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Abstract
We consider light transmission in a photonic crystal waveguide coupled with two identical
nonlinear cavities positioned symmetrically beside the waveguide and coupled with each other.
Using Green function theory we show three scenarios for the transmission. The first one inherits
the linear case in which the light transmission preserves the symmetry. In the second scenario
the symmetry is broken by the light intensities at the cavities. In the third scenario the
intensities are equal but the phases of the complex amplitudes are different at the cavities. This
results in a Josephson like current between the cavities. The model consideration agrees well
with computations of the Poynting current in a photonic crystal waveguide coupled with two
optical cavities filled with a Kerr material.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Symmetry breaking is at the heart of many physical
phenomena. The spontaneous symmetry breaking for decrease
of temperature in condensed matter physics is the most
famous example [1]. In recent decades the phenomenon
of symmetry breaking has been developed in nonlinear
optics [2–5] with the establishment of one or more asymmetric
states which no longer preserve the symmetry properties of the
original solution. Recently Maes et al described symmetry
breaking in a system with two coupled in-channel and off-
channel nonlinear cavities (Fano resonators) aligned along a
waveguide [6–8] that forms a Fabry–Pérot resonator. When
equal power is injected on both sides of the waveguide,
the system becomes symmetrical. Nevertheless the reflected
output power might be different on the two sides of the
cavities due to nonlinear effects. Symmetry breaking has been
considered also for the case of many coupled nonlinear optical
cavities [9, 10].

Here we consider two coupled identical cavities with a
Kerr-based nonlinearity positioned beside and symmetrical

relative to the photonic waveguide (see figure 1(a)). Then
the system does not require injection of equal power from
both sides of the waveguide to be symmetrical. In the linear
case both cavities are excited by a input wave with the same
strength. In the nonlinear case this excitation shifts the
resonance frequencies of the cavities. Due to the lack of the
superposition principle for these two cavities, it is possible that
the symmetric solution is no longer the only one at a certain
input power or frequency of input light. Then the system can
drift to a situation where one cavity is more excited than the
other, and thus an asymmetric state arises. This scenario of
symmetry breaking is well known [2, 3, 6, 7]. However we
demonstrate a more subtle mechanism of symmetry breaking.
The light is equal in intensity in the cavities but differs in
phase. Then, similar to the Josephson current, a power current
between the cavities arises if they are coupled.

2. Tight-binding model

We use the Green function approach developed in [11–15] for
a 2D photonic crystal (PC) of dielectric rods with the dielectric
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Figure 1. (a) Two cavity rods made from a Kerr medium marked by filled circles are inserted into the square lattice photonic crystal of
dielectric rods with the dielectric constant ε0. The 1D waveguide is formed by substitution of a linear chain of rods by the rods with dielectric
constant εW + ε0 marked by stars. (b) The tight-binding version of the system: J2 couples the chain and the cavities and J4 couples the
cavities to each other (not shown).

constant ε0. The PC holds the 1D cavity (waveguide) and two
0D cavities (nonlinear cavity rods) as shown in figure 1(a).
Then the dielectric constant of the full system ε(x) is a sum of
periodic perfect PC and cavity induced terms ε(x) = εPC(x)+
δε(x|E), where δε(x|E) = εW(x)+ εd(x|E) is contributed by
the waveguide and the two nonlinear cavities:

εd(x|E) = [εd − ε0 + χ(3)|E(x)|2]
∑

j=1,2

θ(x− x j ), (1)

εW(x) = εW

∞∑

n=−∞
θ(x− xn). (2)

Here θ = 1 inside the cavity rod and θ = 0 outside,
the nonlinear susceptibility χ(3) is due to the Kerr effect.
Then the TM electric field directed along the rods of the PC,
E(x, t) = E(x)eiωt , satisfies the integral equation

E(x) = ω2

c2

∫
d2y G(x, y|ω)δε(y|E)E(y), (3)

where G(x, y|ω) is the Green function of the ideal 2D PC of the
rods which was calculated in [11] for the square lattice PC. If
the radius of the cavity rods is sufficiently small in comparison
to the wavelength of the EM wave, we can write equation (3)
as the discrete nonlinear equation [11–13]

En =
∑

m

Jn−m(ω)δεm Em, (4)

where Jn−m(ω) = σ ω2

c2 G(xn, xm|ω), σ is the cross-section of
the rods, and n, m run over sites of the centers of the cavities
(marked by stars and filled circles in figure 1(a)).

We use the nearest-neighbor approximation and write (4)
as a tight-binding linear chain coupled with two nonlinear
cavities:[

1

εW
− J0(ω)

]
En = J1(En+1 + En−1)

+ δn,0
J2

εW
(δε1φ1 + δε2φ2),

[1− δε1 J0(ω)]φ1 = J2εW E0 + J4δε2φ2,

[1− δε2 J0(ω)]φ2 = J2εW E0 + J4δε1φ1,

(5)

where δε j = εd−ε0+χ(3)|φ j |2, j = 1, 2. The model is shown
in figure 1(b) and consists of a linear infinitely long tight-
binding chain represented by amplitudes En whose spectrum
is given by the dispersion equation J0(ω) = 1

εW
− 2J1 cos k,

and two nonlinear cavities represented by amplitudes φ1, φ2.
The coupling J2 connects the cavities and the chain and the
coupling J4 connects the cavities.

We introduce here for computations the couplings Jm

computed in [13] for the simple square lattice (lattice constant
a = 0.5 μm) of cylindrical rods of radius 0.18a with dielectric
constant ε0 = 11.56 (GaAs at the wavelength 1.5 μm) in
air. For simplicity we ignore the frequency dependence in all
couplings: J1 = 0.04, J2 = −0.01, J4 = −0.001, except
J0(ω) = 1.11(ω− 0.47) where the frequency here and in what
follows is given in terms of 2πc

a . The electric field is taken
in terms of E0 = 0.16 (erg cm−3)1/2 that corresponds to the
typical incident power per length 100 mW/a. Furthermore we
take the nonlinear refractive index n2 = 2.4×10−12 cm2 W−1.
Then we obtain that the dimensionless Kerr coefficient of
nonlinearity λ = χ(3)E2

0 = 0.05. These dimensionless
parameters are used in all our numerical calculations.

Removing a row of rods creates the 1D PC waveguide
which supports a single band of a guided monopole mode
for TM polarization spanning from 0.315 to the upper band
edge 0.41 [16], εW = 1 − ε0 = −10.56. We substitute
two rods by nonlinear ones with dielectric constant εd = 3
as given by equation (1) and shown in figure 1(a). The tight-
binding model (5) is close to that used in [13, 14] and holds
the nonlinear terms not only in the equations for the cavity
amplitudes φ j , j = 1, 2 but in the couplings between the linear
chain and the nonlinear cavities too.

For the chain we write the solution as En = Eineikn +
re−ikn , if n � 0, and En = teikn , if n � 0. Here Ein

is the amplitude of the incident wave, |r |2/E2
in and |t|2/E2

in

are the reflection and transmission, respectively. Substituting
this solution into equation (5) one can obtain the following
equations for the cavity’s amplitudes only:

2
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Figure 2. The frequency behavior of the even As = φ1 + φ2 (a) and odd Aa = φ1 − φ2 (b) mode amplitudes for Ein = 0.5, λ = 0.05 and the
parameters of the tight-binding model (5) given in section 2. Here and in all forthcoming figures the dashed blue line shows the symmetrical
branch with Aa = 0. The solid red line shows the symmetry breaking branch with I1 �= I2. The gray thick solid line shows the phase parity
breaking branch.

[1− Heff(ω)]
(

φ1

φ2

)
= J2εW Ein

(
1
1

)
,

Heff =
(

(J0(ω)+ i�k)δε1 (J4 + i�k)δε2

(J4 + i�k)δε1 (J0(ω)+ i�k)δε2

)
,

(6)

where �k = J 2
2

2J1| sin k| . Equation (6) is a particular case of
the Lippmann–Schwinger equation [17, 18] and is close to
the coupled mode theory of two nonlinear cavities derived
in [19], however with an important difference. The difference
is that a nonlinear term is input not only into the diagonal
matrix elements of Heff but also into the non-diagonal matrix
elements.

3. Symmetry preserving branch

The amplitudes φ j of the nonlinear cavities are given by the
inverse of the matrix 1 − Heff(ω) whose matrix elements, in
turn, depend on the intensities I j = |φ j |2. That results in two
equations of self-consistency which can be written analytically
similarly to those given in [17, 19]. However in the present
Green function approach the equations are too cumbersome.
We present here the numerical results only.

The first solution is I = I1 = I2 which preserves the
symmetry so that

φ1 = φ2 = J2εW Ein

1− (J0(ω)+ J4 + 2i�k)δε
, (7)

as follows from (6), where δε = εd − ε0 + λI . The incident
wave excites only the symmetric even mode As = φ1+φ2 with
the resonance frequency defined by the equation δε(I )[J0(ω)+
J4] = 1 and with the doubled width 2�k . With growth of the
amplitude of the incident wave Ein the resonance frequency
shifts to give rise to a bistability. The second odd mode
Aa = φ1 − φ2 is not supported by the incident wave as shown
in figure 2(b) by the dashed line. That mode is uncoupled from
the leads and therefore is the bound state in continuum (BSC)
with discrete frequency defined by the equation

(εd − ε0)(J0(ωc)− J4) = 1. (8)

Figure 3. The transmission as a function of frequency for Ein = 0.5.

It is the simplest symmetry mechanism which gives rise to the
BSC, as was presented in [19, 20].

The self-consistency equation for the symmetry preserv-
ing branch I = I1 = I2 is enormously simplified:

I ([1− (J0(ω)+ J4)δε]2 + 4�2
kδε

2) = (J2εW Ein)
2. (9)

It is very similar to the equation of self-consistency for a
single off-channel nonlinear cavity [17, 21]. The transmission
amplitude is given by the equation [17]

t = Ein + r = Ein + i�k

εW J2

∑

j

δε jφ j . (10)

The transmission for the symmetry preserving branch is shown
in figure 3 by the dashed line.

4. The symmetry breaking branch

If the cavities were linear the symmetry preserving branch
would be the only one that would follow from symmetry
arguments based on the linear transformations. However in the
nonlinear case these arguments are not true. The numerical
solution, indeed, reveals two equivalent branches, the first

3
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Figure 4. The intensities at the cavities as a function of the frequency
of input wave for Ein = 0.01. The parameters of the tight-binding
model (5) are collected in section 2. The intensities are shown by a
dash-point blue line for the symmetry preserving branch and a thick
gray line for the phase parity breaking branch. For the symmetry
breaking branch the intensities I1 and I2 are different and shown by
solid and dashed red lines.

with I1 > I2 and the second branch φ1 ←→ φ2, i.e., the
nonlinearity gives rise to symmetry breaking below (above)
a critical frequency for χ(3) > 0 (χ(3) < 0). We present
here the solutions for the cavity’s intensities as a function of
the frequency and amplitude of the input wave as shown in
figures 4 and 5.

However the frequency behavior of the even and odd
mode amplitudes |As| and |Aa| shown in figure 2 is more
comprehensible. The even mode As displays a resonance peak
with the resonance width substantially less than the resonance
width of the peak for the symmetry preserving branch (dashed
line).

Correspondingly, the transmission in figure 3 demonstrates
a narrow dip for the symmetry breaking branch. The degree of
bistability mainly depends on the ratio between the input power
proportional to E2

in and the resonance width [22]. Therefore,
one can see that the bistability of the symmetry breaking
branch is substantially more pronounced in comparison to the
symmetry preserving branch. The resonance peak in |As|
for the symmetry breaking branch terminates at the frequency
where the odd mode amplitude |Aa| arises, as seen from
figure 2(b). Close to this frequency the amplitude Aa has a

Figure 5. The intensities at the cavities as a function of Ein for
ω = 0.36. The point of the BSC is shown by a bold circle.

behavior typical of an order parameter in a phase transition
of the second order. The dependence of Aa on the amplitude
of the incident wave demonstrates the same behavior (see
figure 6(b)).

5. The phase parity breaking branch

Finally, there is a unique branch which has equal intensities
at the cavities but nevertheless the symmetry is broken by the
phases of complex amplitudes φ1 and φ2. This branch refers
to the special case of equation (6) when the determinant of the
matrix 1 − Heff(ω) equals zero, i.e., the inverse of the matrix
does not exist. It occurs at

1− J0(ω)(δε1 + δε2)+ (J 2
0 (ω)− J 2

4 )δε1δε2 = 0,

δε1 + δε2 = 2(J0(ω)− J4)δε1δε2.
(11)

Simple algebra shows that equation (11) has the single solution

δε1 = δε2 = δε = 1

J0(ω)− J4
, (12)

with δε j = εd − ε0 + χ(3)|φ j |2, j = 1, 2, i.e., the intensities
at the cavities coincide. Although the inverse of the matrix
1 − Heff(ω) does not exist from equation (6) we obtain the
particular solution

As = φ1 + φ2 = −J2εW Ein
J0(ω)− J4

J4 + i�k
. (13)

Figure 6. The amplitudes |As| (a) and |Aa| (b) as a function of the incident wave amplitude Ein.

4
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Figure 7. The difference between the phases of the cavity amplitudes φ1 and φ2 dependent on the frequency for fixed incident amplitude
Ein = 0.5 (a) and on Ein for fixed frequency ω = 0.36 (b). The BSC point is shown by the bold circle.

The moduli |φ1| = |φ2| are fixed by equation (12)
while the amplitudes are complex vectors as follows from
equation (13): φ1 =

√
I exp(i(α+θ)), φ2 =

√
I exp(i(α−θ)).

Then we obtain

4 cos2 θ = J 2
2 E2

inε
2
Wλ(J0(ω)− J4)

3

(J 2
4 + �2

k )(1− (J0(ω)− J4)(εd − ε0))
, (14)

tan α = −�k/J4. (15)

Therefore, for this branch the EM oscillations in the cavities
have the same intensity but different phases. The dependence
of the phase difference on the frequency and the incident
amplitude Ein is shown in figure 7. We emphasize that the
phase difference 2θ has nontrivial behavior if the cavities are
nonlinear (χ(3) �= 0) and the incident wave is applied (Ein �= 0)
as follows from equation (14). For the symmetry preserving
branch θ = 0 (dashed line in figure 7), for the symmetry
breaking branch 2θ = 0 or π (solid line in figure 7) while
for the present solution the phase difference 2θ behaves as an
order parameter (gray thick solid line in figure 7) similarly to
Aa shown in figure 2(b). We define the last solution as the
phase parity breaking branch.

From (13) we find that φ1 + φ2 → 0 for Ein → 0,
i.e., the cavities tend to oscillate in an antisymmetric way as
seen from figure 7(b). If the cavities were linear the even
incident wave would excite symmetric oscillations φ1 = φ2

with θ = 0 only provided that ||1 − Heff(ω)|| �= 0. However
if the determinant equals zero the antisymmetric cavity’s
oscillations can be excited independently of the incident wave,
i.e., this odd mode is localized and therefore is the BSC
whose isolated eigenfrequency is fixed by equation (8). If
the frequency of the incident wave coincides with ωc the odd
BSC can be superposed to the even mode [23]. However for
the nonlinear case that is not so. First, the BSC frequency
becomes dependent on the intensity because of the nonlinear
contribution to δε as given by equation (12). Second, the
nonlinearity violates the superposition principle. We can
rigorously define the BSC for Ein = 0 only as was obtained
above and shown in figures 5 and 7(b) by the bold circles.
Indeed, as soon as Ein �= 0 the phases of the cavity’s
oscillations cease to be an antisymmetric mode, and therefore

the BSC begins to couple with the incident wave. In fact,
figures 5 and 7(b) show that the symmetry breaking branch
and the phase parity breaking branch stem from the BSC point
marked by the bold circle. The phenomenon of the BSC in the
nonlinear case is discussed in [17, 19].

The transmission amplitude in accordance with equa-
tions (10) and (13) becomes

t = J4 Ein

J4 + i�k
. (16)

Therefore the transmission for the phase parity breaking branch
has no resonance behavior, as seen from figure 3 by the thick
gray solid line.

Because of the phase difference 2θ �= 0, π for the phase
parity breaking branch a current can flow between the cavities
similar to the tunneling current between two superconducting
samples. Multiplying equations (5) by E∗0 = t∗ and subtracting
the complex conjugated terms one can obtain the value of the
power flow current flowing between the chain at the ‘0’th site
and the cavities as follows:

j0→1,2 = εW J2 Im(tφ∗1,2). (17)

Similar manipulations with the cavity’s amplitudes give the
current between the cavities:

j1→2 = J4δε Im(φ1φ
∗
2 ) = J4δε I sin(2θ). (18)

It follows also that the current from the ‘−1’th site to the ‘0’th
site of the chain coincides with the current from the ‘0’th site to
the ‘1’th one. Therefore the currents (17) and (18) coincide too
in accordance with the Kirchhoff rule. Thus, the input power
induces a vortical current between the waveguide and cavities
via the coupling J2 and between the cavities via the coupling
J4.

6. Power current between cavities

Following the methods developed for a PC waveguide coupled
with cavities [17, 19, 24] we calculated the transmission shown
in figure 8. Details of the calculation will be given in [25].
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Figure 8. Transmission in the PC structure shown in figure 1(a) for
the parameters of the PC: a = 0.5 μm, rd = 0.18a, ε0 = 11.56,
εd = 3, λ = 0.05.

Note the good agreement of the transmission for the PC
and the tight-binding model calculations (figure 3). Further,
we calculated the electric field directed along the dielectric
rods E(x) and the Poynting vector c

8π
Re(
−→
E
∗ × −→H ) =

c2

8πω
Im(E∗∇E). The results are collected in three patterns of

the current flow in figure 9 corresponding to the three scenarios
of the transmission. In the symmetry preserving scenario the
current flow on the waveguide is laminar while each cavity

has vortical flows around with opposite directions of flow. In
the symmetry breaking scenario one can observe vortical flows
around the cavities in the same direction complemented by the
current vortex in the waveguide in order to compensate for
the vorticity of current flows near the cavities. For the phase
parity breaking case the pattern distinctively demonstrates the
current flowing between the cavities and the waveguide in full
correspondence to the model results.

Thus, our analysis shows that input power can break
the symmetry of a system of a linear waveguide coupled
with two identical nonlinear off-channel cavities positioned
symmetrically relative to the waveguide. The symmetry can
be broken because of the different intensities of the EM field
at the cavities. Moreover the intensities might be equal but
the phases of the oscillations of the EM field in the cavities
differ to give rise to the current circulating between the cavities.
In general we could assume that the symmetry can be broken
both by different intensities and by different phases. However,
as then follows from equations (5), we obtained j1→2 =
J4δε2
√

I1 I2 sin(2θ) while j2→1 = −J4δε1
√

I1 I2 sin(2θ),
i.e. the Kirchhoff rule would be violated. Therefore this
assumption is not valid.

7. Summary

The processes of transmission through a linear waveguide
coupled with two nonlinear off-channel resonance cavities

Figure 9. Current flows for the symmetry preserving branch (a), for the symmetry breaking branch (b), and for the phase parity breaking
branch (c) for aω

2πc = 0.34. The bold circles mark the nonlinear cavities near the waveguide.
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coupled with each other display a surprisingly rich variety. For
linear defects it is clear that we have a direct process of wave
transmission over the waveguide which interferes with the back
scattering processes from the off-channel cavities giving rise
to zeros of the transmission and the Fano resonances. As was
explicitly established in [21], a nonlinearity of the defect leads
to nonlinear Fano resonance dependent on frequency and/or
incident power. For two nonlinear off-channel defects one can
expect two nonlinear Fano resonances as was indeed found
in [13–15, 26]. However, our calculations reveal a substantially
more sophisticated picture of the transmission. The complexity
of the wave transmission in a waveguide coupled with two
nonlinear off-channel defects is the result of interference of
two back scattering nonlinear processes between each other
and with the direct wave transmission in the waveguide.

For the linear case the eigen modes rigorously satisfy
the symmetry of permutation of the cavities. As a result
we observe only one resonance dip, while the antisymmetric
(odd) mode does not participate in the transmission phenomena
because of its zero coupling with incident symmetric wave.
This mode is obviously the bound state in continuum
(BSC) [19, 20]. The oscillations of the EM field at the defects
have no phase difference: 2θ = 0.

For the nonlinear defects the situation changes crucially.
We have three branches. (i) The symmetrical branch with equal
amplitudes at the defects φ1 = φ2 inherited from the linear
case. There is no phase difference between the EM oscillations
at the cavities: 2θ = 0. The incident wave supports only the
symmetrical mode as shown in figure 2. (ii) The symmetry
breaking branch for which the intensities in the cavity defects
are not equal: I1 > I2. There is an equivalent branch with
I1 < I2. These branches break the symmetry relative to the
permutation of the cavities. The EM oscillations in the cavities
are opposite in phase, 2θ = π , although they might be in
phase at some domain of the incident amplitude as seen from
figure 7(b). As shown in figures 2 and 6 the incident wave
excites both symmetrical (even) and antisymmetrical (odd)
modes. This results in an additional resonance dip in the
transmission as shown in figure 3. (iii) The phenomenon of
breaking of symmetry by intensities for transmission through
a nonlinear system is known [2, 3, 6, 7]. However we reveal
one more branch in which the EM oscillations in the nonlinear
cavities have the same intensity but different phases. This
difference of phases is neither zero nor π but smoothly depends
on the frequency and the amplitude of the incident wave as
shown in figure 7. If the defects are overlapped the phase
difference gives rise to current circulation between the defects.
The direction of the current is incidental but its value is given
by equations (17) and (18). These model results agree with the

current flow patterns presented in figure 9 in application to a
2D PC with two defect rods spaced symmetrically near the PC
waveguide.

Although the nonlinear equations might have steady
solutions they must be stable. A stability analysis is performed
in [25] which shows that each branch discussed above can
exist.
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