving a large hole-
like FS which later transforms into a normal electron-like one
through one more Lifshitz QPT. In spite of many differences
in details (for example both poles and zeros of the Green’s
function are obtained in [57, 58]) the similarity of the FS
transformations in our work and papers [57, 58] proves the
validity of our approach at least at low temperatures. We
believe that it is the simplest approach that allows us to obtain
the FS transformation from the lightly doped Mott insulator
up to the Fermi liquid. Nevertheless our static approximation
cannot treat the quasiparticle spectral weight (see discussion
of [31] above). It does not work in the Fermi liquid regime
either. We start our perturbation theory with the small self-
energy in the atomic limit and then the self-energy will be large
in the band limit.

One more agreement between our work and the dynamical
cluster approximation is the T 2 log T singularity in the
thermodynamic potential at xc1 in [45] and our z2 log z (see
equation (2)) at the Lifshitz QPT. At zero temperature, z is
given by the energy difference of the Fermi level and the
critical energy, which is proportional to (x − xc1). At finite
temperature z ∝ T .

5. Conclusion

We have shown that there are two critical points in the cuprate’s
doping dependence. The first one is related to the change
of the FS connectivity and logarithmic divergences of DOS
and of the electronic heat capacity parameter γ at the optimal
doping popt = 0.151. Also, we associate this QPT with the
experimentally observed singular doping dependence of the
Hall coefficient [8]. Moreover, the logarithmic enhancement
of DOS leads to the maximum in the doping dependence
of the superconducting critical temperature Tc at the same
critical point x = popt. This is in agreement with the
previous calculations of Tc for the magnetic mechanism of
dx2−y2 pairing. The second QPT is associated with the collapse
of the electron-like FS pocket at p → p∗ = 0.246 and
results in the step singularities in DOS and in the Sommerfeld
parameter γ . We have found the depletion of the hole’s
kinetic energy below p∗ and ascribe it to the pseudogap
formation at p < p∗. Thus the two energy scales in cuprates
measured by Tc and T ∗ are both related to the QPTs and to
the changes of the cuprate’s electron structure with doping.
The very existence of both logarithmic and step singularities
in DOS are in perfect agreement with the general properties
of the van Hole singularities for the 2D electron systems.
But the concentrations of doping at which these singularities
approach the Fermi level and start to govern the behavior of
the system are determined by the strong electronic correlations
and scattering on the associated short-range AFM order.

Note that our analysis is appropriate for cuprates that
have one CuO2 layer in the unit cell. The question arises as
to whether the model parameters and corresponding critical
concentrations are the same for e.g. LSCO and Bi2201. In
the conventional single-electron tight-binding model with the
rigid band the hopping parameters depend significantly on
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doping. That is why the ratio t ′/t extracted from ARPES
is usually different for Bi2201 and LSCO. In general, the
hopping parameters depend on the interatomic distance, which
is almost the same in these two crystals. That is why we use
the same parameters for all doping concentrations. The doping
dependence of the band structure and its non-rigid behavior
appear as an effect of strong electronic correlations.
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